
Preface

This work offers a comprehensive, clearly written presentation of dynamical
systems and pertinent mathematics. As only one of its novel features, it con-
tains two-sided bounds on the solution of stability problems leading to impor-
tant new results and to significant improvements compared to results obtained
by the Lyapunov method.

All started with a closer look to the last one which can be described as follows.

The Lyapunov method for the determination of the stability behavior of a
dynamical system consists essentially in two steps, namely first, in establishing
an energy function (also called Lyapunov function) V (t) = E(t) pertinent
to the studied dynamical system and, second, in drawing conclusions on the
stability behavior from the time derivative V̇ (t). Roughly speaking, V̇ (t) < 0
implies asymptotic stability, V̇ (t) ≤ 0 stability, and V̇ (t) > 0 instability. In
this way, many stability problems can be solved.

However, some shortcomings of the Lyapunov method are known. For example,
in a linear one-mass vibration model with moderate damping, for the energy
function V (t), one obtains only V̇ (t) ≤ 0, i.e., only stability of the system
even though one can easily find the exact solution showing that the pertinent
dynamical system is asymptotically stable.

This shortcoming is described, for instance, in Hagedorn [21, Section 2.3, pp.
87-88]. In order to remedy this problem, the author used

- the state-space description of the associated differential equations,

- the special weighted norm ∥ · ∥R derived by the author in previous work,
and

- the equivalence of norms in finite-dimensional spaces.

It turned out that, by these Key Mathematical Tools, also similar higher-
dimensional dynamical systems can be successfully treated.

Further, in addition to the asymptotic stability of such systems, two-sided
bounds on the state-space solution vector can be obtained.

Another shortcoming of the Lyapunov method is that, for some nonlinear sys-
tems, particular integrals of the associated system of differential equations are
needed. But, it is often difficult or impossible to find these particular solutions.

We will show in this research-oriented monograph that one can overcome also
the last-mentioned disadvantage of the Lyapunov method and demonstrate
this by various examples. More precisely, we apply the new theory of stabil-
ity developed in this book to a series of examples that other authors treat by
the Lyapunov method and compare the results which show that our theory of
stability is superior to the Lyapunov method.
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Dynamical systems in this monograph are described by ordinary differential
equations in the vector form ẋ(t) = f(t, x(t)) and associated initial conditions
x(t0) = x0 ̸= 0 in the space of n-tuples denoted by Fn where F = R or F = C,
in other words, by initial value problems. The right-hand member f(t, u) ∈ Fn

will be defined for the infinite range of values t, namely for t ≥ t0 and for
u ∈ G0 where G0 is a convex closed subset of Fn containing the zero vector
0. As opposed to this, the existence and uniqueness of the solution vector x(t)
will be proven for a finite range of values t given by t0 ≤ t ≤ t1.

Under additional conditions, it will be possible to choose t1 arbitrarily large in
which case the solution vector x(t) exists even for the infinite range t ≥ t0.

As prerequisites for the understanding, this monograph requires knowledge
imparted in courses such as Calculus, Linear Algebra, and Ordinary Differential
Equations.

Basic acquaintance in Functional Analysis is advantageous, but not necessary.
By using functional-analytic methods, it is possible to obtain a unified treat-
ment of the Theory of Dynamical Systems which is one of the main objectives.

This book is not only a monograph, but also a textbook. Consequently, it
should be appropriate for teaching. Therefore, the style of the book is exposi-
tory. So, also readers without knowledge of functional-analytic methods should
be able to profit by this book.

As a rule, the proofs and derivations are at great length. But, some results are
only referred to. Examples for this are a theorem on the eigenvalues and eigen-
vectors of symmetric mappings, a representation formula for the fundamental
matrix of a periodic matrix, and the Theorem on Continuous Dependence on
the solution of a nonlinear ordinary differential equation. Further, the eigen-
values and eigenvectors of some matrices are merely stated in which case their
determination is left to the reader. Moreover, in rare cases, some lengthy
derivations are also left to the reader which should pose no problem, however.
On the whole, the book is as far as possible self-contained.

Further, it is intended to be an introduction to the subject for Mathematicians,
on the one hand, as well as for Physicists and Engineers, on the other hand. In
order to take this into account, for Mathematicians, we have included hints for
the derivation or the derivations themselves of the differential equations that
describe the occurring dynamical systems, and for Physicists and Engineers,
we have given detailed mathematical derivations and explanations.

