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1. Introduction

In this thesis we consider a physical system made up of atoms which are
in a static mechanical equilibrium. Thus, we have zero temperature, i.e.,
each atom has zero velocity, and the net force on each atom is zero. The
atoms form an objective (atomic) structure like a lattice, graphene or
a nanotube. Objective structures are defined by means of group theory
which enables us to capitalize on their high symmetry. The atoms inter-
act via a potential, e.g., the Lennard-Jones potential, which implicitly
defines the configurational energy on the space of all periodic displace-
ments. We consider only small displacements; particularly we are in the
elasticity regime. The aim of this thesis is a theory of the (local) stability
of the objective structure in this atomistic model. Usually, stability is
defined by a second derivative test: An object at an equilibrium point is
called stable if the second derivative of the configurational energy (at the
equilibrium point) is coercive with respect to an appropriate seminorm.
In this thesis we study which seminorm is appropriate for this stability
condition. Further, we provide an efficient algorithm which checks the
stability of an objective structure for a given interaction potential. We
illustrate the algorithm by computing numerically the atomistic stability
region of a toy model and a nanotube. In order to justify our choice of the
seminorm, we also show that under certain reasonable assumptions, the
second derivative of the configurational energy is bounded with respect to
this seminorm. Thus, for a stable objective structure, the seminorm in-
duced by the second derivative of the configurational energy is equivalent
to our seminorm. Moreover, we show for a large class of objective struc-
tures as lattices and graphene that our second derivative test is indeed a
sufficient condition for a local minimum of the configurational energy.

If the atoms form a lattice, the theory and the algorithm is well-
understood, see, e.g., [40]. In this thesis we generalize the results from
lattices to objective (atomic) structures, i.e., we assume that the set
of positions of the atoms is equal to the orbit of a discrete subgroup
of the Euclidean group under a point of the Euclidean space. We also
assume that the stabilizer subgroup is trivial and thus we have a natural
bijection between the discrete group and the atoms. The main issues for
the generalization are the following:
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(i) For a lattice there exists only one appropriate seminorm up to
equivalence for the definition of stability. We show that for an
objective structure there generally exist two appropriate nonequiv-
alent seminorms: one for a stretched and one for a unstretched,
i.e., stress-free, objective structure. For this purpose, we prove a
discrete version of Korn’s inequality and the equivalence of different
seminorms for objective structures. If the objective structure is a
lattice, this inequality implies the equivalence of the two appropri-
ate seminorms.

(ii) For lattices it is well-known that their high symmetry implies that
the second derivative of the configurational energy can be block
diagonalized by means of Fourier analysis. We show that this gen-
eralizes to objective structures by means of harmonic analysis. The
crux move is that due to the high symmetry of the objective struc-
ture which we have mathematically specified by the group, the op-
erator associated with the second derivative of the configurational
energy is left-translation-invariant. Thus, by harmonic analysis, the
operator is a convolutional operator as well as a multiplier operator.
Analogously, this is also true for the bilinear form which induces the
appropriate seminorm. Roughly speaking, the Fourier transform si-
multaneously block diagonalizes the (infinite-dimensional) Hessian
matrix and the matrix associated with the seminorm. This enables
us to efficiently check the coerciveness of the second derivative of
the configurational energy and hence the stability of an objective
structure.

1.1. State of the art

The Cauchy-Born rule is a homogenization postulation to relate contin-
uum theory to atomistic theory, see, e.g., the survey article [27]. If for a
lattice the Cauchy-Born rule is valid, an elastic energy expression, more
precisely a continuum energy functional with the linearized Cauchy-Born
energy density, can be rigorously derived from an atomistic model as a
I-limit. This was first done in one dimension [14] and then generalized
to arbitrary dimensions [53, 16, 2, 12]. Also in plate theory, continuum
models have been rigorously derived by I'-convergence, see [32] for thick
films and [51, 52] for thin films. For sheets, plates, and rods, contin-
uum theories have also been derived with generalized Cauchy-Born rules;
see, e.g., [60] for a general overview, [6] for the exponential Cauchy-Born
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rule that takes into account curvature, and [25] for the Saint-Venant’s
principle for nanotubes.

For a given interaction potential, in general it is hard to check the
Cauchy-Born rule. Nevertheless, for a two-dimensional and for an ar-
bitrary-dimensional mass-spring model, the validity and failure of the
Cauchy-Born rule depending on its deformation has been proven in [33]
and in [21], respectively. Also for graphene [31] and nanotubes [30], the
validity of the Cauchy-Born rule has been rigorously proven.

There exist several definitions of stability which, in particular, pro-
vide a detailed analysis of the Cauchy-Born rule. The main difference
between these stability definitions is the space of the allowed perturba-
tions; see, e.g., [26]. For hard-loading devices which we consider in this
thesis, periodic boundary conditions and periodic perturbations are an
appropriate model, see [17]. As mentioned above, for lattices with pe-
riodic boundary conditions, the definition of stability in the atomistic
model by Hudson and Ortner [40] is natural. Their definition requires
that the second derivative is not only positive definite but also coer-
cive. Moreover, they rigorously derive an algorithm such that they can
numerically determine the stability region of a lattice. Based on this,
in [17] the authors discuss the notion of stability in detail and derive
the stability region and the failure of the Cauchy-Born rule analytically
in an example. In [46] the authors generalize results of [40] to multi-
lattices and they also discuss the equivalence class of the appropriate
norm.

