1. Introduction

1.1. Motivation

The knowledge of the internal state of a dynamical system is of crucial importance
for many control applications, for example when stabilizing the system via state
feedback, when monitoring compliance with safety-critical conditions or when de-
tecting errors and external attacks. In most practical cases, however, the state
cannot be completely measured for various (possibly physical or economic) reasons
and therefore must be reconstructed using the available input-output signals. This
is generally a challenging problem, especially in the presence of nonlinear systems
and when robustness to model errors and measurement noise must be ensured.

Moving horizon estimation (MHE) [RMD20] is a modern optimization-based state
estimation strategy that is naturally suitable for this purpose. Here, the current state
estimate is obtained by solving an optimization problem involving a fixed number of
past measurements, extracting the last state of the optimal estimated sequence, and
repeating the online optimization in the next sampling time in a receding horizon
fashion. It can be interpreted as an approximation to full information estimation
(FIE), which optimizes over all available historical data. However, FIE is usually
only of theoretical interest (particularly as a benchmark for MHE), since the com-
plexity of the underlying optimization problem continuously grows with time and
thus quickly becomes computationally intractable in practical applications.

MHE has several advantages over other state estimation methods: it is naturally ap-
plicable to nonlinear systems, provides the ability to include additional information
such as constraints, is intuitive to tune, and yields optimal estimation results. More-
over, it is fairly easy to implement using high-level software packages (such as acados
[Ver+21] and CasADi [And+18]), merely requiring knowledge of the model equations
and corresponding computing resources. This is in strong contrast to most nonlinear
observers; they require less computing power when applied, but the corresponding
design is usually based on the search for a global transformation into a suitable ob-
server normal form or the solution of a partial differential equation [BAA22], which
is generally non-trivial and requires a deeper understanding of the underlying theory,
representing a relatively large hurdle for use in practice. For these reasons, and not
least because of the steadily growing availability of computing capacities and the
development of highly efficient optimization algorithms, MHE is increasingly applied
in various different fields, ranging from chemical and process engineering [HCE18;
Els+21], mobile robotics and localization [Liu+17; Brel9], offshore engineering and
freight transportation [CLH22], to medical applications [Kle+23].
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However, the corresponding theory developed rather slowly, with little ability to
provide practical tuning guidelines. Only recently, substantial progress has been
made by deriving robustness properties of MHE under a relatively mild detectability
condition, compare [RMD20]. Nevertheless, many problems and open questions
remain that prevent the current MHE theory from providing any value beyond
conceptual nature. Specifically, the following problems can be identified.

1. Practical relevance: The recently developed robustness guarantees for MHE
require the knowledge of a particular detectability property for the design of
the cost function, for which there is no systematic method for verification.
Moreover, the results are mostly overly conservative, yielding unrealistic and
practically irrelevant design guidelines and estimates on the horizon length.

2. Restrictive design: The most recent results in the field of nonlinear MHE focus
on discrete-time systems and do not have a direct continuous-time counter-
part. In this context, there is also a lack of fundamental theory on suitable
continuous-time notions of detectability and robust stability. However, inves-
tigating corresponding MHE schemes is important, as the original physical
system to be estimated usually corresponds to a continuous-time model. Hav-
ing to discretize it first significantly complicates the system representation,
restricts flexibility, can lead to additional discretization errors, and requires
fixing a particular discretization scheme and sampling period beforehand.

3. Real-time capability: The computing power available in practice is often
severely limited, and computing the global optimum at each time step is usu-
ally not possible within a fixed time interval. Instead, the solver is usually
terminated with a suboptimal solution, which renders the theoretical guaran-
tees invalid (as they usually depend on this criterion).

4. Parametric model uncertainties: In practical applications, the derived system
model requires system identification and usually suffers from parametric un-
certainties, as only noisy measurement data is available. This, however, may
invalidate the available robustness guarantees, which crucially rely on an exact
model of the system, or even cause the estimation error to become unstable.
Adapting the parameters online to obtain a precise model is not directly pos-
sible, as it is yet unclear how to deal with potential lack of excitation (which
often occurs frequently or unpredictably in practical applications).

5. Estimation performance: There is no general performance analysis of MHE
available. It is therefore unclear how an MHE scheme must be designed in
order to ultimately achieve a similar estimation performance to the (desired
but impractical) FIE counterpart or a comparable benchmark.

