
1 Introduction

1.1 Structural Vibrations

Vibrations embrace a broad range of topics that address problems from particle physics
to multibody motion in different systems. Mechanical systems in particular are subject
to constant development due to their increasingly complex structures and ever-increasing
system requirements. Variable system properties that change over time, such as variable
structures with moving mass-bearing parts and deformations, are examples of such devel-
opments. Recent developments in materials science and the fabrication of soft sensors and
actuators are opening up entirely new possibilities for biologically inspired designs for me-
chanical assemblies. In structural mechanics, the focus is on lightweight structures designed
for ideal, load-oriented use of materials, as often found in nature. Lightweight construction
can also meet the conflicting requirements of high stability and safety of structures despite
the lightweight components. It is also an essential technology for addressing the increasing
challenges of energy and resource efficiency. Weight reduction has a direct impact on energy
efficiency, especially in applications involving moving objects such as aircraft, vehicles and
manipulators, as well as in the transportation of goods. The main focus is on improving
motion while minimizing energy without compromising performance. The lightweight de-
sign has a significant impact on direct material costs and reduces fuel consumption in the
aerospace and automotive industries. In addition, production lines and goods transport
benefit from these developments to reduce production, transport and disposal costs. On
the other hand, it is clear that mass reduction technology and slender structures increase
mechanical vibrations. For complex structures, the mechanical vibrations become a bottle-
neck factor and spawn new branches of challenges. In the wide range of solid mechanics,
the system classification used in [Tri+08] distinguishes between systems based on materials
and the number of Degrees of Freedom (DoF) in four classes: Non-redundant, Redundant,
Hard Continuum, and Soft. As Figure 1.1 shows, this work is concerned with the hard
continuum class, specifically the class of systems that are both flexible and rigid, such as a
flexible system with variable mass structure.

Parametric Resonance

Oscillatory behaviors can be classified according to their formation mechanism into; free,
self-excited, coupling, forced and parametric oscillations [MPS16]. Free oscillations, also
called self-excited oscillations, are motions of an oscillatory system that are not subject to
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Figure 1.1: Classification of solid mechanics based on materials and DOF

any external energy input. In contrast, self-excited oscillations are supplied with energy.
The clock is a typical example with an external energy source. Coupling oscillations result
when two oscillatory systems mutually influence each other or when one oscillatory sys-
tem has multiple degrees of freedom. An example of coupling oscillations are multi-mass
spring-damper systems interacting with each other. Forced oscillations are subject to ex-
ternal excitation. The differential equations of forced oscillations contain a time-dependent
excitation term. An example of forced oscillation is given by systems excited by a periodic
input, i.e. mass-damper system excited by rotating unbalances. Parametric oscillations
result from time-varying, mostly periodic parameters in a system [FN11]. Parametric ex-
citation can be external or internal and can cause a change in one or more parameters.
From a mathematical perspective, parametric oscillations contain time-dependent, mostly
periodic coefficients in the differential equations. One of the characteristics of parametric
oscillations is the fact that the excitation has no effect on the oscillatory system as long
as it remains in the equilibrium position. However, this equilibrium position can become
unstable under certain conditions, especially at certain ratios of the natural frequency to
the excitation frequency, so that any disturbance, however small, can trigger the buildup
of parametrically excited oscillations [MPS16]. A typical example is a swing, in which the
body pose plays an essential role in the propagation of the amplitude. To swing, one shall
pull together in the middle position and straighten up on the extreme positions. With this,
one performs oscillations with a frequency, which has an impact on the swing oscillation.
The steadily shift of the body’s center of gravity changes the distance between the pivoted
and the carrying mass. This can be seen as a pendulum with varying rope length [Sey04].
One of the main characteristics of an oscillatory system is the resonance phenomena that
occur in all types of oscillations. Resonance occurs when the excitation frequency is equal
or close to the natural frequency of a system and results in increased amplitude. Depending
on the nature of a system, resonant frequencies can occur in very complicated forms.
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Impact of Nonlinearities

The linear superposition principle used for linear differential equations no longer applies to
nonlinear systems. As a result, nonlinear dynamical systems exhibit much more complex
behavior. Parametric excitation can lead to parametric instability, even without additional
external excitation. [DES99] showed that instability is a general property that can occur
in many systems with coupled oscillators or with nonlinear coupling. In instability, a small
perturbation of the normal mode causes a finite amount of energy to be transferred to the
other mode. The instability of the mass-spring system is explained as an internal paramet-
ric excitation, where the longitudinal motion drives the transverse motion parametrically.
Nonlinear oscillators exhibit frequencies that are generally amplitude-dependent and consist
of frequencies that are integer multiples or fractions of the fundamental frequency. For non-
linear systems, the resonance can be characterized as parametric resonance, superharmonic
resonance, or multi-harmonic [Che14; LR12; Fuc14; HC11]. Such a resonance characteriza-
tion shows when a system can achieve bistability, hysteresis and even instability. Parametric
resonance is an exciting phenomenon that can be used to study the effects of parameter
changes on the stability of a system. Unstable systems can be stabilized by specific ex-
citations. One of the best known examples is the Mathieu equation, a linear differential
equation with a time-dependent coefficient. Recently, some mathematical methods have
been developed to solve the nonlinear differential equations of oscillators. Most of them
are applicable only to a certain type of nonlinearity and do not apply in general [Cve18].
Even the numerical analysis of the linear Mathieu equation is possible only because of the
coefficient, which is periodic in time. Parametric resonance makes the analysis and control
of general nonlinear systems notoriously difficult.

