Abstract

Neural networks are highly versatile and broadly applicable, often outperforming
traditional methods in areas such as image processing in terms of accuracy, flexibil-
ity, and scalability. Despite these advantages, they are black-box models, lacking rig-
orous robustness and stability guarantees, which makes them prone to adversarial
attacks. This limits the use of neural networks in safety-critical applications, such as
autonomous driving or surgical robots. This doctoral thesis addresses this problem
by developing system-theoretic methods for the robustness analysis of neural net-
works and the design of neural networks with robustness guarantees. In addition,
we propose a stability analysis of control systems that include neural components
such as neural network controllers.

Robustness analysis of neural networks

Neural networks are often susceptible to small changes in the input. The Lipschitz
constant, a key measure of sensitivity to input variations, is widely used to eval-
uate the robustness of neural networks. However, determining the exact Lipschitz
constant of a neural network is an NP-hard problem, necessitating the estimation
of reasonably accurate upper bounds on the Lipschitz constant. In this thesis, we
propose a method for Lipschitz constant estimation for general feedforward neu-
ral networks based on semidefinite programming (SDP). The method leverages the
layer-wise structure of neural networks as well as the structure of the individual
layers. To this end, we employ state space representations for convolutional layers,
which significantly enhance the scalability of the method. Moreover, our approach
encompasses a broad range of layer types, including general convolutional layers,
diagonally repeated and gradient norm preserving activation functions, and pooling
layers.

Synthesis of robust neural networks

In addition to the robustness analysis of neural networks, this dissertation deals with
the training of robust neural networks, in particular the training of neural networks
with a user-specified bound on the Lipschitz constant. To this end, we are the first
to incorporate semidefinite constraints into the training problem. To address the
resulting constrained optimization problem, we first apply the alternating direction
method of multipliers, which is effective, but involves a significant computational
overhead, as it requires solving an SDP at each training iteration. To mitigate this
computational burden, we develop a more efficient interior point method for the
training of Lipschitz-bounded neural networks, which scales to larger problems like
the training of Wasserstein generative adversarial networks. To further leverage
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existing first-order methods for the training, we finally propose a neural network
parameterization that guarantees the satisfaction of linear matrix inequalities at all
times during training. These matrix inequalities in turn ensure that the neural net-
work complies with a specified Lipschitz bound.

Stability analysis of closed-loop systems with neural components

Thanks to their fast evaluation capabilities, neural network approximations can
be used to replace costly controllers, such as optimization-based controllers, and
thereby enable their use in real-time applications. In addition, neural networks are
utilized to identify nonlinear systems or specific components within them. In this
context, it is crucial to ensure the stability of the resulting closed-loop systems with
neural network components. In this thesis, we consider closed-loop systems consist-
ing of a linear time-invariant system in feedback with a neural network. The stability
of these closed-loop systems is analyzed using robust control techniques leveraging
SDPs. For this purpose, we use a set of dynamic integral quadratic constraints to
describe the nonlinear activation functions, thereby reducing the conservatism of
the analysis compared to approaches from the literature based on static quadratic
constraints. In addition, we consider the problem of offset-free setpoint tracking
using neural network controllers and propose global and local stability analyses for
piecewise constant references. Finally, we propose the use of a reference governor
to significantly expand the region of attraction.

The main goal of this doctoral thesis is to develop analysis and synthesis meth-
ods for robust neural networks and to provide closed-loop stability guarantees for
systems incorporating neural components. To this end, we show that control tools
provide scalable and accurate robustness certificates, such as the Lipschitz constant,
for general feedforward neural networks. Furthermore, these methods facilitate the
training of expressive, robust neural networks, and enable the safe use of neural
networks in closed-loop systems.
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Chapter 1

Introduction

1.1 Motivation

Deep learning architectures such as deep neural networks, convolutional neural net-
works, recurrent neural networks, and transformers have revolutionized numerous
tields within engineering and computer science and are ubiquitous in our everyday
lives [117]. Prominent applications of such neural networks include image and video
processing tasks, natural language processing tasks, nonlinear system identification,
learning-based control, and reinforcement learning [28, 51, 113, 125]. In these ap-
plications, neural networks offer advantages over traditional methods in terms of
flexibility, accuracy, and scalability. This is due to their capability to handle large
datasets and model highly complex nonlinear relationships as universal function
approximators [53].