This thesis aims at developing a deepened system-theoretic understanding of MHE
and establishing desired robust stability and performance guarantees under realistic
and practically relevant conditions, contributing to the greater goal of supplementing
the great success of MHE in practical applications with a well-founded theory. In
the following two sections, we provide an overview on the related literature and
summarize the main contributions of this thesis.
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1.2. Literature overview

In this section, we provide a brief overview over the literature related to the research
topic. This of course covers works on nonlinear MHE, but also on system-theoretic
properties such as detectability and robust stability, methods for combined state
and parameter estimation in general, as well as performance and turnpike analysis
in the context of optimal control.

1.2.1. Nonlinear detectability

While it is well understood how observability and detectability can be characterized
and verified for linear systems (see, for example, Chapters 5 and 6 in [Son90]), this
is not the case for general nonlinear systems. Here, one might transfer conceptually
similar approaches and generally argue about the indistinguishability of different
initial conditions based on the respective output signals or try to analyze the ob-
servation space of the system using Lie derivatives along the vector field (see, e.g.,
[Bes07, Ch. 1]). However, explicit verification of such rather abstract properties in
practical applications is generally a complex and difficult problem.

A system-theoretic approach to characterize detectability for nonlinear systems is
given by the concept of incremental input/output-to-state stability (i-IOSS). This
property requires that the difference between any two trajectories of a dynamical
system is upper bounded by the difference in their respective initial conditions,
their inputs, and their outputs. Loosely speaking, if the differences between their
respective inputs and outputs are small, then the difference between the states must
also become small, which hence directly entails an indistinguishability property that
is a natural characteristic of detectability in general.

The concept of i-IOSS was originally proposed in [SW97] to extend the notion of
(non-incremental) input/output-to-state stability (IOSS)—which compares a sys-
tem trajectory with the zero-trajectory and can thus only be regarded as °
detectability”—to a pair of arbitrary system trajectories. Introduced in an L*-
to-L>° sense, it has been shown that a continuous-time system must necessarily
satisfy the i-IOSS property to admit a robustly stable full-order state observer,
and its discrete-time analogue has become the standard in the field of optimization-
based state estimation, compare, for example, [RJ12; Ji4+16; Mill7; RMD20; AR21;
KM23; Sch+23; Hu24; Ale25].

‘zero-

The characterization of system properties via Lyapunov functions has turned out to
be very useful for system analysis and the design of controllers and observers. Here,
it is important to establish the equivalence between the Lyapunov function char-
acterization and its corresponding original notion by means of converse theorems,
in order to ensure that considering the Lyapunov function, which is usually easier
when designing controllers and observers, is indeed without loss of generality. Such
results are available (mostly in both continuous and discrete time) for, e.g., global
asymptotic stability (GAS) in [LSW96] and [JWO01], input-to-state stability (ISS) in
[SW95] and [JWO01], (non-incremental) I0SS in [KSWO01] and [CTO08], and integral



4 1.2. Literature overview

IOSS in [Ing0la; Ing01b]. Stronger, incremental notions are considered in [Ang02]
and [TRK16], which address incremental GAS and incremental ISS (i-ISS), albeit
under the condition that inputs and external signals (such as, e.g., time-varying
parameters or disturbances) of the system take values in compact sets. The condi-
tion of compactness could be weakened by using a dissipation inequality in integral
form along with relaxing the requirement of smoothness of the Lyapunov function
to mere continuity, which is done in [Ang02] and [Ang09] considering the incremen-
tal L2-to-L*> (i.e., integral) versions of GAS and ISS for continuous-time systems,
respectively.

More recently, time-discounted variants of i-IOSS were proposed in [KM20; ART21]
for discrete-time systems, where it was shown that discounting past disturbances
appears very natural and even without loss of generality. A corresponding con-
verse Lyapunov result is provided in [ART21], which is structurally easier and more
intuitive to establish with such a discount factor than without, as is the case in,
e.g., [LSWI6; KSWO01; Ang02; Ang09]. Moreover, i-IOSS with time-discounting
and its associated Lyapunov function are crucial for recent results in the field

of optimization-based state estimation for discrete-time systems, compare [KM23;
AR21; Sch+23].

