According to the current results on pedestrian detection benchmarks, the algorithms can be divided into two categories. First, application of hand-crafted image features and of a classifier trained on these features. Second, methods using Convolutional Neural Networks in which features are learned during the training phase. It is studied how both of these types of procedures can be further improved by the incorporation of shearlets, a framework for image analysis which has a comprehensive theoretical basis. To this end, we adapt the shearlet framework according to the requirements of the practical application of pedestrian detection algorithms.
One main application area of pedestrian detection is located in the automotive domain. In this field, algorithms have to be runable on embedded devices. Therefore, we study the embedded realization of a pedestrian detection algorithm based on the shearlet transform.
Keywords:
45.50 € | ||
only 2 in stock | ||
39.00 € | ||
55.50 € | ||
59.50 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de