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Figure 1.1: Application examples of cobots: (a) LBR iiwa, developed by KUKA, in

BMW production line, (b) Yumi, developed by ABB, in Elektro-Praga as-

sembly line, (c) UR10, developed by Universal Robots, in GM production

line, (d) ROBERT, developed by KUKA, in rehabilitation of bedridden pa-

tients, (e) EDAN, developed by DLR, filling a drinking cup controlled from

the wheelchair, (f) GARMI, developed by MSRM, assistant for the elderly.

In recent years, increasing applications of collaborative robots (in short “cobots”) have

been found not only in modern manufacturing systems (Fig. 1.1(a)-1.1(c)) but also in

daily personal services such as nursing care, household, and physiotherapy (Fig. 1.1(d)-

1.1(f)) 1. According to the statistics from International Federation of Robotics, during

1Image source: KUKA, ABB, Universal Robot, DLR, MSRM,

1

https://www.kuka.com/de-de/future-production/mensch-roboter-kollaboration/cobots
https://new.abb.com/news/detail/62029/yumi-manufacturing-sockets-at-abbs-plant-in-the-czech-republic
https://www.universal-robots.com/blog/technology-and-automation/
https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12535/21858_read-50007/
https://geriatronics.mirmi.tum.de/garmi/
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the period from 2017 to 2019, the number of installed cobots in industry grew from

11, 000 to 18, 000 units2. The fast-growing demands for cobots have also led to increasing

interest in the research community, which yields a new field: human-robot collaboration

(HRC). As presented in [1], the number of publications per year on the topic of HRC

grew from less than 20 to almost 800 from 1996 to 2015.

Despite the rapid growth of technologies and research in this area, today’s HRC is

still facing great challenges. In most industrial scenarios, although cobots work with

humans in a shared workspace, their movements are sequential [2]. If the risk of collision

arises, the robot completely stops until the human is out of the “danger zone”. Very few

applications can be found in which the robot adjusts its motion actively in real-time to

the movement of the human partner. In the healthcare and service areas, most robots are

still controlled by humans, either through teaching by hand or a teleoperation device. On

the other hand, a recent survey[3] points out that from 2015-2018, the most developed

research category in HRC is safety, which accounts for 64.2% of the identified papers.

In summary, the technique and academic developments have achieved great success in

solving the problem of “coexistence” between humans and robots in close proximity, but

there is still a long way until “collaboration” can be realized.

What is a collaboration? Unfortunately, there is no unified definition of the term “col-

laboration”. As reviewed in [4], different research communities such as robotics, human-

machine interaction, cognitive science, multi-agent systems, etc., have their own domain-

specific descriptions, and the boundaries between“collaboration”, “cooperation”, “coordi-

nation” and “joint action” are blurring. Nevertheless, it is commonly agreed that in a

collaboration, each participant should meet the following fundamental criteria [5, 6, 7, 8]:

� representation of goals/tasks,

� monitoring and prediction of its own actions as well as the others’,

� ability to interfere the individual and group behaviors towards goals.

To satisfy the “minimal” conditions listed above and achieve a true sense of human-robot

collaboration, a ”perception-analysis-interference” structure is suggested (Fig. 1.2) from

the control engineering point of view, which has a similar formulation with classical

feedback-control loop. Firstly, the perception module is responsible for measuring the

states of humans which are not limited to the physical level (position, velocity, force)

but also include cognitive features such as speech, emotion, gaze, etc. Wearable sen-

sors have become extremely useful in providing accurate and reliable measurements of

human activities [9]. Secondly, the analysis module interprets the measurements with

appropriate models to recognize human intention, to predict human motion at a certain

2Souse: IFR World Robotics Report 2020

https://ifr.org/
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Figure 1.2: A perception-analysis-interference structure for human-robot collaboration

time in future, and to decide how the robot should react. Artificial intelligence and

machine learning are the core technologies. Thirdly, the interference module follows the

determined coordination strategies, generates local motion and control references, and

executes in the physical environment. Control engineering plays an essential role in this

process. The whole system should be able to run in real-time and adapt to the change

of environments (including humans).

The structure has an interdisciplinary nature and includes many challenging problems.