An application of this atomistic stability condition is that under its as-
sumption, solutions of the equations of continuum elasticity with smooth
body forces are asymptotically approximated by the corresponding atom-
istic equilibrium configurations. For both the static and the dynamic
case, this has been proven for small displacements on a flat torus [24, 23],
for the full space problem with a far-field condition [48], and for pre-
scribed boundary values [17, 15].

In order to generalize the Cauchy-Born rule to a larger class of objects,
James [41] defines objective structures by means of discrete subgroups of
the Euclidean group. A characterization of the discrete subgroups of
the three-dimensional and of an arbitrary-dimensional Euclidean group
can be found in [18] and [3], respectively. In addition, the irreducible
representations of space groups are well-known, see, e.g., [11, 13, 56].
To examine stability information of objective structures, James says that
one should be able to do phonon analysis along the lines already done
for crystal lattices. In [1] this is done for a three-dimensional objective
structures which can be described by an abelian group.
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1.2. QOutline

In Chapter 2 we study discrete subgroups of the Euclidean group. More-
over, we define periodic functions on these subgroups and adapt well-
known theorems from harmonic analysis to our setting. In Section 2.1
we collect basic definitions and properties of the Euclidean group. In
Section 2.2 we state some well-known theorems about space groups. In
Section 2.3 we cite a characterization of discrete subgroups (of the Eu-
clidean group). In order to define periodic boundary conditions, we after-
wards present a series of normal subgroups for a given discrete subgroup,
see Theorem 2.17. In Subsection 2.3.1 we collect some definitions and
theorems of harmonic analysis like the definition of the dual space and
the definition of induced representations. Up to a negligible set, the dual
space of a discrete subgroup is equal to a set of certain induced repre-
sentations. In Subsection 2.3.2 we analyze these induced representations,
see Theorem 2.43. In Subsection 2.3.3 we define the inner product space
of all periodic functions. Then, we define the Fourier transform for both
periodic and absolutely summable functions and formulate well-known
theorems like the Plancherel formula for our setting. In Subsection 2.3.4
we generalize the Cauchy-Born rule to objective structures. Since we
are interested in the atomistic stability region, we also analyze the de-
pendence of the discrete group on the macroscopic deformation matrix.
In Subsection 2.3.5 we specify a series of normal subgroups for a given
discrete subgroup and represent the corresponding finite quotient groups
as semidirect products. The remainder of the thesis does not depend on
the results of this subsection. In Section 2.4 we describe an orbit of a
point under the action of the discrete subgroup by, for instance, its affine
dimension and a canonical coordinate system.

In Chapter 3 we define and examine the appropriate seminorms on
the space of all periodic displacements. The finite-dimensional kernel
of these seminorms corresponds to the isometries due to the invariance
of the configurational energy under isometries such as a translation. In
Section 3.1 we motivate the definition of the seminorm for the unstretched
case. In particular, we introduce and linearize our physical model; e.g.,
rotations are approximated by infinitesimal rotations. In Section 3.2 we
study this seminorm, prove its equivalence to similar seminorms and show
a discrete version of Korn’s inequality. In the next section we define and
study the seminorm for the stretched case analogously. For the sake
of completeness, in Section 3.4 we consider a third seminorm which is
analogously defined to the two seminorms before. For a lattice, all of
these seminorms are equivalent, see Corollary 3.42. In Section 3.5 we
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provide an example which shows that there exists no trivial formula of
the seminorm in the Fourier space.

Chapter 4 is devoted to generalization the characterization of the sta-
bility constant of [40, Theorem 3.6(b)] from lattices to objective struc-
tures. This characterization resolves the central issue of the validation
of the coerciveness and thus we have an algorithm to check stability.
Moreover, we show that under realistic physical assumptions, the sec-
ond derivative of the configurational energy is bounded by the seminorm.
In Section 4.1 we define a very general many-body interaction potential
with infinite range which we assume to be smooth and invariant under
rotations. The interaction potential induces the configurational energy
on the space of all periodic displacements. Moreover, we define stabil-
ity in the atomistic model and a stability constant. In the next section
we show how to check if an objective structure corresponds to a critical
point of the configurational energy, see Corollary 4.16. For example, a
simple lattice always corresponds to a critical point, see Corollary 4.17.
In Section 4.3 we show for a large class of objective structures as lat-
tices, that the stability of the objective structure is a sufficient condition
that it corresponds to a local minimum of the configurational energy.
In Section 4.4 we show that the second derivative of the configurational
energy is bounded with respect to an appropriate seminorm under cer-
tain assumptions but particularly in dimension three, see Theorem 4.28,
Theorem 4.34 and Theorem 4.39. In the next section we provide a charac-
terization of the stability constant, see Theorem 4.51 and Theorem 4.54.
In the proofs the Clifford theory is used. This theory describes the re-
lation between representations of a group and of a normal subgroup. In
Section 4.6 we summarize all results by providing an algorithm how to
numerically check the stability of a given objective structure and of a
interaction potential. Then we illustrate our results, first by means of a
toy model and then by a nanotube. In particular, we see which seminorm
is appropriate for the stretched and which seminorm is appropriate for
the unstretched case.
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2. Discrete subgroups of the
Euclidean group

We will use the following notation. For all groups G and subsets S, Sy C
G we denote

S1Sy = {8182 ‘ S1 € 51,82 € Sz} cG

the product of group subsets. For all groups G, S C G,n € Zand g € G
we denote

Sti={s"|seS}CcG
and

gS:={gs|se S} CQG.