1.2.2. Robust stability of MHE

One of the main concerns in MHE theory (and observer design in general) is to
ensure, under appropriate conditions, that the corresponding estimation error is
bounded and converges to zero in the ideal, unperturbed case, so that the unknown
true trajectory can be recovered (at least asymptotically). To this end, an MHE
scheme for continuous-time systems was proposed and analyzed in [MM95]. Since a
cost function without a prior weighting was used (which can be seen as a regulariza-
tion term), the system must satisfy an observability condition to ensure exponential
convergence of the estimation error. Using such a cost function, however, requires
long estimation horizons to ensure satisfactory performance in practice, compare
[RMD20, Sec. 4.3.1]. Since the application of MHE inevitably requires some sort of
sampling strategy (i.e., discrete time points at which the optimization is performed),
schemes for discrete-time systems have recently been the main focus in the litera-
ture. Early results in the context of nonlinear systems employed certain uniform
observability properties, compare, for example, [MR95; RRM03; ABBO0S|.

In recent years, the notion of i-IOSS has proven to be a very useful concept for
nonlinear detectability, enabling significant advances in MHE theory. In particular,
in [RJ12], the authors established robust stability of FIE for i-IOSS systems, consid-
ering the special case of convergent (i.e., vanishing) disturbances. Robust stability
of MHE in the more general and practically relevant case of persistent bounded
disturbances was established in [Ji+16], albeit requiring a cost function that does
not allow for standard least squares objectives. This was addressed in [Mill7]
and generalized in [AR19b], however, yielding theoretical guarantees that—counter-
intuitively—deteriorate with an increasing estimation horizon. The Lyapunov-based
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approach proposed in [AR21] is able to avoid this drawback, but on the other hand
requires an additional stabilizability condition. Alternative approaches rely on an
additional pre-estimating observer from which robust stability properties could be
inherited [Liul3; GBE21].

In contrast, another line of research considers a cost function that includes explicit
time discounting, which in the MHE context originates from the work [KM18].
This establishes a more direct link to the i-IOSS property and allows the derivation
of strong robustness guarantees under less restrictive conditions, see, for example,
[KM23; Hu24; Ale25]. In particular, the guarantees improve as the horizon length
increases and do not require additional assumptions such as stabilizability or pre-
estimating observers. The Lyapunov framework proposed in [Sch+23], which es-
sentially relies on the same underlying principles, further simplifies the tuning and
provides less conservative conditions on the horizon length sufficient for guaranteed
robustly stable state estimation.

1.2.3. MHE for real-time applications

MHE requires solving a usually non-convex optimization problem at each time step,
and is hence computationally demanding. Moreover, since the computing power
available in practice is often severely limited, solving the optimization problem to
global optimality at each time step is usually not possible within a fixed time interval.

In order to improve the real-time applicability of MHE, methods employing an ad-
ditional auxiliary observer were developed to structurally simplify the optimization
problem and thus save computing capacity. For example, in [SJF10], an MHE
scheme for linear systems was proposed that utilized an additional Luenberger ob-
server to replace the state equation as a dynamical constraint. As this allows to
compensate for model uncertainties without computing an optimal disturbance se-
quence, the optimization variables could be reduced to one, namely the initial state
at the beginning of the horizon. In [Suw+14], this idea was transferred to a class
of nonlinear systems, and a major speed improvement compared to standard MHE
could be shown. However, this results in a loss of degrees of freedom, since there
is no possibility to tune the cost function with respect to model disturbances and
measurement noise. In [Liul3], an observer was employed to construct a confidence
region for the actual system state. Nevertheless, introducing this region as an addi-
tional constraint in the optimization problem can be quite restrictive and therefore
may not allow significant improvements of MHE compared to the auxiliary observer.
In [GBE21], a proximity-MHE scheme was proposed for a general class of nonlinear
systems, where an additional observer is used to construct a stabilizing a priori es-
timate yielding a proper warm start for the low-level optimization algorithm, and
nominal stability could be shown by Lyapunov arguments.

Nevertheless, all the above methods require optimal solutions to the (simplified, but
still non-convex) MHE problem, and their complete computation within fixed time
intervals is difficult (if not impossible) to guarantee. A more intuitive approach is
to simply terminate the underlying optimization algorithm after a fixed number of
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iterations, which on the one hand provides only suboptimal estimates, but on the
other hand ensures fixed computation times. However, since most results from the
nonlinear MHE literature are crucially based on optimality [RMD20; Mill7; AR21;
Hu24; KM23], stability of suboptimal MHE cannot be straightforwardly deduced.
For practical (real-time) applications, it is therefore essential to develop suboptimal
schemes that guarantee robust stability without requiring optimal solutions.