Although each component has been intensively studied by different research commu-

nities and yielded plenty of exciting results, there is still a fairly large gap between

them. Very few examples can be found in which all the three fundamental elements are

jointly considered. In the author’s view, it is mainly due to the fact that systematic

designs of HRC are still largely missing. Note that a systematic design does not simply

mean the integration of various techniques into one system, which could be problematic

Since they have been developed from different theoretical backgrounds and under differ-

ent practical conditions. More importantly, the design should pay particular attention

to interconnections between the three fundamental components from both theoretical

and technical perspectives. For instance, when choosing a modeling approach for the

representation and prediction of human activities, it should be considered whether it

is appropriate and applicable for robot control design, especially for the stability and

feasibility examination.

Based on the perception-analysis-interference structure, the main goal of this thesis

is to develop a novel trajectory planning and control framework for a safe, natural

and effective human-robot collaboration. More specifically, the thesis focuses on (1)

monitoring and predicting human hand motion in a collaborative manipulation task, (2)
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adjusting robot trajectories and forces online based on human motion predictions.

1.2 Scenarios studied in this thesis

The proposed framework is validated through two typical benchmark applications for

HRC: object handover and cooperative object handling.

Object handover is a must-have skill for robots in both industrial manipulations and

daily personal services. For instance, a robot co-worker should pass a tool to a human

operator [10]. A service robot needs to bring drinks or medicine to a human patient

[11]. To perform a handover as efficiently and fluently as a human is still a challenging

task for robots. As comprehensively reviewed in [12], a handover requires “perception,

prediction, action, learning, and adjustment by both agents”.

This thesis concentrates on the ”pre-handover” phase, in which the human and the robot

move towards each other to get close enough to transfer the object. Precise control of

the grasping motion/force will not be discussed in this thesis. The goal is to perform

an on-the-fly handover, i.e., the robot should move simultaneously with the human. To

enhance the flexibility, the initial pose and the object exchange location are not fixed.

The key aspect for achieving this goal is online trajectory planning based on human

motion prediction. For this purpose, modeling of human hand movements is needed.

The main challenges are: (1) The model should cover the most characteristic features

of human motion. Due to the high complexity of the human body dynamics, proper

approximation methods are required. (2) The model should be computationally efficient

for real-time implementations. (3) Because of the randomness of human motion, the

model should be capable of dealing with uncertainties.

The second application studied in this thesis is collaborative object handling, in which

the human and the robot jointly transport a rigid object. It is one of the most com-

mon benchmarks to investigate physical human-robot collaboration (pHRC). The main

challenge is that the human and the robot have to agree on their movement directions

and speeds [1]. One possible solution is to control the robot to behave compliantly when

interacting with human. Under this concept, the robot only works passively under hu-

man guidance and results in a human-centered collaboration manner. It causes extra

human effort and reduces adaptability and flexibility of the collaboration [13]. To over-

come these drawbacks, the robot should be able to make proactive contributions based

on human intention recognition and motion prediction. Furthermore, contact force is

an important interaction modality in pHRC. It should be particularly considered and

carefully handled in robot control design.
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1.3 State-of-the-art technologies

1.3.1 Human modeling

As reviewed in [14], there are various techniques for modeling human behaviors, de-

pending on different timescales and levels. This thesis mainly focuses on the motion

level, which aims to represent relationships among physical variables such as velocity,

acceleration, force, torque, etc. Cognitive modeling of human learning and coordination

mechanisms is beyond the scope of this thesis.

Physical-based approaches

Conventional physical-based approaches use differential/difference equations derived based

on physical laws to describe human motion dynamics. Such physical-based modeling can

be categorized into kinematic and dynamic models. Kinematic models usually do not

consider the forces and torques that produce the motion. The simplest examples are

constant velocity (CV) and constant acceleration (CA) models. Both assume piecewise

constant states (velocity or acceleration) with additive white noise [15]. One common

application of such simple kinematic models is pedestrian motion prediction [16, 17, 18].

If they are suitable for describing the reaching motion of the human hand remains un-

clear and needs to be verified. A more widely used approach considers multiple degrees of

freedom (DOF) of the human arm, which result in a series kinematic chain consisting of

several joints and links [19]. Applications of such models, also known as skeleton-based

models, require motion capture sensing systems to measure human body segments [20].

Commonly applied techniques include wearable Inertial Measurement Units (IMU) [21],

optical motion capture systems [22] and fusion-based multi-sensor systems [23].

