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Chapter 1

Introduction, overview and
basic notation

Material models are the backbone of every modern finite element calculation.
With the increase in computing capacity and the improvement of numerical
methods, more and more finite element calculations are being carried out.
In order to obtain realistic calculation results, advanced material models are
required, especially in geotechnics.

The aim of research is to develop better and – maybe even more important
– simpler material models. In this work, the material model Barodesy is im-
proved. This recently developed material model differs fundamentally from
elastoplastic constitutive models, since it requires neither yield surfaces, plas-
tic potentials nor hardening laws. Barodesy can be written in one equation,
what makes it similar to Hypoplasticity.

1.1 Overview

This thesis summarises my research on and with constitutive models, which I
have undertaken in the last four years at the University of Innsbruck during
my PhD studies.

The second chapter consists of the paper "Zur Rolle der Materialmodelle
beim Standsicherheitsnachweis" from Kolymbas et al. [65] in geotechnik. It
is mainly concerned with the fundamental question of whether the material
model is important for the determination of stability or not. Statements of
the Working Group for Numerics in Geotechnics are discussed in detail and
compared with calculation results from the literature.

The third chapter takes a closer look to the basic behaviour of soil and presents
the material model Barodesy. The ability of Barodesy to depict soil behaviour
is explained in more detail. At the end of this chapter, the two current ver-
sions of Barodesy for clay and sand are presented. This chapter is based on
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the publication "Konzepte der Barodesie" published by Medicus et al. [78] in
Bautechnik.

In the fourth chapter, improvements of Barodesy for sand are developed. On
the one hand, the existing formulation of a kernel function will be improved
and simplified, and on the other hand, another critical state line will be intro-
duced, which requires to change some scalar functions of Barodesy.

In the fifth chapter, advanced stress paths (principal stress rotation) with
different material models (different elastoplastic, hypoplastic and barodetic
material models) are calculated and the results of the calculations compared
with results of laboratory tests. These results were also included in the paper
"Deformations induced by principal stress rotation modelled with different
constitutive relations" (submitted to the International Journal for Numerical
and Analytical Methods in Geomechanics without the improved Barodesy
version and without a detailed presentation of the material models).

The sixth chapter deals with the stability of infinite slopes. Different ap-
proaches for calculating the stability of infinite slopes are presented. Various
material models are used for the calculation of failure in simple shear simula-
tions. It is possible to derive simple formulas for certain special cases. A large
part of this work is published in "Stability of infinite slopes investigated with
Elastoplasticity and Hypoplasticity" by Schranz and Fellin [106] in geotech-
nik. The here presented work is extended by calculations with Barodesy, which
were not included in the original.

Beside of the work on constitutive models there has been also further research
on the implementation of constitutive models into Finite Element software
Chen et al. [15] and the estimation of material parameters under the aspect of
the safety concept in the new standardisation Schneider-Muntau et al. [104].

1.2 Basic notation

1.2.1 Stress, strain and stretching

In this thesis the effective Cauchy stress Tensor is denoted as T , following the
sign convention of the continuum mechanics (tension positive). In the case of
principal normal stresses, the components of the stress tensor are written with
a single index, for the smallest stress component (the largest absolute value)
carries the index 1, the largest stress component (the smallest absolute value)
the index 3 (T1 ≤ T2 ≤ T3). If a general stress state is described, two indices
are used: Tij . In the case of i = j, these are normal stresses and for i 6= j
these are shear stresses.
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Figure 1.1: Deformation in a simple shear test

The strain ε also follows the sign convention of continuum mechanics (elonga-
tion positive). All constitutive models used in this thesis are of the rate type.
Hence, in the following the rate of deformation tensor (also called stretching)
D is used, which is the symmetrical part of the velocity gradient. In the
case of rectilinear deformations and the use of the logarithmic strain, D = ε̇
applies (Gurtin and Spear [49]).

1.2.2 Dilatancy

Dilatancy is something very characteristic for granular media like soil and was
first scientifically described by Reynolds [95], although the effect was already
known earlier.

In the case of granular media, dilatancy is the change of volume during a shear
deformation. Different dilatancy measures are common in soil mechanics, they
are partly closely related to the constitutive model which is used. Due to the
importance of dilatancy and its frequent occurrence in this work, as well as
its different definitions, it should be discussed in more detail in this section.