For two groups G, H we write H < G if H is a proper subgroup of G and
H <G if H is a normal subgroup of G. For a subset S of a group G we
write (S) for the subgroup generated by S.

Moreover, let N be the set of all positive integers {1,2,...}, Z,, be the
group Z/(nZ), e; be the i** standard coordinate vector (0,...,0,1,...,0)
€ R? and I, € R™ ™ be the identity matrix of size n. We use capital
letters for matrices, and the direct sum of two matrices A and B is

A 0
wope (20)

2.1. The Euclidean group

Let d € N be the dimension. We denote the set of all Euclidean distance
preserving transformations of R? into itself by the Euclidean group E(d).
The elements of E(d) are called Fuclidean isometries. It is well-known
that the Euclidean group E(d) can be described concretely as the outer
semidirect product of R and O(d), the orthogonal group in dimension d:

E(d) = O(d) x R
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The group operation is given by
(A1,b1)(A2,b2) = (A1A2,b1 + A1b2)
for all (Ay,b1), (A1, b2) € E(d), and the inverse of (A, b) € E(d) is
(A, b)7 = (A7, —A1D).
Moreover, we define the homomorphism
L: E(d) = O(d)

(A4,0)— A

and the map
7 E(d) — R?
(A,b) — b.

For all (A,b) € E(d) we call L((A,b)) the linear component and 7((4,b))
the translation component of (A,b). Note that every isometry g € E(d)
is uniquely defined by its linear and translation component:

g = (1a,7(9))(L(9),0).

We call an Euclidean isometry (A, b) a translation if A = I;. All transla-
tions form the group of translations Trans(d), which is the abelian sub-
group of E(d) given by

Trans(d) := {I;} x R%.

We call a set of translations linearly independent if their translation com-
ponents are linearly independent. The natural group action of E(d) on
R? is given by

(A,b)-x:= Az +b  for all (4,b) € E(d) and z € R%.

In this thesis we use a calligraphic font for subsets and particularly for
subgroups of E(d). For every group G < E(d) we denote the orbit of a
point z € R? under the action of the group G by

G-x:={g-z|geq}

We endow E(d) with the subspace topology of the Euclidean space R%*? x
R? such that E(d) is a topological group. It is well-known that a subgroup
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G < E(d) is discrete if and only if for every € R? the orbit G-x is discrete,
see, e.g., [19, Exercise 1.1.4]. In particular, every finite subgroup of E(d)
is discrete.

A discrete group G < E(d) is said to be decomposable if the group repre-
sentation

G — GL(d +1,C)
(A,0) — (61 l1)>

is decomposable, i.e., there is a decomposition of R**! into the direct
sum of two proper subspaces invariant under {(4 %) |(4,b) € G}. If this
is not the case, the discrete group G is called indecomposable, see, e.g.,
[18, Appendix A.3]. An indecomposable discrete group G < E(d) is also
called a (d-dimensional) space group. In this thesis we will use the term
space group. In section 2.2 and 2.3 we also present a (well-known) char-
acterization of the space groups and the decomposable discrete subgroups
of E(d), respectively, which does not use representation theory.

In the physically important case d = 3, all space groups and discrete
decomposable subgroups of E(3) are well-known and classified, see, e.g.,
[5] and [47], respectively.

2.2. Space groups

The following theorem is well-known, see, e. g., [18, Appendix A.3].

Theorem 2.1. Let d € N be the dimension. A discrete subgroup of E(d)
s a space group if and only if its subgroup of translations is generated by
d linearly independent translations.

Also the following theorem is well-known.

Theorem 2.2. Let G be a d-dimensional space group and T its subgroup
of translations. Then it holds:

(i) The group T is a normal subgroup of G and isomorphic to 7.
(i) The point group L(G) of G is finite.

(i) The map
G/T = L(G), (Aa)T—A

is bijective and particularly, also G/T is finite.
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Proof. (i) This is clear by Theorem 2.1. (ii) See, e. g., [19, Theorem I1.3.1].
(iii) It is easy to see that the map is bijective and by (ii) the set G/T is
finite. O

Corollary 2.3. Let G be a d-dimensional space group and T its subgroup
of translations. Then for all N € N the set TN is a normal subgroup of
G and isomorphic to Z2.

Proof. This is clear by Theorem 2.2(i). O

2.3. Discrete subgroups of the Euclidean group

Two subgroups G1,Ga < E(d) are termed conjugate subgroups under the
group E(d) if there exists some g € E(d) such that ¢g7'G1g = G». Note
that every conjugation of a subgroup of E(d) under E(d) corresponds to
a coordinate transformation in R<.

Now we characterize the discrete subgroups of E(d). For this purpose for
all dq,ds € N we define the group homomorphism

@: O(dy) x E(de) — E(dy + da)
(A1, (Az,b2)) > Ay & (s, by) = ((“(‘)1 £2>, (zi))

Theorem 2.4. Let d € N be the dimension and G < E(d) be discrete.
Then there exist di,ds € Ng such that d = di + ds, a do-dimensional
space group S and a discrete group G' < O(dy) & S such that G is con-
jugate under E(d) to G’ and n(G') = S, where 7 is the natural surjective
homomorphism O(dy) ® E(dz) — E(dz), Ad g g.