To this end, fast MHE methods were developed in [Kith+11; WVD14; AG17], per-
forming only a predetermined number of iterations of a certain optimization algo-
rithm (e.g., gradient- or Newton-based). However, the corresponding results rely on
a strong uniform observability condition and (local) contraction properties of the
specific algorithms, requiring both a proper initial guess and at least one iteration
to ensure (local) stability, compare [WVD14; AG17]. In [WK17], the combina-
tion of a fast MHE scheme and pre-estimation using a nonlinear Luenberger ob-
server was considered, combining the advantages of both approaches. A suboptimal
proximity-MHE scheme for linear systems was proposed in [GGE22], where nominal
stability guarantees could be given without performing any optimization by using a
pre-stabilizing observer and contraction properties of a specific gradient-based opti-
mization algorithm. This approach has recently been extended to nonlinear systems
in [GGE21], thus providing nominal stability guarantees for a suboptimal nonlin-
ear proximity-MHE scheme using local properties of the optimization algorithm
involved. Whereas these algorithms require the computation of first-order sensi-
tivities to perform the iterations, zero-order MHE methods were developed that
completely avoid the online evaluation of sensitivities [BZD19] or use fixed approxi-
mations [Bau+21]. The resulting MHE schemes are suitable for real-time estimation
of large-scale processes (arising, for example, from a discretization of partial differ-
ential equations), but their theoretical properties are of qualitative and local nature,
and the respective conditions are hard to verify.

1.2.4. Joint state and parameter estimation

MHE is a model-based state estimation technique and hence requires knowledge of
a suitable dynamical model of the system to be estimated. However, even if the
general structure of the system is known, the model parameters are often uncertain
and/or fluctuate during operation, e.g., due to heat production, mechanical wear,
temperature changes or other external influences. This may invalidate the robust-
ness guarantees, as they usually rely on an exact model of the real system and are
therefore not necessarily valid in the case of parametric model uncertainties. In the
worst case, this could even lead to the estimation error becoming unstable, compare,
for example, [Fit71; SS71].

To address this problem, a min-max MHE scheme was proposed in [ABB12], where
at each time step a least squares cost function is minimized for the worst case of the
model uncertainties. However, such a min-max approach becomes computationally
intensive for general nonlinear systems, and the worst-case consideration may be too
conservative and affect estimation performance. In [MKZ23a|, a regularization term
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was employed that depends on a given a priori estimate of the (constant) uncertain
parameters, avoiding a nested min-max optimization scheme and ultimately yielding
state estimates that are robust to changes in the true unknown parameter. Here,
practical stability of the state estimation error with respect to the a priori parameter
error could be established.

Yet it is often advantageous to not only ensure robustness against model errors,
but also to obtain an estimate of the uncertain parameters, since a precise model is
crucially required for, e.g., high-performance control, system monitoring, or fault de-
tection. This demands suitable techniques for online parameter adaptation. In this
context, an MHE scheme was proposed in [SJ11] by treating the unknown constant
parameters as additional states with constant dynamics. The corresponding stabil-
ity analysis is based on the transformation of the extended system into an observable
and an unobservable but exponentially stable subsystem, where the temporary loss
of observability (due to lack of excitation) is handled by suitable regularization and
adaptive weights. However, the robustness properties have not been analyzed, and
the imposed conditions for guaranteed state and parameter convergence are not
trivial to verify in practice. In [FS23], MHE under a non-uniform observability
condition is considered, which is potentially also suitable to be used for joint state
and parameter estimation. The results, however, rely on persistently exciting inputs
and, in particular, no fallback strategy is provided in case a lack of excitation occurs
in practice during estimation. The work [BRD22] investigates MHE for joint state
and parameter estimation from the perspective of numerical optimization. Here, the
lack of excitation is addressed by using additional pseudo-measurements in case the
variances of the estimates do not sufficiently decrease over the estimation horizon.
This ensures that the corresponding covariance matrix remains bounded and the
arrival cost is properly regularized; however, this approach lacks (global) stability
guarantees.

An alternative approach to joint state and parameter estimation is provided by
adaptive observers, which compute state estimates and simultaneously update in-
ternal model parameters. This concept originates from the work [Kre77] and has
been extensively studied in the literature, see, e.g., [IS12] for an introduction to
this topic. Theoretical guarantees usually consider the case of constant parameters
and involve a detectability or observability condition on the system states and a
persistence of excitation (PE) condition to establish parameter convergence. Dif-
ferent system classes (usually neglecting disturbances) have been considered, e.g.,
linear time-varying (LTV) systems [TB16], Lipschitz nonlinear systems under a lin-
ear parameterization [CR97], nonlinearly parameterized systems [Far+09; Tyu+13],
or systems in a certain nonlinear adaptive observer canonical form, compare, e.g.,
[BG88; MSTO01]. An adaptive sliding mode observer was proposed in [EEZ16], which
was generalized to a more general class of systems in [Fra+20], albeit under condi-
tions that imply certain structural restrictions. Adaptive observers usually can also
be applied to track (slowly) time-varying parameters if a forgetting factor is used in
the design, see, e.g., [TB16]. Time-varying parameters are explicitly considered and
analyzed in, e.g., [BG88] and [MSTO01], requiring that the parameter and its time-
derivative are globally bounded for all times. Alternative approaches for systems
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in canonical forms can be found in, e.g., [BM21], where more general identifiers are
used to estimate the dynamics.

