
A B S T R A C T

In the first main part of the thesis the descriptional complexity of minimal
pumping constants—the smallest value satisfying a previously fixed pumping
lemma—is studied. Therefore, we compare the minimal pumping constants of
various pumping lemmata. In this way, we improve on the simultaneous reg-
ulation of minimal pumping constants and other measures, such as the non-
terminal complexity and the (non-)deterministic state complexity. As a conse-
quence of the obtained results, we derive a complete hierarchy of the stud-
ied measures for regular languages (REG). Afterwards, we study the opera-
tional complexity of minimal pumping constants w.r.t. several pumping lem-
mata, whereby we also differentiate the input languages according to size of
their input alphabet. For each case we are able to completely classify the range
of the minimal pumping constant for the operations Kleene star, reversal, com-
plement, prefix- and suffix-closure, union, set-subtraction, concatenation, inter-
section, and symmetric difference. In this way, we also solve some related open
problems from the literature.
The second main part will be dedicated to the computational complexity of the
Pumping-Problem, that is, for a given finite automaton A (or a grammar G) and
a value p, to decide whether the language L(A) (L(G), respectively) satisfies a
previously fixed pumping lemma w.r.t. the value p. We show that the problem
is decidable for all studied pumping lemmata, if the language under considera-
tion is regular, and the problem becomes undecidable if the language is (linear)
context-free. More interestingly, we prove that for two supersets of REG, namely
for k-rated linear languages and for well-matched visibly pushdown languages,
the Pumping-Problem remains decidable. It turns out that this problem is com-
putationally intractable for REG, namely, it is coNP-hard for binary deterministic
finite automata (DFAs) and for unary nondeterministic finite automata (NFAs).
Among other complexity results, we show that the minimal pumping constant
for binary n-state DFAs and unary n-state NFAs cannot be approximated within
a factor dependent on n unless the Exponential Time Hypothesis fails. To that
end, we describe those homomorphisms that, in a precise sense, preserve the re-
spective pumping arguments used in two different pumping lemmata. Indeed,
this concept coincides with the classic notion of star height preserving homo-
morphisms. Also, we gain a complete understanding of the minimal pumping
constants for bideterministic finite automata and build a framework for proving
that the Pumping-Problem for certain subregular languages is coNP-complete.

v

Part I

P R E A M B L E

1
I N T R O D U C T I O N

In the beginning there were symbols. More precisely, there were finite and infi-
nite sequences of symbols, called words, there were sets of words, named lan-
guages, and the attempt to find some kind of patterns in this chaos. In the
early 20

th century Axel Thue studied the properties of finite and infinite words,
see [97, 99]. In fact, this can be seen as the point of origin for formal language
theory. A famous decision problem in this field is the Word Problem, which
asks for two given expressions whether they are equivalent. Thue proved that
a special case of the Word Problem for finitely presented semigroups is decid-
able, see [98, 100], which means there is an algorithm which, given an arbitrary
input, computes the decision for that input after finitely many steps. Decades
later, it was shown by Emil L. Post [84] and Andrey A. Markov [70] that the
aforementioned problem is undecidable in general. The former proof reduced
an undecidable problem for Turing machines to the problem under considera-
tion. These machines are of great importance for the formal language theory
and were introduced by Alan M. Turing as automatic machines in [101] to create
a device capable of computing everything that can be computed by a machine.
That they really do this, is stated by the Church-Turing Thesis. A Turing machine is
a device to edit the symbols on a tape consisting of a finite state control together
with a read and write head which can be moved along the tape. According to
the read input the Turing machine switches its state, moves its head or writes a
symbol onto the tape. The inscription of the tape at the beginning and end of the
computation is often referred as the input and the output of the machine, respec-
tively. By choosing states of the device to be accepting, the Turing machine acts
as a language acceptor. If the machine is in an accepting state after a computation,
it is then said that the input is accepted. The set of all accepted input words is
denoted as the formal language accepted by the Turing machine.

More generally, formal languages were studied by Noam Chomsky who used
formal grammars to provide a constructive way to describe these languages. Ac-
cording to their complexity, Chomsky subdivided formal grammars into the
types 0, 1, 2, and 3, where higher numbers indicate more restrictions on the
grammar. The corresponding language families are the sets of recursively enu-
merable, context-sensitive, context-free, and the regular languages, respectively.