Proof. Let d € N be the dimension and G < E(d) be discrete. If G is a
space group, the assertion is trivial. If G is finite, then G is conjugate
under E(d) to a finite subgroup of O(d) x {04} = O(d), see, e.g., [47,
Section 4.12]. If G is an infinite decomposable discrete subgroup of E(d),
the assertion is proven in [18, A.4 Theorem 2]. O

Remark 2.5. Here O(dy) @ S is understood to be O(d) if d; = d and to
be S if dl =0.

For the remainder of this section we fix the dimension d € N, the discrete
group G < E(d) and the quantities d, do, T, F, S, Ts by the following
definition.
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Definition 2.6. Let d € N be the dimension. Let di,ds € Ny be
such that d = d; 4+ dy. Let S be a dy-dimensional space group. Let
G < O(d1) @ S be discrete such that 7(G) = S, where 7 is the natural
surjective homomorphism O(d;) ® E(dz) — E(d2), A® g — g. Let F be
the kernel of 7|g and Ts be the subgroup of translations of S. Let T C G
such that the map T — Ts, g — 7(g) is bijective.

Remark 2.7. (i) By Theorem 2.4 for every discrete group G’ < E(d)
there exists some discrete group G as in Definition 2.6 such that G
is conjugate to G’ under E(d).

(ii) Ifdy =0, we have do =d, G =S, T = Ts and F = {id}. If d; = d,
we have dy = 0, G is finite, G = F and T = {id}.
(iii) The quantities d, dy, da, F, S and Ts are uniquely defined by

G. In general for given G there is no canonical choice for T, see
Example 2.9.

(iv) Let G be given. In general, for every choice of T the set T is not a
subset of Trans(d), see Example 2.8. Moreover, in general for every
choice of T the set 7 is not a group and the elements of 7 do not
commute, see Example 2.10.

(v) Let G be given. One possible choice for T is the following. Let
t1,...,tq, € Ts be such that {¢;,...,tq,} generates Ts. For all
i€{l,...,da} let g; € G such that m(g;) = t;. Upon this, we define

T={g"" ... 95 [n1,...,na, € Z}.

For the following example and the remainder of the thesis for all angles
a € R we define the rotation matrix

R(a) = (COS(O‘) ‘Sm(a)) € 0(2). (2.1)

sin(a)  cos(a)

Example 2.8 (Helical groups). Let d; =2, da = 1, a € R be an angle,
n €N,

T_ <R(a) ® ([171)>7 F= <R(27T/n) ® (1170)>
and

P = <((1J o) @(*11,0)>~

Then T is isomorphic to Z, F is a cyclic group of order n, P is a group
of order 2 and FP a dihedral group of order 2n. Moreover, T, TF,
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TP and TFP are decomposable discrete subgroups of E(3). If we have
a € R\ (27Q), the groups T, TF, TP and TFP are so called helical
groups, i.e. infinite discrete subgroups of the Euclidean group E(3) which
do not contain any translation except the identity.

Example 2.9 (The choice of 7 is not unique.). Let ¢t = (I1,1), Fy =
{2, R(m)}, S =Ts = (t) and

g= {(R(mr/Q)F) et"|neZ,F e .7:0} < E(3).

Then the choice R(m/2) @t € T as well as R(37/2) @t € T is possible.
In particular, the choice of T is not unique.

Example 2.10. We present a discrete group G < E(8) such that for
every choice of T the set 7 is not a group and the elements of 7 do not
commute.

Let a1, € R \ (27‘(’@) be angles, R = R(Oél), Ry = R(Oég), R3 =
R(r/2), S = ({ %), 1 = (Iz,e1) and t3 = (I,e2). Then we have
(R1) 2 Z, (Re) = Z, and (R3,S) < O(2) is a dihedral group. Let
S=Ts= {t?ltgm |n1,n2 € Z},

G = {(R;“ SRV & (S”IRZ)}“"“")) @ (17"t5?)

22 < E(8)

ni,ne € Z,m € {0,2}}

and 7: G — S be the natural surjective homomorphism with kernel F =
{id, (I, ® R3) ®idp(2)}. Let T C G such that the map T — Ts, g — 7(g)
is bijective. Since t1,t2 € Tg, there exist my,mo € {0,2} such that
1= (RO LO(SRY)) @t € Tand th == (I, & Ry @ Ry™) @ty € T.
We have t|t), # tht} since

tt5(t)) 7 (t2) 7! = (L @ (SRE" R3T™ Ry ™ SRy 'T™?)) @ idia)

_ (2.2)
= (I4 @ R%) S ZdE(g).

Thus, the elements of 7 do not commute.

Now we suppose that 7 is a group. Since w’l(idE(g)) = F and by (2.2),
we have 7! (idg(2)) C T. This contradicts the claim that 7|7 is bijective.
Thus, 7 is not a group.

The following lemma characterizes the group G.

Lemma 2.11. (i) The group F is finite.
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(i) For all n € N the set T™F is independent of the choice of T, and
it holds
ThF«g.

In particular, it holds TF <G.

(iii) The map G/TF — S/Ts, gTF — 7w(g)Ts is a group isomorphism,
where w: G — S is the natural surjective homomorphism with kernel
F. In particular, G/TF is finite.

(iv) For all n € N the map Ts — T"F/F, t — ©({i™)F is a group
isomorphism, where @: Tg — T™ is the canonical bijection. In
particular, the group TF/F is commutative.