The vast part of the literature on state and parameter estimation considers PE
conditions to be uniform in time, which usually is restrictive and cannot be guar-
anteed a priori (except, e.g., for linear systems and suitable input trajectories). To
ensure practical applicability, it is essential to investigate weaker, especially non-
uniform, excitation conditions. In this context, for example, a regularized adaptive
Kalman filter (for LTV systems) was proposed in [Mar+22| and an adaptive ob-
server (for systems in a nonlinear adaptive observer canonical form) in [TM23]. In
both works it could be shown that the state and parameter estimation errors are
bounded without excitation and exponentially stable in the presence of PE. Re-
laxed excitation conditions have recently received much attention in the context
of (pure) parameter estimation of regression models. In [EBO19], however, it was
shown that weaker conditions than PE generally only allow for non-uniform asymp-
totic stability guarantees, which is also consistent with earlier works, e.g., [PLTO01].
Using the dynamic regressor extension and mixing idea, exponential convergence
could be established for linear regression models (and certain classes of nonlinear

ones), merely assuming interval excitation (which is strictly weaker than uniform
PE), compare, e.g., [Kor+22; ORA22].

1.2.5. Performance guarantees for state estimation

Current research in the field of MHE is primarily concerned with stability and ro-
bustness guarantees, see, for example, [RMD20, Ch. 4] and [ABB0S8; Ale+10; AR21;
KM23; Sch+23; Hu24; Ale25]. These works essentially show that under suitable
detectability conditions, the estimation error of MHE (i.e., the deviation between
the estimated and the real system state) converges to a neighborhood of the origin,
the size of which depends on the true unknown disturbance. However, results on
the actual performance of nonlinear MHE methods, and in particular on the ap-
proximation accuracy and performance loss compared to a particular (challenging)
benchmark, are lacking.

In general, a useful metric for quantifying the cumulative performance gap of a cer-
tain (estimation or control) algorithm with respect to a given benchmark is provided
by the notion of dynamic regret. This is in fact a standard measure for analyzing
related methods in the field of reinforcement learning [JOA10; ACJ21]. For the
control of linear dynamical systems, regret-optimal controllers are designed in, e.g.,
[Sab+21; DSZ22; Mar+24b; Mar+24a]. Moreover, a regret analysis is performed
for, e.g., online optimal control algorithms [Aga+19; LCL19; NM22], and the re-
lation between bounded dynamic regret and asymptotic stability of the resulting
closed loop is formally analyzed in [NM23].

In the context of state estimation for linear systems, regret-optimal filters are de-
signed in [GH23; SH22], which essentially minimize the regret with respect to a
clairvoyant (acausal) filter having access to future measurements. This approach is
extended in [BDF23], where an exact solution to the minimal-regret observer is pro-



1. Introduction 9

vided utilizing the system level synthesis framework. In [GGE22], an MHE scheme
is proposed that provides regret guarantees with respect to an arbitrary compar-
ative (e.g., the clairvoyant) observer. This approach is extended to nonlinear sys-
tems in [GGE21], but requires a restrictive convexity condition on the problem and
disturbance- and noise-free data.

Whereas performance guarantees for state estimators are generally rather rare and
usually restricted to linear systems, they often play an important role in nonlinear
optimal control, especially when the overall goal is an economic one. Corresponding
results usually employ a turnpike property of the underlying nonlinear optimal con-
trol problem, compare [McK86; CHL91]. This property essentially implies that opti-
mal trajectories most of the time stay close to an optimal equilibrium (or in general
an optimal time-varying reference), which is regarded as the turnpike. Turnpike-
related arguments are an important tool for assessing the closed-loop performance
of nonlinear model predictive controllers with general economic costs on finite and
infinite horizons, see, for example, [Gril6; FGM18; GP19; FG22]. Necessary and
sufficient conditions for the presence of the turnpike phenomenon in optimal control
are discussed in, e.g., [Dam+14; GM16; Fau+22; Tré23|, and are usually based on
dissipativity, controllability, and suitable optimality conditions.