The Important Classes of Dynamical Systems that are treated in this book are

- Linear Autonomous Systems,

- Linear Periodic Systems, and

- Nonlinear Systems such as Quasi-Linear Systems with Autonomous or
Periodic Linear Part.
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For Linear Autonomous Systems, the right-hand member f(t, x) has the form
f(t, x) = Ax where A is a constant matrix.

For Linear Periodic Systems, f(t, x) is given by f(t, x) = A(t)x where A(t) is
a periodic matrix.

In the case of Nonlinear Systems, we study

- systems with autonomous linear part where f(t, x) has the form f(t, x) =
Ax+ h(x) with nonlinear vector function h(x),

- systems with periodic linear part where f(t, x) has the form f(t, x) =
A(t)x+ h(x) and where A(t) is a periodic matrix, and

- special nonlinear systems whose right-hand members have special form.

We mention that h(x) may be replaced by h(t, x) if the conditions on h are
adapted to this change.

Further, each of the above sections is complemented by a section entitled Prob-
lems and Solutions at the end of each chapter.

The studied dynamical systems can be described as special cases of the general
initial value problem ẋ(t) = f(t, x(t)), x(t0) = x0 ̸= 0.

The existence and uniqueness of its solution is proven by the Contraction Map-
ping Theorem in an appropriate Banach space. Since this Banach space is
infinite-dimensional, not all norms in it are equivalent. But, it is possible to
define equivalent norms which is made use of in the proof of the completeness
of the considered space.

This book contains research results obtained by the author.

Some of them were published previously such as the derivation of the special
weighted norm ∥ · ∥R and two-sided bounds on the solution vector x(t).

However, many of them were not published before and contain significant im-
provements compared to the Lyapunov method.

New results published for the first time in this book show that, for instance,

- improved two-sided bounds on the solution vector x(t) can be obtained

- the derivation of two-sided bounds on the solution vector xp(t) of periodic
linear systems can be reduced to that of the autonomous case

- the derivation of two-sided bounds on the solution vector x(t) of nonlinear
systems with periodic linear part can be reduced to that with autonomous
linear part, and

- novel techniques could be developed for problems of the form ẋ = f(x)
with f(x) = Ax+ h(x) where A = f ′(0) with ν[A] = νx0 [A] = ν[f ′(0)] =
0, where ν[A] is the spectral abscissa of matrix A and νx0 [A] is the spectral
abscissa of A with respect to the vector x0 ̸= 0, and where f ′(0) is the
Jacobi matrix of f at t = 0
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In other words, in addition to the advantages of the new theory of stability
mentioned already over the Lyapunov method, the above systems are analyzed
in the same way which was also not done before.

We mention that the developed theory cannot only be applied to Linear and
Nonlinear Dynamical Systems, but also to Linear and Nonlinear Control Prob-
lems.

Denotations or expressions used in this Preface not familiar to the reader will
be explained, in due course.

As is custom, a differential equation ẋ(t) = f(t, x(t)) is often written in the
form ẋ = f(t, x). In addition, we sometimes write ẋ(t) = f(t, x) or the like.
Often we speak of the function x(t) even though we have written down the
function value. In this case, we mean the function x and that it depends on
the time variable t.

In the case of other inaccuracies, it will become clear from the context what is
meant.

If a dynamical system is stable, but not asymptotically stable, we abbreviate
this by stable (b.n.as.st.).

If not specified, ∥ · ∥ stands for an arbitrary norm and F for the field of real or
complex numbers, i.e., for F = R or F = C, as the case may be.

The transpose of an m×n matrix B = (bjk) is denoted by BT and is the n×m
matrix defined by BT = (bTjk) with b

T
jk = bkj , j = 1, . . . ,m, k = 1, . . . , n.

There is also an alphabetic index.

More information on the subject of the book can be found in the detailed Table
of Contents.

At this point, the author would like to thank the referees very much for their
positive assessments of this book.

He also wants to give thanks to Logos Verlag for the pleasant collaboration.

The author would like to stress, however, that the responsibility for the content
of this book lies solely with him.

Proposals for improvements of this book by readers are welcome.