(v) For alln € Z\ {0} the map T — T", t — t" is bijective.

Proof. Let m: G — S be the natural surjective homomorphism with ker-
nel F.

(i) Since G is discrete, the group F is discrete. Moreover, F is a
subgroup of O(d:) ® {idg(q,)}. Thus, the group F is finite.

(ii) Let n € N. The set 7"F is the preimage of 7& under 7. Since T7&
is a normal subgroup of S, the set T"F is a normal subgroup of G.

(iii) This is clear, since TF is the preimage of 7s under 7.

(iv) Let n € N. Since Ts is isomorphic to Z92, the map ¢1: Ts — T&,
t — t™ is a group isomorphism. Since F is the kernel of m and
T™F the preimage of 7 under m, the map @y: T"F/F — T,
gF — m(g) is an isomorphism. This implies the assertion, i.e. the
map gp;l o ¢ is an isomorphism.

(v) Let n € Z\ {0}. The map ¢: T — T", t — t™ is surjective. Since
the map 7s — 7', t — t" is injective, the map 7 is injective and

thus, bijective. O
Lemma 2.12. Let m € Z\ {0} such that T™ is a group. Then, the map
Ts—>TM
t= (b))

s a group isomorphism, where ¢: Ts — T is the canonical bijection. In
particular, T™ is isomorphic to Z%2.
Furthermore, for alln € 7Z it holds

T AT,
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Proof. Let m € Z\ {0} such that 7™ is a group. Let 7: TF — Ts be the
natural surjective homomorphism with kernel F. Let ¢ be the inverse
function of 7|7, i.e. ¢: Ts — T is the canonical bijection. The map

Vv1:Ts = TFIF, te— ot)F

is an isomorphism. Since 7F/F is isomorphic to Z9 and (TF/F)™ =
T™F/F, the map

Vo: TF)F = T"F)F, twt™
is an isomorphism. Since 7" is a group, the map
Ys: T = TMF|F, g~ gF
is an isomorphism. The map
Ts = T™, te= )™

is equal to 13 Lo 4py 0 1/1 and thus, an isomorphism.
Let n € Z. Since T™ is isomorphic to Z%, we have T™" = (T™)" «
T O

Definition 2.13. We define the set
My :={m € N|T™ is a normal subgroup of G}.

Remark 2.14. Let N € N. Then, the quotient group G/7T is well-defined
if and only if NV € M,.

Proposition 2.15. For all m € My the group T™ is a subgroup of the
center of TF.

Proof. Let m € My, t € T and g € TF. By Lemma 2.11(iv) there exists
some f € F such that

gt =t"gf.

Since m € My, it follows
f=g T mgtm e T
Since 7™ N F = {id}, we have f = id, i.e. g and t"* commute. O

Lemma 2.16. The set My is not empty.
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Proof. Since F is a normal subgroup of G, for all g € G the map
pg: F=F, frrg'fg

is a group automorphism. Let n be the order of the automorphism group
of F. For all g € G it holds ¢y = id. Thus for all g € G and f € F we
have

g f=1rg", (2.3)
i.e. g¢" and f commute.
Now we show that for all g, h € TF the elements ¢"”! and h commute.
Let g,h € TF. Since TF/F is commutative, there exists some f € F
such that
h=tg"h = g"f.

With (2.3) it follows

hflgn\.ﬂh — (hilgnh)l}-‘ _ (gnf)\.ﬂ _ gn\]:lf\]-'| _ gn\]:|. (24)

Now we show that 7771 is a subgroup of TF. Let t,s € T. We have
to show that "7 s—nlFI* ¢ 707 Let r € T and f € F such that
ts~t = rf. Since TF/F is commutative, there exists some e € F such
that t"71s=71 = ¢l Fle. By (2.4) and (2.3) we have

I g—nlF|?

2 2
(Tl IFYFT = (priFle)IFT = prlF 17 Pl — ol
e T

Now we show that 77*1” is a normal subgroup of G. Let g € G and
t € T. We have to show that

g—ltn\]ﬂzg e Tn\]-'|2'

Since T™F is a normal subgroup of G, there exist some s € 7 and f € F
such that

g—ltng — Snf.
By (2.3) we have

g 1P g = (g g P17 = (snf)IFP = gnlF P pIFIP = gnl PP ¢ lF I,
O

Theorem 2.17. There exists a unique mo € N such that My = moN.
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Proof. We define the set
My :={m € Z|T™ is a normal subgroup of G}.

First we show that @ is a subgroup of the additive group of integers Z.
It is clear that 0 € My. Let ni,n2 € My. We have to show that ny —mns €
My. Let ¢: Ts — T be the canonical bijection. By Proposition 2.15 and
Lemma 2.12, for all ¢, s € Ts it holds

Q)™ T2 p(s) (M) = ()™ p(s) T () T2 (s) "2
(15~ ()
(ts™h)mme e T,

and thus, 7™ ~"2 is a group. It remains to show that 7"*~"2 is a normal
subgroup of G. Without loss of generality we assume that ny,no # 0,
i,e. ning # 0. Let g € Gand t € T. Since 7™ ,7T" <G, there exist
some s1,52 € T such that gt"ig=! = s' and gt"2g~! = s}?. Since
st = gtmm2g=l = "2 and the map T — T™"2, r — r™n2 is
bijective, it holds s; = so. Now we have

Il
€ €

ts~
ts—

gt™ T2 gTh = (gt"g T ) (gt gTh) T = s e T

By Lemma 2.16 and since My C ]\Afo, the group ]\fio is nontrivial. Since
every nontrivial subgroup of Z is equal to nZ for some n € N, see, e.g.,
[20, Article 36], there exists a unique mg € N such that My = moZ. Now,
we have .