Despite their strengths and broad applicability, neural networks also face limita-
tions. As black-box models, they generally lack robustness and stability guarantees,
which restricts their use in safety-critical applications such as autonomous driving
[137] and surgical robotics [134]. A significant vulnerability of neural networks is
their sensitivity to small input perturbations [178]. This sensitivity can be quan-
tified by the Lipschitz constant of the network’s input-output mapping. A lower
Lipschitz constant corresponds to higher robustness, as it ensures that small input
changes result in proportionally small output variations. Consequently, Lipschitz
constants of neural networks have generated considerable interest in the field of ro-
bust neural networks, inspiring a substantial body of research on Lipschitz constant
estimation. Determining the exact Lipschitz constant is an NP-hard problem [107,
188]. Therefore, there is a demand for methods that provide accurate upper bounds
for large-scale neural networks, see, e.g., [52, 69, 116, 188]. These Lipschitz bounds
serve not only as standalone sensitivity measures but are also utilized to compute
more sophisticated robustness measures such as certified robust accuracies [102, 103,
104, 122, 127].

While the problem of determining Lipschitz bounds enables robustness quantifi-
cation of a given neural network after training, it naturally raises the question of
designing robust neural networks. This can be achieved by regularizing or impos-
ing guaranteed Lipschitz bounds during training [82]. Such robust neural networks,
especially those with guaranteed Lipschitz bounds, are valuable in a range of appli-
cations. One example are generative adversarial networks (GANSs), which can gener-
ate fake data that closely resemble real-world data [80]. Original GAN training faced
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the issues of vanishing gradients, which prompted the development of Wasserstein
GANs (WGANS) [11]. WGAN training optimizes over 1-Lipschitz neural networks
to estimate the Wasserstein-1 distance. Furthermore, Lipschitz-bounded neural net-
works can enhance robustness and safety in reinforcement learning [18, 22, 106] and
in neural network-based controller design with closed-loop stability guarantees [65,
173, 210].

Some control methods, such as model predictive control (MPC), rely on solv-
ing optimization problems at each time step. However, in real-time or resource-
constrained applications, such optimization-based controllers may be too slow or
computationally expensive. In such cases, neural networks can approximate and
replace these controllers, providing a faster alternative [97, 115, 151, 179, 209]. In
particular, explicit MPC, which precomputes control outputs for all polytopic re-
gions in the state space, can be effectively approximated using neural networks with
rectified linear unit (ReLU) activation functions [44, 58, 131, 170]. Although explicit
MPC does not rely on an optimization problem at each time step, its computational
complexity measured by the number of regions grows rapidly with the problem size
and the number of constraints. Additionally, identifying the specific region contain-
ing the current system state may require too much processing power or memory
storage for real-time evaluation. Furthermore, in the context of system identifica-
tion, neural networks can be used to model nonlinear systems or specific nonlinear
components within them [43, 47, 199]. However, when neural networks are em-
ployed to approximate control laws or identify nonlinear systems, performance and
stability guarantees may not be preserved. To enable safe operation, it is crucial
to establish closed-loop stability guarantees for feedback systems that incorporate
neural components [32, PP1, 97, 99]*. An alternative approach, proposed by [17, 75,
191], circumvents a posteriori testing and instead involves designing neural network
controllers by learning directly over stable and robust closed-loop configurations
that include neural network nonlinearities.

This motivates the purpose of this thesis: We analyze and design neural net-
works with robustness guarantees and verify stability of closed-loop systems that
incorporate neural components using various control tools. Building on the above
discussion, we derive accurate upper bounds on the Lipschitz constant for a general
class of feedforward neural networks. Additionally, we propose and evaluate dif-
ferent training schemes designed to enforce upper bounds on the Lipschitz constant
during training. Furthermore, we provide a stability analysis and an inner approxi-
mation of the region of attraction (ROA) for dynamical systems with neural network
components. The subsequent section provides a detailed review of the literature rel-
evant to this thesis, followed by a discussion of the key contributions and an outline
of the structure of this thesis.

'Throughout this thesis, publications (co-)authored by the author of this thesis are marked with PP
and listed separately in the bibliography.
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1.2 Related work

In this section, we briefly survey selected topics on robust neural networks which
are relevant for this thesis. Further details on the relation of our results to existing
works are discussed in the respective sections later in the thesis.