Berlin, April 2025 Ludwig Kohaupt
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Part I

Preliminaries
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1 Key Mathematical Tools

Chapter 1 consists of the key mathematical tools used throughout this book
and is subdivided into the following 5 Sections:

1.1 Equivalence of Norms in Finite-Dimensional Spaces

1.2 Special Weighted Norm ∥ · ∥R

1.3 State-Space Description of Dynamical Systems

1.4 Symmetric Matrices and Mappings

1.5 Problems and Solutions

More details on their contents can be found at the beginning of each of the
individual 5 sections.

Of particular importance for this book are the first three Sections 1.1, 1.2, and
1.3.

1.1 Equivalence of Norms in Finite-Dimensional Spaces

The 1st section of Chapter 1, namely Section 1.1, on the equivalence of norms
in finite-dimensional spaces, contains the following subsections:

1.1.1 Vector norms

1.1.2 Matrix norms

1.1.3 Scalar products, weighted scalar products, and weighted norms

Subsection 1.1.1 assembles the known properties of vector norms. Most im-
portant is Theorem 1.1.1 on the equivalence of the usual norm ∥ · ∥2 and every
norm ∥ · ∥ on Fn.

Subsection 1.1.2 collects the properties of matrix norms. The equivalence of
matrix norms is established by regarding m × n matrices as column vectors
on the space FN with N = mn. This is similar to the column-wise storage of
matrices in computer programs such as Matlab.

Subsection 1.1.3 describes the properties of scalar products, weighted scalar
products, and weighted norms.

If (·, ·) is a scalar product for Fn, then a weighted scalar product is given by
(u, v)C = (C u, v), u, v ∈ Fn where C ∈ Fn×n is a positive definite matrix.
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Chapter 1. Key Mathematical Tools

The most important result of this subsection is Theorem 1.1.4 that states
that every scalar product (·, ·) for Fn can be expressed as (u, v) = (u, v)C =
(C u, v)2, u, v ∈ Fn for some positive definite matrix C.
As a consequence, for the weighted norm ∥ · ∥C induced by the weighted scalar
product (·, ·)C , one obtains the equivalence of the norms ∥ · ∥2 and ∥ · ∥C as
well as the generalized Schwarz inequality |(u, v)C | ≤ ∥u∥C ∥v∥C u, v ∈ Fn.

Now, the individual subsections follow.

1.1.1 Vector norms

The content of this subsection is taken almost verbatim from [74, Section 5.1].
Let E be a linear space or vector space over the field F = R of real numbers
or the field F = C of complex numbers. Then, the vector space E is said to be
normed or a normed space if there is associated with each vector u ∈ E a real
number ∥u∥, called norm of u, with the following properties:

(N1) ∥u∥ ≥ 0, u ∈ E

(N2) ∥u∥ = 0 ⇐⇒ u = 0, u ∈ E

(N3) ∥λu∥ = |λ| ∥u∥, λ ∈ F, u ∈ E

(N4) ∥u+ v∥ ≤ ∥u∥+ ∥v∥, u, v ∈ E

The inequality (N4) is called the triangle inequality, and from it immediately
follows the further inequality

| ∥u∥ − ∥v∥ | ≤ ∥u− v∥, u, v ∈ E. (1.1.1)

A very simple example of a vector space is the n-dimensional space of n-tuples
Fn = Rn or Fn = Cn, where n is a natural number.
As is known, addition of vectors and multiplication of vectors by numbers are
defined by

u+ v = (u1 + v1, . . . , un + vn), λu = (λu1, . . . , λun)

for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn, λ ∈ F.
Important norms on Fn are the maximum norm ∥ · ∥∞ defined by

∥u∥∞ = max
j=1,...,n

|uj |, (1.1.2)

the Euclidean or unitary norm ∥ · ∥2 defined by

∥u∥2 = (
n∑

j=1

|uj |2)
1
2 , (1.1.3)
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1.1. Equivalence of Norms in Finite-Dimensional Spaces

and the norm ∥ · ∥1 defined by

∥u∥1 =
n∑

j=1

|uj | (1.1.4)

for u = (u1, . . . , un) ∈ Fn.
For these norms, the properties (N1) − (N3) above follow immediately from
the definitions, as does the triangle inequality (N4) for the norms ∥ · ∥∞ and
∥ · ∥1.
Finally, we show (N4) for the Euclidean or unitary norm ∥ · ∥2. The Euclidean
or unitary norm is obtained for F = R from the scalar product