Dynamic models aim to describe the relationship between force and motion. Such mod-

els are usually needed in studying contact-reach scenarios, e.g., physical therapy [24],

physical human-robot collaboration [25], and designing of humanoid robots [26] as well

as exoskeletons[27]. One approach regards the human arm as a rigid body and derives

the dynamic equations based on Lagrange formulation. The other considers the human

arm as a series of elastic actuators and builds a mechanical impedance model with several

springs and dampers. Both approaches require force/torque measurements for the iden-

tification of model parameters. A typical setup is that human grabs a haptic device or

robot end-effector with integrated force/torque sensors and moves along a pre-specified

path [28]. It strongly limits the implementation of manipulation tasks. Alternatively,

Electromyography (EMG) signal can be used to measure muscle activities and estimate

the change of force [29]. However, the data acquisition requires skin preparation and a
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long setup time.

Besides, another approach assumes that the human central nervous system synthesizes

motion by minimizing a cost function consisting of physical variables. Oft-cited forms

include minimum jerk model [30], minimum torque change model [31], minimum energy

[32] model, etc. These ”minimum-X”models were first introduced in the 1980 - the 1990s

to fit point-to-point motion trajectories in free space. Nevertheless, several recent works

have shown that with some extensions, e.g. online correction terms or parameter adap-

tion [33, 34], these models can still achieve satisfying performance in human prediction

for collaboration.

Physical-based approaches are suitable for representing physically well-understood sys-

tems and usually generalize well. However, they are still facing some difficulties in

modeling human behaviors. Due to the high complexity of the human body, unknown

dynamics still exist, which are not completely describable by physical knowledge. Hence,

it is necessary to make approximations. An over-simplified model usually leads to poor

performances, while a comprehensive model is computationally expensive and requires a

large number of sensors to measure the corresponding physical quantities. Sensor drifts

and signal distortions may cause errors in parameter identification. Another drawback

is that physical models cannot handle uncertainties and randomnesses in human motion.

Data-driven approaches

Another category of human modeling concepts is known as data-driven approaches,

which aim to find a functional relationship between pre-defined input and output vari-

ables based on a human motion data set. Since this functional relationship is mainly

represented by probabilistic distributions, data-driven approaches are also named prob-

abilistic approaches [35] and strongly associated with Bayesian theory and Gaussian

distribution.

Commonly used data-driven models include Gaussian Mixture Model (GMM) [36], Gaus-

sian Process (GP) [37], Hidden Markov Model (HMM)[38], etc. In recent years, following

the breakthroughs in machine learning techniques, Recurrent Neural Networks (RNN)

[39], Adaptive Neural Networks (ANN) [40] and deep learning [41] have also been ap-

plied in human motion prediction, utilizing their strength in learning complex and high

dimensional systems. Another approach is Inverse Optimal Control (IOC) [42, 43]. The

basic assumption is similar to the ”minimum-X” models introduced above. The main

difference is that the cost function is unknown and needs to be learned through observed

human behaviors. Hence, this thesis also categorizes IOC into data-driven approaches.

Data-driven approaches require little prior knowledge on the process to be modeled and
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are flexible in describing a wide range of systems, especially for those that are not phys-

ically well-understood or too complex for deriving a physical model. Moreover, proba-

bilistic representations enable data-driven models to deal with uncertainties. However,

there are several critical problems. Since the data set is usually collected under certain

labor conditions, it can only represent part of the system behaviors under constraints.

As a result, the model may work well on training and test sets but loses its validity

with unseen data. Moreover, due to a lack of prior knowledge, it remains unclear if

the chosen variables are representative for describing the actual system dynamics. To

overcome these problems, more data and variables need to be included in the data set,

which dramatically increases its dimensions and computational complexity. In addition,

the errors in data acquisition, e.g., sensor drift, noises, aliasing, etc., can also reduce the

model accuracy.

Hybrid approaches

A new category of modeling approaches has drawn growing attention in recent years.

The model consist of a physical-based term to describe the physically well-understood

part of the system and a data-driven term to learn the rest of unknown dynamics. This

category is known as ”theory-guided data science”[44] or ”hybrid machine learning”[45].

Also, in HRC, several related works can be found where hybrid approaches have been ap-

plied for modeling human motion dynamics. Typical examples are latent force model[46],

dynamic systems [47], and dynamic movement primitives [48]. The ideas are similar: us-

ing an overly simplified mechanical model (e.g. a mass-spring-damper system) to cover

some ”basic” behaviors (e.g. a reaching movement from point A to B), then ”refining”

the model through machine learning techniques with human motion data. Some details

will be discussed later in Chapter 4. Moreover, the model parameters can be further

adapted online using various of learning algorithms to approximate time-varying human

motion profiles during collaborations [49, 50, 51].