1.3. Contributions and outline of this thesis

The main contribution of this thesis is the development of MHE methods for general
nonlinear systems in the presence of process disturbances and measurement noise,
for which desired (and in particular not too conservative) robust stability and per-
formance guarantees can be given under realistic and verifiable conditions. In the
following, we outline the structure of this thesis and clarify the contributions in
detail.

Chapter 2: Nonlinear detectability

In this chapter, we focus on i-IOSS as a characterization of detectability for gen-
eral nonlinear systems. We start by introducing different notions of i-IOSS in dis-
crete time in Section 2.1, encompassing the traditional asymptotic-gain formula-
tion and modern, time-discounted versions. Then, in Section 2.2, we concentrate
on continuous-time systems and propose a particular L?-to-L*> variant of i-IOSS,
namely time-discounted incremental integral I0SS (i-iIOSS). We introduce a cor-
responding Lyapunov function characterization of i-iIOSS relying on a dissipation
inequality in integral form, where we show that an exponential decay can be con-
sidered without loss of generality. We establish equivalence between the existence
of an i-ilOSS Lyapunov function and i-ilOSS by means of a converse Lyapunov the-
orem. Our proofs use similar tools as in previous works on incremental integral
ISS [Ang09] and i-IOSS in the discrete-time setting [ART21]; however, we point out
that the presented results do not straightforwardly follow from them. In particular,
continuity of the Lyapunov function candidate is shown by replacing the standard
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local Lipschitz assumption on the vector field of the system by a global property
involving the Osgood condition [Osg98]. As a byproduct, based on this assumption,
we formally prove global existence and uniqueness of system trajectories by adapting
the results from [Lip00; Bih56] to the generic class of measurable, locally essentially
bounded functions.

Furthermore, we propose a time-discounted integral L2-to-L°° variant of robust
global asymptotic stability (RGAS) and show necessity of i-ilOSS for a system to
admit a general observer mapping satisfying this property. Asking such a stability
property from an observer is advantageous for several reasons: first, it can be seen
as accounting for the disturbance energy under fading memory and thus allows for
a physical interpretation; second, it directly implies an L*> error bound and thus
combines the advantages of classical ISS and integral ISS properties. Overall, we
provide a general framework for a Lyapunov-based robust stability analysis of ob-
servers in continuous time. This will be an essential tool in the context of moving
horizon estimation in Chapter 3.

Chapter 3: Robust stability

In this chapter, we focus on robust stability guarantees for MHE and in particular
concentrate on a recent Lyapunov-based MHE approach. We first provide a math-
ematical background on MHE by introducing a basic discrete-time MHE scheme
in Section 3.1, where we discuss fundamental properties and characteristics. Then,
we briefly introduce the Lyapunov-based MHE framework proposed in [Sch+23,
Sec. I1I], which forms a basis for many of the results in this thesis (but is not itself
a contribution® of it).

In Section 3.2, we propose a Lyapunov-based MHE scheme for general nonlinear
continuous-time systems. We employ a least squares objective with fading memory
and establish robust global exponential stability of the estimation error in a time-
discounted L?-to-L> sense. Here, we heavily rely on the concepts of i-ilOSS and
RGAS introduced in Chapter 2 to characterize the required detectability and robust
stability properties. Our derivation builds on our ideas for the discrete-time case
from [Sch+23, Sec. III|; however, the results do not trivially follow from this. In-
stead, the presented results are more general, require a different proof technique, and
offer key advantages over purely discrete-time schemes, especially when the phys-
ical system to be estimated actually corresponds to a continuous-time one (which
is often the case in practice). First, we note that arbitrary sampling strategies can
be employed to define time instants at which the underlying optimization problem
is actually solved, which can even be modified online at runtime. This provides a

L Julian D. Schiller (the author of this thesis) and Simon Muntwiler are joint first authors of the
article [Sch+23]; Simon Muntwiler provided the theoretical analysis of discrete-time Lyapunov-
based MHE (Sections III-B and III-C in [Sch+23]), which is part of the contributions of the PhD
thesis [Mun24]; Julian D. Schiller contributed the comparison with existing results from the
MHE literature (Section ITI-D), methods to verify the underlying detectability condition (Sec-
tion IV), and the numerical examples (Section V), which are included in this thesis. A detailed
description of the contributions of each author of [Sch+423] is given in Appendix A.