(u, v)2 =
n∑

j=1

ujvj , u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn (1.1.5)

or, for F = C, from the scalar product

(u, v)2 =

n∑
j=1

ujvj , u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Cn (1.1.6)

by writing
∥u∥2 =

√
(u, u)2 , (1.1.7)

the bar in (1.1.6) meaning the complex-conjugate.
The scalar product (·, ·)2 on Fn always satisfies the Schwarz inequality

|(u, v)2| ≤ ∥u∥2∥v∥2, u, v ∈ Fn (1.1.8)

and so, in this case, the triangle inequality follows from the relation

∥u+v∥22 = (u+v, u+v)2 ≤ ∥u∥22+∥v∥22+2∥u∥2∥v∥2 = (∥u∥2+∥v∥2)2, u, v ∈ Fn.

Familiar concepts from elementary classical geometry such as point, distance,
spherical surface, etc., can also be applied to the vector space Fn with every
norm. In this geometric language, we refer to vectors u, v in Fn as points, and
∥u − v∥ as the distance between the points u and v. Further, for a point c in
Fn and a positive number ϱ, the set of points

Bϱ(c) = {u ∈ Fn | ∥u− c∥ ≤ ϱ} (1.1.9)

is called the closed ball with center c and radius ϱ. Similarly, the open ball is
defined by the set

Ḃϱ(c) = {u ∈ Fn | ∥u− c∥ < ϱ} (1.1.10)

and the spherical surface with center c and radius ϱ as the set

Sϱ(c) = {u ∈ Fn | ∥u− c∥ = ϱ}. (1.1.11)
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Chapter 1. Key Mathematical Tools

Example. The maximum norm ∥ · ∥∞ on the n-dimensional space Fn is of
particular importance for applications. In this case, when Fn = Rn, and c ∈ Rn

and ϱ > 0, the “ball” Bϱ(c) is simply the n-dimensional interval Bϱ(c) =
[c − ϱ, c + ϱ] since for u = (u1, . . . , un) in Bϱ(c) with c = (c1, . . . , cn), the
relation

max
j=1,...,n

|uj − cj | ≤ ϱ or cj − ϱ ≤ uj ≤ cj + ϱ, j = 1, . . . , n (1.1.12)

holds. �

In the next theorem, we prove an important inequality for norms on Fn.

Theorem 1.1.1. (Equivalence of vector norms in finite-dimensional spaces)
Let ∥ · ∥ be an arbitrary norm on the n-dimensional space Fn, and let ∥ · ∥2 be
the Euclidean or unitary norm. Then, there exist positive constants γ0, γ1 such
that

γ0∥u∥2 ≤ ∥u∥ ≤ γ1∥u∥2, u ∈ Fn. (1.1.13)

Proof. Let e1, . . . , en be the basis vectors

ej = (δ1j , . . . , δnj), j = 1, . . . , n (1.1.14)

in the n-dimensional space Fn where δij , i, j = 1, . . . , n is the Kronecker sym-
bol. Then, every vector u ∈ Fn can be expressed as

u = (u1, . . . , un) =

n∑
j=1

ujej . (1.1.15)

So, the norm ∥ · ∥ satisfies the estimate

∥u∥ ≤
n∑

j=1

|uj | ∥ej∥ ≤ γ1∥u∥2, u ∈ Fn, (1.1.16)

with the constant

γ1 = (
n∑

j=1

∥ej∥2)
1
2 . (1.1.17)

Moreover, every norm ∥ · ∥ is a Lipschitz-continuous function, and therefore in
particular, a continuous real-valued function

h(u) = ∥u∥, u ∈ Fn, (1.1.18)

because of the inequality

|h(u)− h(v)| = | ∥u∥ − ∥v∥ | ≤ ∥u− v∥ ≤ γ1∥u− v∥2, u, v ∈ Fn. (1.1.19)
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1.1. Equivalence of Norms in Finite-Dimensional Spaces

In the n-dimensional space Fn, the unit sphere S = S1(0) = {u ∈ Fn | ∥u∥ = 1}
is bounded and closed. Therefore, by the Weierstrass theorem, the real-valued
continuous function h(u) = ∥u∥ on S has a minimum at some point w ∈ S so
that