Hybrid approaches seem promising since they attempt to combine the strength of both

physical-based and data-driven approaches. On the one hand, since the human motion

profiles have been roughly described by the physical-based term, the data-driven term

is only responsible for learning the physically not interpretable behaviors or the approx-

imation errors. It can therefore enhance the learning effectiveness and reduce the size of

the training set. On the other hand, hybrid approaches can achieve better generalizabil-

ity than a purely data-driven model since the cause-effect relations between variables

have been partially represented based on physical principles.

So far, investigations on the hybrid approaches for human modeling in HRC are still
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rare. In particular, there is a lack of well and systematically designed experimental

validations.

1.3.2 Robot control

The robot control problem can be categorized into motion control in free space and con-

trol of the interaction with the environment [52]. The former aims to track a pre-defined

reference motion trajectory, while the latter concentrates on regulating the contact force.

In the two scenarios studied in this thesis, both motion and interaction control need to

be addressed. Hence, it is desired to design a unified framework that can deal with both

problems.

One possible approach is the hybrid position/force control. The principle is to decouple

the control of end-effector position and contact forces into two orthogonal frames so that

they can be executed independently from each other [52]. However, in HRC applications,

this approach suffers from several difficulties. Firstly, the decoupling of motion and force

control may not always be possible. Considering the collaborative object handling task,

the robot should follow a reference path and simultaneously handle the contact force

along the movement direction. Secondly, the constraint frames may change over time

due to the varying human-robot contact geometry and needs to be updated online [53].

Thirdly, how to define a reasonable force reference value in HRC is still an open question,

especially with consideration of subjective factors such as human comfortableness.

Another approach, namely the impedance control [54], has been commonly used in

pHRC. The control goal is to achieve a desired relationship between robot end-effector

motion and contact force, which is categorized through a mass-spring-damper system,

known as mechanical impedance. Note that without contact force, the impedance control

can also be used as a motion controller for compensating the position errors.

Conventional impedance control with pre-specified constant impedance parameters is

not sufficient in the context of HRC. For instance, when tracking a reference path, the

robot should maintain high impedance to suppress disturbances that perturb its end-

effector from the desired trajectory. On the other hand, when the human partner intends

to correct the robot motion, it should decrease the impedance to generate less resistant

forces. Hence, modulating the desired impedance parameters to adjust robot compliance

depending on task and interaction specifications has become an urgent research topic

[55, 56]. Some previous works attempted to adapt the impedance parameters based

on sensor feedback, e.g., robot end-effector velocity, contact force, etc.[57, 58, 59] To

further enhance the performance, optimization-based approaches have been investigated.

The impedance parameters are optimized by minimizing a task-dependent cost function
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subject to the robot and environment dynamics [60, 61, 62]. A fundamental challenge is

that including the human as a part of the environment model will introduce a certain level

of uncertainties or even unknown dynamics, which dramatically influence the solution

of the model-based optimization problem. In recent years, learning-based impedance

control has gained growing interest from HRC research. This approach extends the

classical impedance control framework with machine learning techniques. The purpose is

to develop an adaptive controller that is able to learn the environment model (including

human), the impedance parameters, and/or the desired trajectories [63]. A detailed

review of related research will be presented in Chapter 7. Since learning-based impedance

control has already shown its advantages in cluttered and complex manipulation tasks,

this thesis attempts to combine it with human motion prediction and design an adaptive

motion generation and control framework.

1.3.3 Design examples

This section briefly reviews several design examples, in which human motion prediction,

robot learning and control have been jointly considered in one framework.

The author in [64] develops an integrated framework combining human motion predic-

tion with robot planning in real-time. The framework contains a data-driven multiple-

predictor system that automatically identifies informative prediction features and com-

bines the strengths of complementary prediction methods. Taking the prediction results

as input, a feedback path planning algorithm is designed to adapt robot movements.

In [65], the author develops a learn-collaborate-discover architecture for cobots. In the

learn module, the author proposed a geometric knowledge base for the robot, in which

a complex manipulation task is represented by a series of kinematic constraints. This

design significantly reduces the complexity of the learning procedure. The collaborate

module is built upon the learn module for a human-in-the-loop execution of manipulation

tasks with a particular concentration on the share-autonomy. The discover module

aims to answer the question of how robots can learn from both observational and self-

exploration when collaboration with humans.