M():MQQN:WL()N. O

Remark 2.18. (i) The proof of Lemma 2.16 shows that mg divides
| FI2|Aut(F)|, where mg € N is such that My = moN and Aut(F)
is the automorphism group of F. In particular, we have an upper
bound for my.

(ii) The group G is virtually abelian since for all m € M; the index of
the abelian subgroup 7™ in G is m|F||G/T F| and thus, finite.

2.3.1. The dual space and induced representations

In this subsection we define some terms of representation theory. In our
set-up it is not restrictive to only consider finite-dimensional representa-
tions, see Remark 2.20 below.
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Definition 2.19. Let H be a finite group or a discrete subgroup of E(d).
A representation of H is a homomorphism p: H — U(d,), where d, € N
is the dimension of p and U(d,) is the group of all unitary matrices
in C% >4 Two representations p,p’ of H are said to be equivalent if
d, = d, and there exists some T € U(d,) such that

THp(g)T = p'(9) for all g € H.

A representation p of H is said to be irreducible if the only subspaces of
C4e invariant under {p(g)|g € H} are {0} and C%. Let H denote the set
of all equivalence classes of irreducible representations of . One calls H
the dual space of H. If N is a normal subgroup of H, then the group H
acts on the set of all representations of A by

g-p(n):=p(g~'ng) for all g € H, representations p of A" and n € N.

For given representations p1, ..., p, of H, we define the direct sum

@r_1pi: H — U(m)
g+ ®i—1(pi(9)),

n . .
where m = > ", d,,. In a canonical way, the above group action and
terms dimension, irreducible and direct sum are also defined for equiva-
lence classes of representations.

Remark 2.20. In [45] the following theorem is proved for any locally
compact group: There exists an integer M € N such that the dimension
of every irreducible representation is less than or equal to M if and only
if there is an open abelian subgroup of finite index. This, in particular,
applies to finite groups and discrete subgroups of E(d).

A caveat on notation: For a representation and for an equivalence class
of representations we use the symbol x if it is one-dimensional and p
otherwise. For every one-dimensional representation y its equivalence
class is a singleton which we also call a representation and denote .
The following lemma is well-known.

Lemma 2.21. Let x, p, p1, p2 be representations of a discrete group H <
E(d) such that x is one-dimensional. Then it holds:

(i) The map xp is also a representation of the group H.
(i) If p is irreducible, then also xp is irreducible.

(iii) If p1 and py are equivalent, then also xp1 and xps are equivalent.
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Lemma 2.22. Let H < E(d) be discrete. Then we have
g-p=p forallgé?—[andpeﬁ.

Proof. This is well-known, see, e. g., [28, Subsection XII.1.3], but for the
reader’s convenience we give a proof. Let H < E(d) be discrete, g € H,
p € H and p be a representative of p. Then we have

g-p(h) = plg~ hg) = plg) "' p(h)p(g)  for all h € H.

Thus the representations g - p and p are equivalent and we have g - p =
p- U

We define the induced representation as in [55, Section 8.2], where it is
defined for finite groups.

Definition 2.23. Let H < E(d) be discrete and K be a subgroup of
‘H such that the index n = |H : K| if finite. Choose a complete set
of representatives {hi,...,h,} of the left cosets of K in H. Suppose
p: K — U(d,) is a representation of K. Let us introduce a dot notation
in this context by setting

Ag) = {p(g) if ge K

Oa,,q, else

for all g € H. The induced representation Indjf p: H — U(nd,,) is defined
by

plhytgha) oo plhy " ghn)
Ind} p(g) = for all g € H.
plhytghy) - p(hy ghy)

The induced representation of an equivalence class of representations is
the equivalence class of the induced representation of a representative.

Moreover, let Ind}(K) denote the set of all induced representations of K.
We also write Ind instead of Ind}} if K and H are clear by context.

Remark 2.24. For a general locally compact group the definition of the
induced representation is more complicated, see, e. g., [43, Chapter 2].

The following proposition is standard in Clifford theory.
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Proposition 2.25. Let H < E(d) be discrete and N be a normal sub-
group of H such that the index |H : N| is finite. Then the map

N/H — Ind}(N)

H-prs Indp
is bijective, where N/H = {H -p|p e N}.
Proof. Let H < E(d) be discrete and N be a normal subgroup of H such
that the index n = |H : N| is finite. Let {h1,...,hy,} be a complete set of
representatives of the cosets of N in H and ¢ be the map N'/H — Ind(N),
H - p+— Indp. R
First we show that ¢ is well-defined. Let p € N and g € H. Let o be the

permutation of {1,...,n} and ki,...,k, € N such that gh; = ho)ko()
for all i € {1,...,n}. For all h € N we have
Ind(g - p)(h) = U"(Ind p(h))U
with
U= (p(k1) @@ p(kn))(P; @ 1a,) € U(nd,),
where P, is the permutation matrix (J,(;),;)i;-
It is clear that ¢ is surjective. R
Now we show that ¢ is injective. Let p, p" € N such that Ind p = Ind p'.
Let p and p' be representatives of p and p’, respectively. Since A is a

normal subgroup, for all g € N and i,5 € {1,...,n} we have h; 'gh; € N/
if and only if ¢ = j. Thus we have

(Indp)|y =@ hi-p and  (Indp)|y =Dl hi-p.  (2.5)

Since the representations hy - p,..., hy -pand hy - p',... hy, - p' are irre-
ducible, by (2.5) there exists some i € {1,...,n} such that hy-p = h;-p'.
Thus we have H-p=H - p'. O

2.3.2. The induced representations Ind(7 F)

The following definition and Lemma 2.27 can be found in [44, Chapter
1].

