
Robust Neural Networks: Analysis, Synthesis, and Control
Patricia Pauli
ISBN 978-3-8325-5986-1
195 Seiten, Erscheinungsjahr: 2025
Preis: 46.50 €
Neural networks achieve remarkable performance across a wide range of applications, yet their lack of formal robustness and stability guarantees poses a major challenge for their use in safety-critical systems. This thesis develops system-theoretic methods for the analysis and design of neural networks with provable robustness and closed-loop stability properties. A central focus is the Lipschitz constant of the neural network, a key sensitivity measure to input perturbations. To estimate tight upper bounds, a scalable method based on semidefinite programming is proposed, leveraging the layer-wise structure of general feedforward architectures, which include convolutional and pooling layers. Beyond analysis, the thesis introduces training methods for neural networks with prescribed Lipschitz bounds by incorporating semidefinite constraints into the optimization problem. Efficient algorithms and network parameterizations are developed to ensure constraint satisfaction throughout training. Finally, robust control techniques are employed to certify closed-loop stability for systems with neural components. In particular, dynamic integral quadratic constraints are used to describe nonlinear activation functions, enabling a less conservative stability analysis than existing approaches. Overall, this work bridges the gap between control theory and deep learning by providing scalable tools for safely integrating neural networks into feedback control and safety-critical applications.
Patricia Pauli received Master's degrees in Mechanical Engineering and Computational Engineering from the Technical University of Darmstadt in 2019. From 2019 to 2025, she completed her PhD at the University of Stuttgart under the supervision of Prof. Frank Allgöwer. She is set to become an Assistant Professor in the Control Systems Technology group at the Technical University of Eindhoven in 2025. Her research interests lie in robust neural networks and safe AI-based control.
Keywords:
- Neural networks
- Lipschitz constant estimation
- Lipschitz-bounded networks
- Robust control
- Machine Learning
Kaufoptionen
Versandkostenfrei innerhalb Deutschlands |
|
|
(D) = innerhalb Deutschlands
(W) = außerhalb Deutschlands
*Sie können das eBook (PDF) entweder einzeln herunterladen oder in Kombination mit dem gedruckten Buch (eBundle) erwerben. Der Erwerb beider Optionen wird über PayPal abgerechnet - zur Nutzung muss aber kein PayPal-Account angelegt werden. Mit dem Erwerb des eBooks bzw. eBundles akzeptieren Sie unsere Lizenzbedingungen für eBooks.
Bei Interesse an Multiuser- oder Campus-Lizenzen (MyLibrary) füllen Sie bitte das Formular aus oder schreiben Sie eine email an order@logos-verlag.de