As languages can be described in multiple ways it is indispensable to have
tools to classify a given language into one of these language families. A common
approach to do so, is to form language classes based on different automata that
accept them. To this end, certain automata are of particular importance. Due to
the Church-Turing Thesis, Turing machines provide a means to formally define

3

4 introduction

different complexity classes. Pushdown automata are not as powerful as these
machines but can be handled better. Nevertheless, to enable a bigger number of
decidable decision problems, visibly pushdown automata are considered. How-
ever, the class of deterministic finite automata allows efficient computations. In
the following, we will outline these automata and illustrate the languages they
accept, which consequently defines a set of language classes.

The languages accepted by Turing machines are called the recursively enumer-
able languages. Indeed, this language class is exactly generated by Chomsky’s
grammars of type 0. Over the years, a lot of variants of Turing machines emerged,
e.g., allowing the machine to make nondeterministic choices for its next compu-
tation step. In favor of better understandability and handiness, many restrictions
evolved for these machines. Most naturally one may request the number of com-
putational steps to be functionally dependent from the length |w| of the input
wordw, i.e., it is bounded from above by a function f(|w|). Analogously, one may
demand the Turing machine to only use a bounded number g(|w|) of tape cells.
By requesting simple properties on the functions f and g, one obtains classes
of languages accepted by Turing machines with the aforementioned restricted
capabilities. The most famous classes lead to the following complexity hierarchy

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP,

where the prefix N indicates that the associated Turing machines are allowed
to make nondeterministic computation choices. Here, L, P, and EXP are the
classes of languages arising from Turing machines, where the function f is lin-
ear, polynomial, and exponential, respectively. Additionally, for the languages
in the set PSPACE the respective function g is polynomial. The algorithm that is
processed by the Turing machine (its instructions) is then said to be in the ac-
cording class. More than a hundred1 attempts have been made to either shrink
the above hierarchy by showing two classes to be equal as well as to show that
classes are unequal, e.g., that P is not equal to NP. There are many problems
also of applied science, for which only an algorithm in one of these classes is
known. In case of NP, there are also many examples for such problems such as
process scheduling, cf. [102], or the prediction of protein folding, cf. [13, 103].
The Exponential Time Hypothesis (ETH), as well as related assumptions which
are stronger than P ̸= NP, emerged as a swiss-army knife, which allows for a
fine-grained analysis of NP-hard problems. To name a few, it helps to gauge the
inherent limits of approximability beyond polynomial time, as well as those of
parameterized and exact exponential algorithms [27]. In recent years, numerous
algorithmic impossibility results based on the ETH and related hypotheses have
been derived [67, 105], more recently also for problems related to finite automata
and regular expressions, see, e.g., [28, 33, 45]. We call a Turing machine, that uses

1 By 2016, Gerhard Woeginger collected about 116 published proof attempts for the relationship
between P and NP on his website https://wscor.win.tue.nl/woeginger/P-versus-NP.htm .

introduction 5

only a linearly bounded number of cells of the tape, a linearly bounded automaton.
These automata accept exactly the set of context-sensitive languages.

In addition, context-free languages are accepted by nondeterministic push-
down automata, which are not allowed to change the content of the tape but
consist of a finite state control with a stack that can store an infinite number of
symbols. The deterministic variant of this model is often used for parser design,
cf. [1], and efforts have been made to use the model in DNA-computing, cf. [22,
64]. Unfortunately, many decision problems are undecidable for context-free
grammars. To overcome this problem, input-driven languages, also known as
visibly languages, emerged, cf. [20, 72]. The central property of these languages
is the fact that each input symbol uniquely determines the type of operation per-
formed by an according language acceptor. Hence, for the class of visibly push-
down automata (VPAs), which accept exactly the visibly pushdown languages,
the height of their stack is solely determined by the input word. This prop-
erty enables algorithms that produce VPAs accepting unions, intersections, or
complements of visibly pushdown languages. Utilizing these operations, many
decision problems, such as that of inclusion, equivalence, or universality, have
been proven decidable. Because of these advantages, VPAs have been widely
applied to tasks ranging from verification [2, 24] over XML processing [65] to
learning algorithms using VPAs as surrogate models for recurrent neural net-
works (RNNs) [12], and they have also been studied for grammar inference [74].
The last two points are likely of particular interest as the field of machine learn-
ing is developing rapidly, and for example surrogate models for RNNs can help
to obtain a better understanding of the properties of a RNN.