Definition 2.26. A set L C R™ is a lattice if L is a subgroup of the
additive group R™ which is isomorphic to the additive group Z", and
which spans the real vector space R"™.
The dual lattice L* (also called the reciprocal lattice) of a lattice L C R™
is the set

{zr e R"|(x,y) € Z for all y € L}.
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Lemma 2.27. For every lattice in R™ its dual lattice is also a lattice.

Proof. This is well-known, see, e.g., [44, Section 1.2]. For the reader’s
convenience we give a proof. Let L be a lattice and L* its dual lattice.
There exist by,...,b, € R™ such that {by,...,b,} generates L and is a
basis of R%. For all i € {1,...,n} there exists a unique b, € R™ such
that

<b;,bj> :57] for allj S {1,,7?,}

It is easy to see that {b],...,b),} is a basis of R (called the dual basis
of {b1,...,b,}) and

=1

Definition 2.28. We define the lattice

ml,...,mHEZ}. O

Ls == 7(Ts) < R%
and denote its dual lattice by L.

Definition 2.29. For all k € R% we define the one-dimensional repre-
sentation x € TF by

Xk(g) = exp(2mi{k, 7(7(9)))) for all g € TF,
where m: TF — Tg is the natural surjective homomorphism.

Since T F is a normal subgroup of G, G acts on ﬁ
Lemma 2.30. For all g € G and k, k' € R% it holds
XkXk" = Xk+k'
and
9 Xk = XL(n(g))ks
where m: G — S is the natural surjective homomorphism.

Proof. Let g € G, k,k' € R® and m: G — S be the natural surjective
homomorphism. For all h € T F it holds
X (R)xw (h) = exp(27i(k, 7(m(h)))) exp(2mi(k’, 7(m (h))))
= exp(27i(k + k', 7(w(h))))
= Xk+r’ (h)
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and

(9 xx)(h) = xx(9” " hyg)
= exp(2mi(k, 7(n(9~ " hg))))
exp(27i(k, L(n(g~"))7(x(h))))
exp(2mi(L(m(g))k, 7(m(h))))
= XL(x(g))k(h)- [

Lemma 2.31. For all n € N it holds
Ls/n = {k € R® | xeln = 1).

Proof. Let n € N and 7: TF — Ts be the natural surjective homomor-
phism. First we show that L%/n C {k € R% | x4|7» = 1}. Let k € L5/n.
For all t € T it holds 7(m(t")) = n7(w(t)) and thus,

Xk (t") = exp(2wi(k, 7(w(t")))) = exp(2mi{nk, 7(7(t)))) = 1.

Now we show that {k € R% | xg|7» =1} C L%/n. Let k € R% such that
Xk|7n = 1. Let @ € Ls. There exists some ¢ € T such that x = 7(7(t)).
We have

(nk,x) = (nk,7(x(t))) = (k,7(x(t"))) € Z,

where we used that xx(t") = 1 in the last step. Since z € Ls was
arbitrary, we have k € L% /n. O

Definition 2.32. We define the relation ~ on 7 F by
(p~p) = (BgeGIkeR® g p=xip).

Remark 2.33. One can also define an equivalence relation ~ on the set
of all representations of 7F by

(p~p) = (lp] ~ ] for all representations p, p’ on TF.

Lemma 2.34. The relation ~ on TF is an equivalence relation.

Proof. 1t is clear that ~ is reflexive. -
Now we show that ~ is symmetric. Let p,p’ € TF such that p ~ p'.
There exist some g € G and k € R% such that g - p = xxp’. This implies

X=k) (9" (XkP)) = X=Lin(g—1))kP>
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where m: G — § is the natural surjective homomorphism.

Now we show that ~ is transitive. Let p, p’, p”’ € TF such that p ~ p’ and
p' ~ p. There exist some ¢,¢’ € G and k, k' € R% such that g-p = yp’
and ¢’ - p' = xip”. This implies

(9'9)-p=9" (Xxp) = Xr(n(g )+ p
where 7m: G — S is the natural surjective homomorphism. O

Definition 2.35. For all groups H < G and N € M such that 7V is a
normal subgroup of H, let Hx denote the quotient group H/T.

The following lemma gives an algorithm how we can determine a repre-
sentation set of TF/~.

Lemma 2.36. Let m € N such that My = mN.

(i) Every represeﬁt\ation set of {p € TF | plrm = 14,}/~ is a represen-
tation set of TF [r~.

(i) The map
(TF)m = {p € TF|plrm =1a,}, prrpor

where w: TF — (TF)m is the natural surjective homomorphism,

is bijective. In particular, the set {p € 7/']\:|p 7m = 1Iq,} is finite.