1.2.1 Adversarial robustness

Adversarial robustness deals with the neural network’s ability to withstand input
attacks designed to deceive the neural network [178]. This led to the development
of multiple adversarial attacks, see, e.g., [38, 132]. Adversarial attacks involve sub-
tle modifications to the input data that are often imperceptible to humans but can
significantly degrade the model’s performance. In classification tasks, adversari-
ally perturbed data cause misclassifications, as illustrated in Figure 1.1. Examples
of imperceptible perturbations in image classification can be found in [81], while
similar examples in the context of image segmentation for autonomous driving are
presented in [137]. Robustness certification for neural networks largely focuses on
analyzing attacks and defenses against perturbations, particularly those measured
using the ¢, and £« norms [38]. The choice of norm depends on the application and
the specific use case.

Defenses against adversarial attacks include adversarial training [81, 132, 171],
which involves training the network on adversarial examples generated from the
training data to increase robustness locally around the training samples. Another
approach is the use of more complex architectures, such as ensemble methods [180].
Moreover, defensive distillation [150] entails transferring knowledge from a larger,
more complex model to a smaller, simpler one. This approach enhances the ro-
bustness of the smaller model while preserving the performance of the original
model. While these defenses mitigate adversarial attacks, they often lack rigorous
robustness guarantees. Moreover, the introduction of a new defense has often been
followed by a new, more powerful attack that breaks this defense method. For ex-
ample, defensive distillation and adversarial training were shown to be ineffective
against stronger attacks [37, 180].

Other approaches use robustness certificates for analysis and training of provably
robust neural networks. Such certificates typically mean a certified robustness re-
gion for all training data points [198, 214]. For example, [94] derive lower bounds on
the input perturbations required to change classifier decisions based on local Lip-
schitz constants and then introduce a regularizer to encourage robustness. More-
over, [158] derive a worst-case loss bound for some given dataset using a semidef-
inite relaxation and a given attack size and jointly optimize this bound with the
neural network parameters and [132] solve a min-max optimization problem, maxi-
mizing over all adversaries from a set and minimizing the resulting worst-case loss.
Local Lipschitz constants are also leveraged in [104] to train robust models through
clipping of the activation functions. Additional robustness certification techniques
use convex outer approximation [202], or interval bound propagation [83] to re-
lax the activation functions, while [15] use robustness certificates to generate ad-
versarial examples for adversarial training. More Lipschitz-based techniques such
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Figure 1.1: Adversarial attacks on images from MNIST dataset [56].
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as Lipschitz Margin Training (LMT) [182] and Globally-Robust Neural Networks
(GloRo) [103, 122] focus on bounding worst-case margins using Lipschitz constants
to define robustness enhancing objectives. Another prominent method is random-
ized smoothing, which provides probabilistic robustness guarantees [49, 120, 154,
168]. This approach involves adding random noise to the input data and averaging
over its predictions. Finally, [2] explore the interplay between neural network archi-
tectures and robustness, highlighting the role of architectural choices in enhancing
model resilience.

1.2.2 Lipschitz constant estimation

It is well-established that determining the exact Lipschitz constant is NP-hard [107,
188]. While computationally inexpensive methods, such as using the product of
spectral norms of weight matrices, provide upper bounds [178], these bounds are
often overly conservative. As a result, significant effort has been devoted to devel-
oping techniques for efficiently computing tighter upper bounds.

Lipschitz constant estimation techniques include gradient approximation based
methods by using the chain rule and automatic differentiation [188]. A global Lip-
schitz upper bound is obtained by optimizing over all activation patterns, i.e., all
combinations of active/inactive neurons, including those that do not occur [197].
This problem can be further relaxed using sparse polynomial optimization [116].
Additionally, the structure and properties of the neural network and its compo-
nents are often identified and relaxed. For example, [52] propose an approach for
Lipschitz constant estimation with exponential scalability that treats activation func-
tions as non-expansive averaged operators. In contrast, [69] introduce a semidefinite
programming (SDP) based method named LipSDP that scales polynomially, using
the property of slope restriction satisfied by common activation functions, e.g., ReLU
and tanh. These activation functions are monotonically increasing functions with
bounded slopes. They can be captured using quadratic constraints [68], which is the
key ingredient to derive an SDP for accurate Lipschitz constant estimation [69]. An
SDP is a convex optimization problem with an objective function that is linear in the
decision variables subject to linear matrix inequality (LMI) constraints [184].

While many works focus on global Lipschitz bounds, e.g., [52, 69], in practice, lo-
cal Lipschitz constants that hold on a problem-specific region are often significantly
tighter than global ones [94]. RecurJac [215] and FastLip [198] compute local Lip-
schitz bounds by bounding the entries of the gradient of the Jacobian. For ReLU
networks, local Lipschitz bounds can be determined by solving a mixed integer lin-
ear programming (MILP) problem [107] or using local quadratic constraints [92]. In
this context, [26, 107] present approaches to exactly compute the Lipschitz constant
of ReLU networks based on an MILP. These MILP-based approaches are, however,
inherently limited in scalability.