γ0 = h(w) = min
∥u∥2=1

h(u) ≤ h(v), v ∈ S. (1.1.20)

Here, γ0 is necessarily positive since otherwise we should have

γ0 = h(w) = ∥w∥ = 0, (1.1.21)

and therefore also w = 0, as opposed to w ∈ S or ∥w∥2 = 1. Finally, for every
u ̸= 0, we have v = (1/∥u∥2)u ∈ S, and therefore,

γ0 = h(w) ≤ h(v) = h(u/∥u∥2) =
∥u∥
∥u∥2

,

i.e.,
γ0∥u∥2 ≤ ∥u∥, u ∈ Fn. (1.1.22)

On the whole, Theorem 1.1.1 is proven. �

Remark. Instead of writing u ∈ Fn in the form (1.1.15), i.e., as a row vector
with parentheses, we also write it in the form of a column vector. Sometimes,
we use brackets instead of parentheses. So, the following writings may occur:

u = (u1, . . . , un),

u = [u1, . . . , un],

u =

 u1
...
un

 ,

u =

 u1
...
un


to denote vectors u ∈ Fn. �
By Theorem 1.1.1, every norm on the n-dimensional space Fn is equivalent to
the Euclidean or unitary norm ∥ · ∥2. For the maximum norm, we clearly have

∥u∥∞ ≤ ∥u∥2 ≤
√
n∥u∥∞, u ∈ Fn.

Every norm ∥ · ∥ on Fn is therefore also equivalent to the maximum norm with

γ0 max
j=1,...,n

|uj | ≤ ∥u∥ ≤
√
nγ1 max

j=1,...,n
|uj | (1.1.23)
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Chapter 1. Key Mathematical Tools

for u = (u1, . . . , un) ∈ Fn. An arbitrary sequence of vectors u(ι) = (u
(ι)
1 , . . . , u

(ι)
n ),

ι = 1, 2, . . . in the n-dimensional space Fn is said to converge to a vector u in
Fn if the sequences of the components converge, i.e.,

u(ι) → u ⇐⇒ u
(ι)
j → uj , j = 1, . . . , n, as ι→ ∞. (1.1.24)

By Theorem 1.1.1, the inequalities (1.1.23), and the relation (1.1.24), this
happens if and only if, for an arbitrary norm on Fn,

∥u(ι) − u∥ → 0 or equivalently ∥u(ι) − u∥∞ → 0 as ι→ ∞. (1.1.25)

1.1.2 Matrix norms

The content of this subsection is taken almost verbatim from [74, Section 5.2].

We now consider m × n matrices A = (ajk), B = (bjk) with elements ajk, bjk
in F, j = 1, . . . ,m, k = 1, . . . , n, where m and n are given natural numbers.
These matrices again form a vector space over F, addition of matrices and
multiplication by a number λ in F being as usually defined by

A+B = (ajk + bjk), λA = (λajk). (1.1.26)

In this vector space of m × n matrices, we can introduce norms having the
property (N1) − (N4). These norms of matrices can be defined in various
ways. For example, we can always regard m× n matrices (ajk) as vectors (al)
of the space FN where N = mn, and conversely, every vector (al) in FN can
be associated with a matrix (ajk), for instance, by the rule

al = ajk, l = j +m(k − 1), j = 1, . . . ,m, k = 1, . . . , n. (1.1.27)

Remark. In this way, the column-wise storage of matrices is done in computer
programs such as Matlab. �
In an N-dimensional space FN , every norm is equivalent to the maximum norm.
We formulate this result for the norms of matrices in the following theorem.

Theorem 1.1.2. (Equivalence of matrix norms in finite-dimensional spaces)
Let m,n be a pair of natural numbers and ∥ · ∥ an arbitrary norm on the vector
space Fm×n of m× n matrices. Then, there exist positive numbers γ0, γ1 such
that

γ0 max
j=1,...,m
k=1,...,n

|ajk| ≤ ∥A∥ ≤ γ1 max
j=1,...,m
k=1,...,n

|ajk| (1.1.28)

for every m× n matrix A = (ajk), ajk ∈ F, j = 1, . . . ,m, k = 1, . . . , n.
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