The author in [66] addresses the problem of designing the behavior of cobots in dy-

namic, uncertain environments. A unique parallel planning and control architecture is

presented, which contains a cognitive module for human behavior estimation and motion

prediction, a goal-oriented long-term motion planner, and a safety-oriented short-term

planer. All the planning and control algorithms are developed based on non-convex op-

timizations. Furthermore, the classification and modeling of the interaction modes in

HRC are discussed.
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The dissertation [67] focuses on the model-based design of a control and learning frame-

work in physical HRC. In the learning part, the author proposed two modeling ap-

proaches of human behavior: (1) time-based Hidden Markov Models, which regards

human motion as time-series, (2) an impedance-based Gaussian process, which takes

the human arm impedance as priors. Both models are developed for online human mo-

tion prediction. In the control part, the author designs a stochastic optimal control

approach in which uncertainties are not only considered in system models but also in

costs. Moreover, the author discusses the roles of interaction forces and load distributions

for designing anticipatory control schemes in physical HRC.

1.4 Objectives and Outline

As motivated by the state-of-the-art discussion, the overall objective of this thesis is to

develop a novel methodological approach for human motion prediction and control in

HRC. In particular, the thesis focuses on two relevant challenges:

1. development of an analytical, predictive and adaptive human motion model that

is capable of efficient online human motion prediction under uncertainties, with

specific considerations of its usefulness for the control design,

2. development of an adaptive control structure that is capable of handling unforeseen

and time-varying changes in the environment (including the human partner) and

enables robots to make proactive contributions in the collaboration instead of

working passively as a follower under human guidance.

A hybrid design concept is presented throughout this thesis. On the one hand, it com-

bines physical-based and data-driven approaches for modeling and predicting human

motion. On the other hand, the state-of-the-art impedance control structure for cobots

has been combined with learning-based techniques.

A graphical illustration of the thesis’ structure and relations among different chapters

is shown in Fig. 1.3. At the beginning of each chapter, a brief introduction is provided,

including open questions, related work, and main contributions of this thesis.

Chapter 2 begins with classical approaches for human motion trajectory prediction based

on recursive Bayesian estimation in combination with simple linear kinematic models.

Such methods have been widely used for human motion tracking, which usually provides

good short-term predictions. This chapter demonstrates two of the most commonly

used kinematic models, constant acceleration model and minimum jerk model, with an

extensive evaluation on the basis of two human motion datasets. The main focuses are
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Figure 1.3: A structural overview of thesis and relations between each chapter.

analyses of the error rates with respect to prediction horizons and possible error sources.

Chapter 3 investigates data-driven approaches for human motion prediction. The pur-

pose is to utilize their strength in representing complex systems to achieve long-term

predictions. Motivated by the findings in the neuroscience literature, i.e., the human

central nervous system works as an optimal feedback control system, the first part of

this chapter aims to identify the objective function that the human tries to optimize,

yielding an inverse optimal control problem. The second part focuses on modeling human

motion through Gaussian process (GP), which belongs to non-parametric approaches.

This work employs an online sparse GP regression method to overcome a well-known

drawback of GP, namely the high computational complexity. Furthermore, the proposed

method enables an adaptation of the GP model with new coming data. The evaluation

of both methods includes not only the prediction error, but also their implementation

complexity and generalizability.

Based on the findings in previous chapters, Chapter 4 introduces the concept of devel-



12 1 Introduction

oping a hybrid physical-based and data-driven approach, i.e., using an overly simplified

mechanical model to roughly describe the transitions of the observable physical states,

then refining the model through machine learning techniques to achieve a more pre-

cise approximation of the system’s dynamic. Within this concept, the chapter studies

Dynamic Movement Primitives (DMP) and proposes special designs to overcome sev-

eral limitations in the conventional DMP formulation. Results show that the proposed

method outperforms all the other techniques that have been implemented so far in this

work. Moreover, an extended DMP formulation to describe the interactive dynamics

between humans and robots is presented at the end of this chapter.

Chapter 5 summarizes all the methods that have been studied in this work for human

motion prediction and comprehensively discusses their scope of application, accuracy in

different time scales, and implementation complexity. Afterward, an outlook on possible

future research trends in human motion prediction based on hybrid approaches is stated.

