Table of contents

Nomen	clature	V
Abstrac	t	ΧI
Kurzfa	ssung	ΚV
Chapte	r 1 Introduction	1
1.1	Motivation	1
1.2	Objectives	4
1.3	Research tasks and thesis outline	5
Chapte	r 2 State of research and technology	7
2.1	Indoor air flow	7
2.2	Multicomponents	8
2.3	Comparison of simulation results of different CFD programs	11
2.4	Contribution of the present work	12
Chapte	r 3 Numerical Modeling	15
3.1	CAD modeling and meshing	16
3.1.	1 Base case model	16
3.1.	2 3D Test room	17
3.2	Governing equations	19
3.2.	1 Laminar flow	19
3.2.	2 Turbulent flow	20
3.3	Boundary conditions	23
3.4	Model parameters	25
3.5	Double configuration	25

Table of contents

CF	D procedure	26
Co	des used in this work	27
.1	CFX	28
.2	FLUENT	29
.3	OpenFOAM	29
Co	ncluding remarks	29
er 4	Base case simulation results	31
Ind	loor air flow model	31
.1	Turbulent flow	34
.2	Laminar flow	39
.3	Conclusion	39
Ind	loor air flow model with an emission source	39
.1	Turbulent flow	42
2	Laminar flow	47
3	Conclusion	47
Pol	llutants distribution model based on double configuration	47
.1	Two components system	48
.2	Three components system	50
Co		52
er 5	Experimental investigation	55
Tes	st setup	55
Me	easurement technique	58
Ex	perimental procedure and conditions	58
Me	easurement results and discussion	62
.1	Two components system (without flow obstruction)	63
.2	Two components system (with flow obstruction)	67
.3	Three components system	69
.4	Further experiments	75
	Co .1 .2 .3 Co .1 .1 .2 .3 Inc .1 .2 .3 Po .1 .2 .3 Po .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3 .1 .2 .3	2 FLUENT .3 OpenFOAM Concluding remarks .4 Base case simulation results. Indoor air flow model .1 Turbulent flow .2 Laminar flow .3 Conclusion Indoor air flow model with an emission source .1 Turbulent flow .2 Laminar flow .3 Conclusion Pollutants distribution model based on double configuration .1 Two components system .2 Three components system .2 Three components system .3 Concluding remarks .4 Experimental investigation .5 Test setup .6 Measurement technique .7 Experimental procedure and conditions .8 Measurement results and discussion .1 Two components system (without flow obstruction) .2 Two components system (with flow obstruction) .3 Three components system (with flow obstruction) .3 Three components system (with flow obstruction)

5.5	Cor	ncluding remarks					76
Chapter	r 6	Comparison of simulation results with experimental results	•		•		79
6.1	Inde	oor air flow model			•		79
6.2	Dev	veloped simulation model based on double configuration					81
6.2.	1	Two components system (without flow obstruction)					81
6.2.	2	Two components system (with flow obstruction)					86
6.2.	3	Three components system					87
6.3	Cor	acluding remarks					91
Chapter	r 7	Further simulation studies			•		93
7.1	Cas	e 1 – Influence of air change rate			•		93
7.2	Cas	e 2 – Influence of different initial in-room pollutant concentration	ns		•		98
7.3	Cas	e 3 – Influence of different pollutant inlet flowrates					99
7.4	Cas	e 4 – Influence of different air inlet flowrates with the same	po!	llut	an	t	
	inle	t flowrate					101
7.5	Cas	e 5 – Influence of different time durations of pollutant inlet			•		104
7.6	Cor	acluding remarks			•		105
Chapter	r 8	Summary and outlook			•		107
8.1	Sun	nmary					107
8.2	Out	look			•		111
Append	lix A	Experimental			•		113
A. 1	Mea	asurement technique			•		114
A.1.	.1	Flame ionization detector					114
A.1.	.2	Infrared photometer			•		116
A.1.	.3	Wilson flow grid			•		117
A.2	We	ight analysis of propane cylinder			•		119
A.3	Fur	ther experiments			•		121
A.3.	.1	Two components system (without flow obstruction)					121
A.3.	.2	Two components system (with flow obstruction)					122

Table of contents

Appendix B	Simulation	•	•	•	•	•	131
B.1 2D	base case model						132
B.1.1	Laminar indoor air flow model						132
B.1.2	Laminar indoor air flow model with an emission source						136
B.1.3	OpenFOAM running in parallel on computing cluster						141
B.2 Dev	veloped simulation model based on double configuration						144
B.2.1	Time dependent expression for the mass source contribution						144
B.2.2	Influence of diffusion						145
B.2.3	Comparison of simulation results with experimental results.		•		•		147
References							151