Human Data Understanding - Sensors, Models, Knowledge, Bd. 7
In this work, two classes of ML-based algorithms were used for load forecasting: the Hidden Markov Models (HMMs) and the Deep Neural Networks (DNNs), both of which provide stable and more accurate results than the considered benchmark methods.
HMMs could be successfully used as a stand-alone predictor with a training based on Maximum Likelihood Estimation (MLE) in combination with a clustering of the training data and an optimized Viterbi algorithm, which are the main differences to other HMM-related load forecasting approaches in the literature.
Adaptive online training was developed for DNNs to minimize training times and create forecasting models that can be deployed faster and updated as often as necessary to account for the increasing dynamics in power grids related to the growing share of installed renewables. In addition, the flexible and powerful encoder-decoder architecture was used, which helped to minimize the forecast error compared to simpler DNN architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs) and others.
47.00 € | ||
in stock | ||
45.50 € | ||
57.00 € | ||
61.00 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de