The simplest case, where the dilatancy can be seen, is in a plain strain simple
shear test (cf. Fig. 1.1). In this test the horizontal normal strains are constraint
and only vertical normal strain and shear strain can occur. The dilatancy angle
ψ is then defined as

tanψ =
dx2

dx1
=

D22

2D12
. (1.1)

In elastoplastic formulations dilatancy is related to plastic flow. Therefore the
plastic stretching Dp is used with

D = De +Dp (1.2)

following the decomposition of strain in an elastic and plastic part. That
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yields

tanψ =
Dp

22

2Dp
12

. (1.3)

For general deformations, the equation for the dilatancy angle for an elasto-
plastic model is defined as

sinψ =
trDp

|Dp
1 −D

p
3 |

. (1.4)

Here the maximum and the minimum principal stretching are used. For the
triaxial test this equation results in

sinψ =
trDp

−2Dp
1 + trDp , (1.5)

with the axial plastic stretching Dp
1 . The definition of the dilatancy as a

function of plastic deformations is problematic, since plastic strains cannot be
measured during a laboratory test (before unloading) and it is not applicable
for constitutive relations without plastic strain (e.g. Hypoplasticity or Bar-
odesy). This problem is sometimes overcome with the assumption that the
entire deformation is plastic and hence D = Dp. This assumption holds true
only in the critical state.

Chu and Lo [16] use a different measurement for the dilatancy. They use tanβ
which is just defined for axisymmetric states and reads

tanβ =
− trD

D1
. (1.6)

A further possible measure for dilatancy, which is more general, is

δ =
trD

‖D‖
, (1.7)

where the trace of the stretching D and its absolute value ‖D‖ =
√

trD2 are
used. The range of δ is between −

√
3 for hydrostatic compression and

√
3 for

hydrostatic extension. The relation between tanβ and δ can be calculated for
axisymmetric states as

δ =
tanβ√

1 + (1+tanβ)2

2

. (1.8)

This relation is shown in Fig. 1.2
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Figure 1.2: Relation between the two dilatancy measurements tanβ and δ

1.2.3 Rendulic plane

The Rendulic plane is a plane in the principal stress/strain space, which was
introduced by Rendulic [94]. This plane includes the hydrostatic stress/strain
axis (T1 = T2 = T3 orD1 = D2 = D3), Fig. 1.3a. This plane has the advantage
that axisymmetric stress or strain paths (for which is T2 = T3 or ε2 = ε3) are
shown undistorted, for this reason the value on the horizontal axis (T2 or D2)
is scaled by the factor

√
2 (cf. Fig. 1.3). Following Gudehus and Mašín [47],

in this plane the angles ψT and ψD can be defined. For isotropic compression
ψT and ψD are defined to be zero, so the angles are

ψT = arctan
T1√
2T2

− arctan
1√
2

, (1.9)

ψD = arctan
D1√
2D2

− arctan
1√
2

. (1.10)
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(b) Definition of ψ in the Rendulic plane

Figure 1.3: Rendulic plane in the stress space (it is also valid for strains)



Chapter 2

The role of constitutive models

The stability of a geotechnical building is often assumed to be not very sensi-
tive to the choice of the constitutive model according to the Empfehlungen des
Arbeitskreises für Numerik in der Geotechnik – EANG [35] from the German
Geotechnical Society section 2.6.3.2 "Stoffmodelle für Standsicherheitsberech-
nung". However, this statement can mislead to wrong conclusions or incorrect
use of soil models, if an engineer is not experienced in this field. This chapter
investigate possible limits of this statement. Commonly it is emphasised, that
nowadays the constitutive models plays an important role, since the computing
capacity and the numeric methods are sophisticated. The EANG also men-
tions, that the typical elastoplastic model with a Mohr-Coulomb yield-surface
(in the following MC-Model) is sufficient. Together with the information, that
for excavations and slop stability analysis the dilatancy is negligible, because
of the small restraint of the deformation1 [35, p. 60] (see also Davis [21]), this
can mislead someone to use the MC-Model unconsidered.

A major reason for the great acceptance of such oversimplified statements may
be, that there is a long tradition of a dichotomy between stability analysis
and the deformation problems in geotechnics. In the beginning just stability
analysis was considered in geotechnical engineering (using a somehow arbi-
trary defined level of safety), relatively late also deformation problems were
encountered. Always with the knowledge, that the accuracy of the deforma-
tion prediction is quite lower than the one of the stability calculation. This
dichotomy is also still consistently implemented in teaching.