1.2 Application Examples

Parametric resonance occurs in a broad class of systems that typically exhibit either time-
varying or nonlinear dynamics. In contrast to electrical or fluid systems, time-varying
quantities are more common in mechanical systems.

Power Grid

As more and more renewable energy producers participate in the power grid, the grid
impedance between producer and consumer nodes changes due to changes in availability.
This leads to a variable resonance frequency in the entire grid, which makes the design of
passive filters in the grid more difficult. In practice, in such cases, the filters are designed
with a higher and wider damping factor to counteract this change. However, this attenuates
a broad spectrum, which has a great impact on the efficiency.
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Oscillatory Electrical Circuit

Parametric amplifiers use excitation to enhance the response of a resonance-controlled os-
cillator in different frequency ranges. Parametric amplifiers are typically used in acous-
tics and optical spectral applications. Such amplifiers are frequency selective and consist
of RLC circuits with time-varying elements, such as an inductor using a dynamo. Non-
degenerate parametric amplifiers exhibit a nonlinear charge-voltage characteristic due to
voltage-dependent capacitance.

Ship Motions

Ships are exposed to external parametric excitations from waves. Rolling resonance is
a thorny problem in shipping with very costly and damaging consequences [FN11]. When
longitudinal wave excitation frequencies are approximately twice the rolling frequency, ships
experience large rolling oscillations that can cause instability in the form of ship overturning.
Depending on the ship length and speed, the parametric resonance varies and parametric
rolling can be avoided.

Autonomous Aerial Refueling

Another example is the docking process during autonomous air refueling with a flexible hose.
Depending on the tanker’s speed, drag vortex, turbulence, air flow and closure speed, the
flexible refueling hose experiences transverse, longitudinal and torsional vibrations. Such
docking is extremely difficult due to hose vibrations, the frequency of which depends on
various factors such as hose length. [MB17] analyzed the frequency behavior and many
other studies have been devoted to vibration control, such as [SXL19], to avoid serious
refueling accidents.

Stacker Crane

In order to study the parametric resonance phenomenon in detail with a concrete exam-
ple, this thesis uses a flexible stacker crane with a nonlinear system equation. Stacker
Cranes (STCs) are highly dynamic, rail-guided, planar, flexible robotic manipulators. STCs
are characterized by a long mast and a load handling device, as shown in Figure 1.2. With
the rapid growth of fully automated production facilities, STCs have become a common
attribute as part of automated guided vehicles in fully automated warehouses and logistics
centers. They consist of a drive unit, a lifting unit and a loading unit and move in three
axes. The drive unit moves longitudinally in narrow aisles, the lift unit moves vertically and
the load unit moves transversely in the aisles. STCs perform fast and accurate positioning
maneuvers for loading, lifting, transporting and unloading. Some STCs (e.g. Viastore) are



1.3 Main Objective 9

Figure 1.2: Parametric resonance is a common phenomena in mechanical systems with time-
varying structures as in gantry cranes with variable cable length or stacker cranes
with variable load change

designed to reach a height of 45 m and transport loads up to 3000 kg. Mini-load STCs are
designed to achieve extremely high speeds of up to 6.5 m/s for movement in the horizontal
direction and up to 3.5 m/s) for movement in the vertical direction, as given in [LER14].
Primarily promoted from the mast flexible and slender form, undesired vibrations arise,
especially under high speeds. These vibrations increase material fatigue and reduce pro-
ductivity, efficiency and positioning accuracy. In addition, long-term material wear leads to
enormous reinvestment and maintenance costs. To increase the efficiency of such a system,
vibration damping must be combined with fast dynamic positioning. A load moving along a
flexible structure poses an additional problem, as this causes the phenomenon of paramet-
ric resonance, making vibration reduction dependent on the current load characteristics.
Similar problems exist in many flexible systems with variable structures, such as gantry or
boom cranes with variable cable lengths [KR10], as shown in Figure 1.2.

1.3 Main Objective

Since parametric resonance is a vast topic with a multitude of challenges, this thesis ap-
proaches the subject using a specific example of STC and the parametric resonance phe-
nomenon therein. For such a system, determining a control approach to reduce the time-
varying oscillations is challenging and requires accurate frequency analysis and a precise
mathematical model. A suitable mathematical model should have the feature that the os-
cillatory behavior is accurately preserved when modeling the parametric resonance, while
the control approach should use the knowledge of the resonance to actively incorporate
it in the design of the control damping. Parametric resonance analysis and control of an