The spectral norm product mentioned above [178] is computationally inexpensive
and has better scalability properties than optimization-based methods. To compute
upper bounds in this way, layer-wise Lipschitz constants are oftentimes determined
using the power iteration method [78], which is applicable to any linear layer type,
including fully connected and convolutional layers. Efficient computations of Lip-
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schitz constants for convolutional layers are further discussed in [10, 14, 55, 218].
Another optimization-free method for Lipschitz constant estimation based on loop
transformation and power iteration was recently presented in [67].

1.2.3 Training of Lipschitz-bounded neural networks

Several approaches have been developed to ensure that the Lipschitz constant of a
neural network remains small during training. Some methods achieve this by in-
corporating regularization terms on the spectral norms of the network weights [72,
82] or on a data-based estimate of the actual Lipschitz constant [33]. In the con-
text of regression tasks, approaches such as nonlinear set membership prediction,
kinky inference [35], and Lipschitz interpolation [36, 130] provide guaranteed and
optimized upper bounds on the Lipschitz constant.

Besides these approaches, there exist many works that impose a 1-Lipschitz con-
straint on all layers, e.g., [7, 48, 66, 139, 157, 204]. The feedforward composition of
these 1-Lipschitz layers remains 1-Lipschitz, provided 1-Lipschitz activation func-
tions are used. This follows directly from the calculation of the product of the
layer-wise Lipschitz constants, which yields the end-to-end Lipschitz bound equal
to one. This can be realized by spectral normalization [48, 66, 139, 157]. Alterna-
tively, [7, 204] parameterize all layers to be orthogonal, i.e., constrain all singular
values to be equal to one, and consequently also to be 1-Lipschitz, by an orthogonal
parameterization. In this respect, the parameterization of orthogonal convolutional
layers [124, 174, 181, 190, 211] is significantly more involved than the one of fully
connected layers.

In addition to the gradient norm preserving linear layers obtained by orthog-
onalization, [7] and [175] suggest gradient norm preserving activation functions,
namely GroupSort and Householder activation functions. These activation func-
tions in combination with orthogonal linear layers yield gradient norm preserving
neural networks that do not suffer from vanishing or exploding gradients [7]. In
[91, 98], proximal neural networks consisting of averaged, hence 1-Lipschitz, op-
erators are suggested. The linear operators of parseval proximal neural networks
[91] are furthermore in a Stiefel manifold. In [24, 122], the use of robustness pro-
moting loss functions is suggested and [13, 63] optimize over activation functions
consisting of learnable 1-Lipschitz linear splines to improve expressivity while main-
taining a Lipschitz bound. In a similar spirit, [138] suggest convex-potential layers,
1-Lipschitz layers derived from a discretization of continuous dynamical systems,
and [9] propose SDP-based Lipschitz layers that by design satisfy layer-wise Lip-
schitz conditions adopted from an SDP. Their approach further embeds previous
methods including spectral normalization into the SDP-based framework as special
cases. An alternate method that is also based on SDP constraints uses so-called
direct parameterizations for equilibrium networks [161], recurrent equilibrium net-
works [162], and feedforward neural networks [193], respectively. Neural networks
parameterized by direct parameterization satisfy the underlying LMI constraints by
design.

As mentioned before, one interesting application of 1-Lipschitz neural networks
is for the parameterization of the discriminator network of a WGAN. In this appli-
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cation, the Lipschitz bound of 1 was first realized by weight clipping [11], which is
highly conservative, resulting in neural networks with unnecessarily low Lipschitz
constants. A gradient penalty method was suggested in [89] that in turn provides no
guarantees and, in [139], spectral normalization is applied to the training of GANS.

1.2.4 Quadratic constraints for neural network analysis and design

The feedback interconnection of a linear time-invariant (LTI) system and a diagonal
static sector-bounded nonlinearity is called Lur’e system [128] and the problem of
determining the stability of a Lur’e system for any nonlinearity within the defined
sector bounds is called the problem of absolute stability, see [129] and references
therein. In the 1960s, many well-known researchers including Popov, Yakubovich
and Brockett [31, 155, 207] studied the problem in the frequency domain, yielding
the Circle, the Popov and the Yakubovich criterion. O’Shea, Zames and Falb then
extended on these criteria, deriving the so-called Zames-Falb multipliers [212, 213],
whose use decreases the conservatism over previous methods. See [40, 183] for
more information on Zames-Falb multipliers. As early as in the 1990s, Suykens et al.
conceptualized neural networks as an alternating sequence of linear and nonlinear
operators that satisfy a sector condition [176, 177]. They recognized the potential
of analyzing and synthesizing nonlinear dynamical systems with neural network
components by viewing them as Lur’e systems.