Also learning algorithms for the more simple family of regular languages
(REG) have been the subject of research [8]. The simpler structure of these lan-
guages facilitates their use and analysis. For instance, in [62] Stephen C. Kleene
provided regular expressions which were shown to be representations of regu-
lar languages. Regular expressions are an established and widely used tool in
applied computer science. They can be found in a variety of software tools such
as awk, ed, emacs, grep, lex, sed, vi, and many others as well. A common task in
computer science, especially in bioinformatics, is to find all occurrences of the
words from X in S for a given set of words X and a sequence S of symbols. This
is is called pattern matching, and in the case where X is described by a regular
expression, it is often performed by deterministic finite automata (DFAs). As al-
ready indicated, this automata model accepts exactly REG. In addition, also the
subclasses of REG, namely subregular languages, were the subject of research,
e.g., for finite languages L learning algorithms of deterministic cover automata
were developed [58], which accept a superset of the language L.

As we have seen so far, we can classify languages by the automata which ac-
cept them. Another widely used tool for showing that particular languages are
not, e.g., regular or context-free, is the application of pumping lemmata, which
are also called iteration, intercalation, or uvwxy-theorems. Since the beginning

6 introduction

of automata and formal language theory, researchers have studied pumping and
iteration properties of formal languages to gain better insights into the computa-
tional complexity and expressive power of various types of language accepting
or generating mechanisms. It is well known that not all formal language families
obey pumping properties as, e.g., context-sensitive or Type-0 languages. Hence,
satisfying a particular pumping property provides information about the struc-
ture of the language family, and is very often used to show that a particular
language does not belong to a language family in question. The first usage of
pumping arguments dates back to 1960, where Stephen Scheinberg showed that
the language {anbncn | n ⩾ 0 } is not context-free [92]. Indeed, this can also be
obtained by applying Bar-Hillel’s lemma [11]. In fact, the literature on pumping
properties is far-reaching, with very different applications beside of language
classification, see, e.g., [55], where language families are defined via pumping
properties, [94] with a focus on pumping with the additional requirement that
repeating a sub-word, i.e., a consecutive part of the word, is allowed only if it
is done a minimal number of times, [61], which investigates regular pumping
of Turing machine languages and learnability, or [76, 82], where the relations
between restarting automata, pumping patterns, and formal neural networks
are studied, just to mention a few. For an annotated bibliography on pumping
lemmata we refer to [78].

One variant of the pumping lemma states that for any regular language L,
there exists a constant p (depending on L) such that any word w in the lan-
guage of length at least p can be split into three parts w = xyz, where y is
non-empty, and xytz is also in the language, for every t ⩾ 0—see Lemma 4. By
the contrapositive one can prove that certain languages are not regular. Since the
aforementioned pumping lemma is only a necessary condition, it may happen
that such a proof fails for a particular language such as

{ambncn | m ⩾ 1 and n ⩾ 0 }∪ {bmcn | m,n ⩾ 0 }.

The application of pumping lemmata is not limited to prove non-regularity. For
instance, they also imply an algorithm that decides whether a regular language
is finite or not. A regular language L is infinite if and only if there is a word of
length ℓwith p < ℓ ⩽ 2p, where p is the aforementioned constant of the pumping
lemma. Here a small p narrows the interval for a witness on infiniteness. Thus,
for instance, the question arises on how to determine a small or smallest value
for p such that the pumping lemma is still satisfied.