At the beginning the research focused on the event of the "failure" or "frac-
ture" and tried to describe it with various strength hypotheses. For a long
time deformations have been calculated using elasticity theory. With the in-
troduction of the Elastoplasticity theory one began to realise, that failure is
nothing different than a special form of a deformation state. Furthermore,
Elastoplasticity theories insinuate that failure occurs precisely when a certain
stress state is reached. It is ignored that the failure of solids is rather a process

1 The original Phrase in [35] reads: Für Baugruben und Böschungen zeigt sich auf Grund
der relativ geringen Behinderung der Verformungen nur ein vernachlässigbarer Einfluss des
Dilatanzwinkels auf die Standsicherheit,. . .
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than a state, which is difficult to determine, as it is also associated with the
breakdown of numerical methods and the loss of controllability of experimen-
tal methods. An expression of "trivialisation" of failure is the term of the
equilibrium equation, which found its way into the standardisation. The triv-
ialisation consists in the belief that failure can be described by an "algebraic
equation". This may be possible for states, but not for processes. By the way,
the fact that failure is more a process than a singular event was already taken
into account by Terzaghi and Peck [113] with the introduction of the concept
of the progressive breakage, which was hardly followed up.

So called strength reduction methods are used in finite element calculations.
The values of the used friction angle ϕ and the cohesion c are reduced until a
limit state is reached in the case of ϕ-c-reduction. This results in localisation
of deformation in a thin area, which can be compared with "traditional" slid-
ing circles. Compared to kinematic methods (like sliding circles or rigid-body
failure mechanisms), the finite element methods offers a quite good fulfilment
of the global equations of forces and momentum. However, it must be em-
phasised that the application of strength reduction methods do not always
deliver unambiguous results. The safety obtained with such methods depends
strongly on the concrete application of the reduction and on the individual
material parameters, (c.f. Fellin [29] and Zhao et al. [132]). In any case, the
ϕ-c-reduction shows that the aforementioned dichotomy between deformation
calculation and stability analysis fails. With a constitutive model that is un-
suitable for the problem, an incorrect stress path to the limit state is obtained
and therefore also inaccurate stress states at the failure are obtained. This
applies in particular to undrained conditions and was one of the reasons for
the overestimation of the shear strength at the accident next to the Nicoll
Highway (see section 2.3.2). Moreover, the ϕ-c-reduction can only be used in
models, which explicitly contain these parameters, such as the Mohr-Coulomb
model. For the case that other constitutive models are used different meth-
ods have to be applied. For example, Schneider-Muntau et al. [103] reduce
the critical state friction angle ϕc and the specific volume parameter of the
critical state line N .

2.1 About the Failure

In the following, failure should be limited to failure of soil samples in lab-
oratory tests, especially to triaxial tests. From a phenomenological point of
view, failure manifest itself in a horizontal tangent of the stress-strain curve (a
so-called limit state). What is quite often missed is that neither stresses nor
strains can be measured directly, it is only possible to measure displacements
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and forces. In order to deduce stresses and strains from these measurements,
one needs a substantial assumption that the deformation of the specimen is
homogeneous, i.e. that it retains its cylindrical shape. However, experience
has shown that near the limit state the deformation get inhomogeneous, the
specimen is deformed unevenly, it bugles out or it is pervaded by shear bands.
For a while it was believed that the loss of homogeneity was caused by dis-
turbing boundary effects. It was therefore attempted to eliminate the friction
at the end of the sample by means of lubrication and/or to make the sample
more compact, but it was found that inhomogenization could not be avoided.
Later, the theory has shown that internal inhomogenization is unavoidable
(see section 2.1.2), because at some point of the experiment the so-called con-
trollability gets lost, i.e. it is not possible to force the distribution of stresses
and deformations within the sample by applying stresses and displacements to
the boundary of the sample. If the controllability is lost, the sample – loosely
formulated – can decide for itself which deformation it will undergo. The
specimen often "choose" a localised deformation that takes place within thin
shear bands. The appearance of shear bands is a kind of pattern formation
in an originally uniform sample. The possibility of inhomogeneous sample de-
formation as an alternative to the homogeneous deformation which has been
introduced so far is accompanied by the loss of uniqueness of the solution of
the underlying problem of the initial boundary value problem and by a bi-
furcation of the solution path, whereby the solution found thereafter, e.g. in
a finite element calculation, is mesh dependant. So it can be seen that the
closer one get to the limit state, the less informative the experiments become.
The bifurcation of the deformation manifests itself in the stress-strain-curve
in the sense, that it cannot be traced to the peak by a laboratory test, as it
is already distorted by the occurrence of the inhomogeneous deformation.

Failure can be seen as a kind of phase transition that begins at a single nucleus
(such as a small imperfection) and transform the material from a solid to a
material that is able to flow (but only in one direction). This concept has
already been adopted in fracture mechanics and also puts a basic assumption
of our standard numerical simulations in question. This is the assumption of
the simple material, which states that the size of a specimen does not play a
role in its stress-strain-behaviour. In fact it is observed that larger samples
have a lower strength.

Deformations, which can be small or large, are closely linked to failure. Wheth-
er these deformations occur abruptly or slowly, i.e. if the material behaves
ductile or brittle, is another question.