Chapter 6 addresses robot interaction control in physical human-robot collaboration

(PHRC). This work studies one typical benchmark application in which humans and

robots jointly move a rigid object. Instead of a comprehensive kinematic and dynamic

modeling of each agent with consideration of all degrees of freedoms, a more efficient

approach is introduced, in which the compliance control behavior of both robots and

humans is incorporated into the object dynamic. Accordingly, the basics of impedance

control and its common forms are introduced. Lastly, the problem formulation of PHRC

based on differential game theory is discussed.

Due to unknown parameters and high uncertainties in the human compliance control

model, it is challenging to design robot control algorithms using model-based approaches.

Reinforcement learning (RL) offers the possibility to learn an optimal control policy on-

line through interaction with humans. Chapter 7 proposes a novel RL-based adaptive

impedance control framework. Numerical simulations show that RL can achieve near-

optimal performance without fully knowledge of the system dynamic. Moreover, possible

extensions of the proposed method with consideration of constraints handling are dis-

cussed.

Chapter 8 presents the validation of the proposed learning and control methods by

several human-robot collaboration experiments. Two typical benchmark applications,

object-handover and object-handling are chosen so that both contact-free and physical

interactions are included. To deal with various practical issues, several additional de-

signs have been made to enhance the safety and adaptbility of the proposed framework.

Comprehensive analyses and discussions on the experimental results are presented.

Chapter 9 provides conclusions of the main findings in this thesis and suggestions for
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future work.
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2 Human Motion Prediction based on

Simple Kinematic Models

2.1 Introduction

This thesis investigates human motion prediction based on kinematic models. In partic-

ular, the human reaching motion has been studied, which is mainly generated by arm

movements. Comprehensive modelling of the human arm with consideration of multi-

ple degree-of-freedoms in shoulder, elbow and wrist is extremely complex [68] and is

not suitable for control design. For simplification, this thesis focuses on describing hu-

man hand translational motion trajectories in Cartesian space without considering its

dependency on the joint movements. This idea belongs to classical approaches in the

area of human motion tracking. Commonly used models include constant velocity and

constant acceleration models. Such models are usually combined with Bayesian filters

(e.g. Kalman Filter) to deal with uncertainties [69]. Another approach assumes that

the human central nervous system generates motion by minimizing an objective function

over a time interval. Constraints such as initial and final conditions or via-points can be

added to the optimization problem. The analog solutions usually result in a polynomial

function of time.

These simple kinematic models are physics-based, easy to implement and do not occupy

much computational resource when performed online. Hence, they have been still widely

used and studied in various of human-robot-interaction scenarios. A recent study shows

that in some cases such simple kinematic models can outperform even state-of-the-art

neural network models [18]. This chapter presents a simulation study of two most com-

monly used kinematic models in literature, namely constant acceleration and minimum

jerk model. Evaluation of both models is performed based on a human data set recorded

by an optical motion capture system. Performances of both short-term and long-term

predictions are analyzed and the possible source of error is discussed.

The remainder of the chapter is organized as follows. The scenarios studied in this thesis

and the preparation of a human motion data set are briefly introduced in Section 2.2.

15
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(a) (b)

Figure 2.1: Graphical illustration of the scenarios for data collection: (a) pick and place

with different initial- and goal positions, (b)human-human object handovers

Section 2.3 describes the mathematical formulation of the two kinematic models and their

combinations with Bayesian filtering techniques. Section 2.4 presents the evaluation of

both models with measurement data and discusses the results. Section 2.5 summarizes

the pros and cons of the two models and gives references to further applications.

2.2 Data set preparation

For analysis and learning of human movements it is beneficial to build a human motion

data set, including trajectories performed by different participants under various exper-

imental conditions. With the support of AG wearHEALTH at TU- Kaiserslautern 1, a

data set of human motion was built. The measurements were provided by OptiTrack
2, a marker-based optical motion capture system contains 12 3D-range cameras with

maximal frame rate of 240 fps. The accuracy of motion tracking reaches 0.5 mm.

This thesis focuses on human reaching movements. Fig. 2.1 shows the two application

scenarios considered in the data collection. The left one is a typical “pick and place”

task with different initial and target positions. This scenario is usually seen in tabletop

manipulation tasks. For instance, in laboratories, the employees need to take and transfer

test tubes. Or in an assembling task, the workers collect and bring parts to different

1https://agw.cs.uni-kl.de/ Last visited: 01.02.2022
2https://optitrack.com/Last visited:01.02.2022

https://agw.cs.uni-kl.de/
https://optitrack.com/