For a regular language L the value of p in the aforementioned pumping lemma
can always be chosen to be the number of states of a finite automaton, regardless
whether it is deterministic or nondeterministic, accepting L. Consider the unary
language ana∗, where all values p with 0 ⩽ p ⩽ n do not satisfy the property
of the pumping lemma, but p = n + 1 does. A closer look on some example

introduction 7

languages reveals that sometimes a much smaller value suffices. For instance,
consider the language

L = a∗ + a∗bb∗ + a∗bb∗aa∗ + a∗bb∗aa∗bb∗,

given as a regular expression, where the concatenation symbol is omitted, + de-
notes the possibility of choice between its operands, and ∗ is used for the Kleene
star operation. For a set of words X the set X∗ denotes the smallest superset of X
which contains the empty word and is closed under concatenation. Indeed, the
language L is accepted by a (minimal) deterministic finite automaton with five
states, the sink state included—see Figure 1. Already for p = 1 the statement of

q2q1q0 q3 q4
b a b a

a b a b a,b

Figure 1: The minimal deterministic finite automaton A which accepts the language
L = a∗ + a∗bb∗ + a∗bb∗aa∗ + a∗bb∗aa∗bb∗.

the pumping lemma is satisfied. The reader may verify that regardless whether
the considered word starts with a or b, this letter can be readily pumped. Thus,
the minimal pumping constant satisfying the statement of the pumping lemma
for the language L is 1, because the case p = 0 is equivalent to L = ∅ [29]. This
leads to the notation of a minimal pumping constant for a language Lw.r.t. a par-
ticular pumping lemma, which is the smallest number p such that the pumping
lemma under consideration for the language L is satisfied.

Recently, the above-mentioned minimal pumping constants have also been in-
vestigated for teaching purposes, i.e., an instructional tool was developed which
is able to calculate those constants, cf. [87]. As we have seen, pumping is a
well-studied and elaborated concept in computer science, which makes it very
surprising that the literature is almost completely lacking a study of the com-
plexity of pumping, i.e., there has yet to be any research conducted on the com-
putational complexity of pumping. A classical task of computational complexity
theory is to answer the following questions for a given decision problem P:

• Is P decidable?

• If P is undecidable, are there constraints for P such that its constrained
variant is decidable?

• If P is decidable, how hard is it to compute a decision for P for an arbitrary
input?

We will show that the problem of determining the minimal pumping constant
is rather complicated, i.e., already for linear context-free languages the problem

8 introduction

is undecidable, while there are even subregular language classes for which the
problem is only solvable in exponential time.

Lately, Jürgen Dassow and Ismaël Jecker have made a first step towards an un-
derstanding of the complexity of pumping by investigating minimal pumping
constants from the perspective of descriptional complexity in [29]. Besides basic
facts on these constants for two specific pumping lemmata [19, 53, 63, 85] their
relation to each other and their behavior under regularity preserving operations
was studied in detail. In fact, it was proven that for three natural numbers p1, p2,
and p3 with 1 ⩽ p1 ⩽ p2 ⩽ p3, there is a regular language L over a growing size
alphabet such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3, where mpc (mpl,
respectively) refers to the minimal pumping constant induced by the pumping
lemma from [63] (from [19, 53, 85], respectively) and sc is the abbreviation of the
deterministic state complexity. This simultaneous regulation of three measures
is novel in descriptional complexity theory. For the exact statements of the men-
tioned pumping lemmata mentioned above we refer to Lemma 3 and Lemma 4.
In the case of real applications, we have to realize that these do not have growing
alphabets. We will therefore improve the previously presented result by prov-
ing it for binary languages. The operational complexity of pumping or pumping
lemmata for an n-ary regularity preserving operation ◦ undertaken in [29] is
in line with other studies on the operational complexity of other measures for
regular languages such as the state complexity or the accepting state complex-
ity to mention a few. The operational complexity of pumping is the study of
the set g◦(k1,k2, . . . ,kn) of all numbers k such that there are regular languages
L1,L2, . . . ,Ln with minimal pumping complexity k1,k2, . . . ,kn, respectively, and
the language L1 ◦ L2 ◦ · · · ◦ Ln has minimal pumping complexity k. In [29] a com-
plete picture for the operational complexity w.r.t. the pumping lemma from [63]
(measure mpc) for the operations Kleene closure, complement, reversal, prefix
and suffix-closure, circular shift, union, intersection, set-subtraction, symmet-
ric difference, and concatenation was given—see Table 4 on page 83. However,
for the pumping lemma from [19, 53, 85] (measure mpl) some results from [29]
are only partial (set-subtraction and symmetric difference) and others even re-
mained open (circular shift and intersection); for comparison see the table men-
tioned above. The behavior of these measures differ with respect to finiteness/in-
finity of ranges, due to the fact that for the pumping lemma from [19, 53, 85]
the pumping has to be done within a prefix of bounded length. We address the
aforementioned problems through a broader analysis of the operational com-
plexity of minimal pumping constant, i.e., by taking more pumping lemmata
and subregular language classes into account.