In 1997, Megretski and Rantzer introduced integral quadratic constraints (IQCs),
proposing a framework for system analysis with respect to nonlinearities, uncer-
tainties, or time variations [136]. This framework enabled the analysis of nonlin-
ear systems with rigorous robustness and performance guarantees, particularly in
the presence of troublesome components, whose input-output characteristics can be
modeled by an IQC. The majority of activation functions constituting the nonlin-
ear components of neural networks are both sector-bounded and slope-restricted,
properties that can be captured by IQCs. Based on the IQC framework [136], [68]
discussed quadratic constraints to describe the sector-bounded, slope-restricted, and
bounded activation functions of neural networks, popularizing the use of quadratic
constraints and SDP methods for the analysis and design of neural networks. There-
after, a growing body of research has emerged, which utilizes robust control tech-
niques for the analysis and design of neural networks, see, e.g., [69, 92, 101, 142, 160,
208].

Besides its application to Lipschitz constant estimation [69, 92] and robustness
analysis [8, PP6], the quadratic constraint description of nonlinear parts of a neu-
ral network has led to new results in reachability analysis [101, 144], neural network
verification [142, 143, 145], and closed-loop stability analysis [146, 208]. The problem
of checking how much the output of a neural network changes given some perturba-
tion set on the input can be approached by propagating input uncertainties through
the neural network to compute an outer bound on the reachability set of the output.
Neural network verification in this context refers to ensuring that all possible inputs
map to a safe set of outputs. This problem was described by an SDP using quadratic
constraints in [68], chordal sparsity of the underlying constraints was exploited in
[142], and the problem was solved more efficiently using polynomial optimization
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in [143, 145]. SDP methods have also been applied to the reachability analysis of
closed-loop systems with neural components [101, 144], for which [144] also ap-
ply sparse polynomial optimization. Additionally, sparse matrix decomposition is
utilized for Lipschitz constant estimation in [206] and [189] suggest an SDP-based
model-free verification for neural network controlled systems.

The stability of closed-loop systems with neural network controllers was tackled
by [208] and later extended to imitation learning [209], bounding errors between an
MPC controller and its approximation [PP2], and the synthesis of recurrent neural
network controllers for partially observed systems [88, 108, 109]. Furthermore, SDP-
based parameterizations of recurrent equilibrium networks with robustness and sta-
bility guarantees [162, 163] have been used in several applications where a parame-
terization of stable operators is needed [74, 133].

Efforts have also been made to derive new and tighter quadratic constraints for
various activation functions, with a particular focus on common ReLU activation
functions [68, 92]. In [60], multiple properties beyond slope restriction and sector
boundedness satisfied by typical activation functions are listed, including bounded-
ness, positivity of the activation function and its complement, leading to tighter
over-approximations of the nonlinearity. In [164, 165], strengthened Circle and
Popov criteria for ReLU neural networks are provided and [147] derive a complete
set of quadratic constraints for the repeated ReLU activation function.

1.3 Contributions and outline of the thesis

In the following, we provide details on the outline of the thesis and state the contri-
butions.

Chapter 2: Background

In Chapter 2, we provide the necessary background for the main results presented
in this thesis. In Section 2.1, we introduce neural networks, defining the key layer
types and relevant architectures considered throughout the work, and streamline
the training problem. Next, in Section 2.2, we review the IQC framework, with
a particular focus on quadratic constraints related to slope restriction and sector
boundedness. In Section 2.3, we discuss robustness in neural networks, summarize
the LipSDP method [69] for Lipschitz constant estimation and introduce common
adversarial attacks.

Chapter 3: Robustness analysis of neural networks

The main contribution of Chapter 3 is an accurate and scalable SDP-based method
for Lipschitz constant estimation for a general class of feedforward neural networks.
We first present two intermediate results and subsequently extend them to the main
result.

Existing works on SDP-based Lipschitz constant estimation, such as LipSDP [69],
and neural network analysis in general have primarily focused on diagonally re-