This thesis consists of four parts. The rest of the preamble consists of the in-
troduction of the basic notions and the presentation of first results w.r.t. mini-
mal pumping constants. Afterwards, in the second part we will study the de-
scriptional complexity of minimal pumping constants. Hence, the third chapter

introduction 9

captures the relation between those constants and other measures, such as, the
non-terminal complexity and the (non-)deterministic state complexity. This in-
cludes for example to show incomparabilities between some of the measures by
providing families of languages having certain values for these measures. On
the other hand we prove that for regular languages the value of specific mea-
sures has to be at least equal to values w.r.t. other properties. Thereby, we also
improve on results w.r.t. the simultaneous regulation of these measures, e.g., we
enhance the main result of [106] by showing that for a given alphabet Σ of size
at least two and any value ρ between a specific minimal pumping constant p
and

∑p−1
i=0 |Σ|

i there is a regular language over the alphabet Σ with deterministic
state complexity equal to ρ. In the fourth chapter the operational complexity of
minimal pumping constants is studied. As mentioned before, this study started
in [29] where an almost complete picture of the operational complexity of min-
imal pumping constants for two different variants of pumping lemmata from
the literature was given. We continue this research by considering pumping lem-
mata for regular, (linear) context-free languages, and by restricting the size of
the input alphabet, i.e., we study unary languages.

The third part of the thesis is dedicated to the computational complexity of
the Pumping-Problem, that is, for a given finite automaton A (or a grammar G)
and a value p, to decide whether the language L(A) (L(G), respectively) satisfies
a previously fixed pumping lemma w.r.t. the value p. We approach this topic
in several steps. First, in the fifth chapter of this thesis, we investigate, whether
it is even possible to decide the Pumping-Problem. Therefore, we take advan-
tage of the syntactic monoid for regular languages, which allows us to decide
the problem under consideration. Afterwards, we tackle the problem for (lin-
ear) context-free languages. Here, we make use of valid computations of Turing
machines, which can be encoded in linear context-free grammars. Building on
this, we reduce the emptiness problem for Turing machines, which is undecid-
able to the problem in question. In addition, we determine the hardness of the
aforementioned undecidable problem. Indeed, the decidability result for regular
languages and the undecidability result for linear context-free languages lead
to the quest of finding the biggest superset of the regular languages for which
the Pumping-Problem is decidable. Hence, in the sixth chapter we study two in-
comparable supersets, namely the class of k-rated linear languages and the class
of well-matched visibly pushdown languages. For both language families we
show that the Pumping-Problem is decidable; for the first one we use an equiv-
alence relation of finite index and for the latter the framework of Ext-algebras as
introduced in [37]. The seventh chapter completes the study initiated in Chap-
ter 5, namely we determine the hardness of the Pumping-Problem for the set of
regular languages, for which the problem under consideration is decidable. To
do so, we reduce two coNP-hard problems to the Pumping-Problem—one prob-
lem for each type of input automata. By assuming that the Exponential Time
Hypothesis holds, these reductions imply that the Pumping-Problem cannot be

10 introduction

approximated within a certain factor. Since the problem under consideration is
intractable for DFAs, the question arises whether there are non-trivial language
classes for which it is easier to solve the Pumping-Problem. In the eighth chap-
ter we develop a framework which can be used to show that for a subregular
language class the Pumping-Problem remains coNP-complete. As an applica-
tion of the framework, we prove that the Pumping-Problem is coNP-complete
for pure-group languages and the set of languages which can be accepted by a
planar DFA. Here, a language is called a pure-group language if it is accepted by a
DFA for which each input symbol induces a permutation on its states. Addition-
ally, a DFA is planar if its associated graph can be embedded in the plane. The
fourth part shortly summarizes the findings of this thesis and gives directions
for future research.