(1ii) Let K be a representation set of (Ls/m)/L% and P be a represen-
tation set of G/TF. Then, for all p,p’ € {p € ’f.\F|ﬁ|7—m =14} it
holds

(p~p) = (BgePIkeK: g p=xip).

Proof. Let m € N such that My =mN.
(i) Let R be a representation set of {p € TF |p|rm = I4,}/~. We have

to show that for all p € TF there exists some p' € R such that p ~ p'.
Let p € TF. By Proposition 2.15 the group 7" is a subgroup of the
center of TF and thus, by Proposition B.1 for all ¢ € 7™ there exists
some A € C such that [A\| = 1 and p(t) = Al4,. Hence, there exists some

one-dimensional representation y € 7™ such that plrm = xla,.

There exists some k € R% such that x|7m = xx|7=: By Lemma 2.12 the
group 7™ is isomorphic to Z. Thus, there exist t1,...,tq, € T™ such
that {t1,...,tq,} generates T™. For all j € {1,...,ds} there exists some
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a; € R such that exp(2mia;) = x(¢;). For all i € {1,...,d2} let b; € R%
such that

<bi,T(7T(tj))> :57;]‘ for allj € {1,...,d2},

where 7: TF — Ts is the natural surjective homomorphism. For k =
Z?il a;b; € R% it holds x|7m = xx|7m.

Thus, we have p|lrm = Xxg|7mlq,. Since x_xp € TF and (X—kp)|Tm =
I4,, there exists some p’ € R such that x_xp ~ p'. There exist some
g € G and [ € R% such that g - p’ = xi(x_xp). This implies p ~ p'.

(ii) This is clear by Proposition B.2 and Remark 2.18(ii).

(iii) Let p, p' € T F such that plrm = 1a,, p'|7m = Ia, and p ~ p’. There
exist some g € G and k € R?% such that g-p = xip’. Let h € P such that
gTF = hTF. It holds Idp =(g-p)lrm = (xxp)l7m = Xk T"'LIdp/' This
implies xx|7= = 1 and thus, k € (L5/m) by Lemma 2.31. Let [ € K
such that [Ls = kLS. We have

h-p=g-p=xrp' =xip

where we used Lemma 2.22 in the first step and that xx_; = 1 since
k —1¢€ L% in the last step.
The other direction of the assertion is trivial. O

Corollary 2.37. The set ’7/'7-"/~ is finite.

Proof. This is clear by Lemma 2.36. O

Definition 2.38. For all p € TF we define the set

Gy i= {(L(x(9)), k) [g € Gk € R™ 1 g-p = xup} C E(da),
where m: G — § is the natural surjective homomorphism.

Proposition 2.39. For all p € TF the set G, is a space group and it
holds

Ls < {k € R®|(la,, k) € G,} < Ls/m,
where m € N is such that My = mN.

Proof. Let p € TF and m € N such that My = mN. First we show
that G, is a subgroup of E(d2). Let g1,92 € G,. We have to show that
9195 le G, Let m: G — S be the natural surjective homomorphism. For
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all i € {1,2} let h; € G and k; € R® such that g; = (L(m(h;)), k;) and
hi - p = Xk, p- It holds

(hihy') - p=hy-(hg' - p) =h1- ((hy" - X—ky)P)
= ((hthy") - X—k2) (h1 ) = Xpy — Ln(uns ol
and thus,
9195 " = (L(m(hihy ")), ky — L(w(hahy '))k2) € G,

Let
H = G, N Trans(dy)

be the group of all translations of G,. It is clear that 7(H) = {k €
R | (I4,,k) € G,}.

Now we show that 7(H) < Ls/m. Let k € 7(H), i.e. (Ia,,k) € G,. There
exists some g € G such that g - p = xrp and L(7(g)) = I4,. The latter
implies 7(g) € 7s and thus, g € TF. By Lemma 2.22 we have p = yxp.
Let p be a representative of p. There exists some T" € U(d,) such that
THH(9)T = x1(9)p(g) for all g € TF. Moreover, by Proposition 2.15 the
set T™ is a subset of the center of 7F and hence, by Proposition B.1
p(g) is a scalar multiple of Iy, for all g € 7™. Hence, we have xx(g) = 1
for all g € 7™ and k € L5 /m by Lemma 2.31.

Now we show that L < 7(H). Let k € LS. By Lemma 2.31 we have
Xkl = 1. Since we also have x| = 1, we have x; = 1. Thus we have
idg - p= xkp and (Ig,, k) € H, i.e. k € T(H).

Now we show that G, is discrete. Since 7(#) is a subgroup of L§/m,
the group H is discrete. Since L(G,) is a subgroup of the finite group
L(S), the index |G, : H| = |L(G,)| is finite and thus, by [47, Theorem
7.1] the group G, is discrete. Since LY is a subgroup of 7(#), the group
G, contains ds linearly independent translations. By [18, Lemma 3, p.
415] the group G, is a space group. O

Lemma 2.40. For all N € My and p € TF such that plr~ = Ia,, the
set L5 /N is invariant under G,, i.e. {g-k|g€ G,, k€ Ly/N} = L%5/N.

Proof. Let N € My and p € TF such that plr~ = 1a,. Let k € L5/N
and g € G,. We have to show that g -k € L5/N. Let m: G — S be the
natural surjective homomorphism. There exist some h € G and | € R%
such that g = (L(mw(h)),[) and h-p = xip. Since ply~ = Ig, = (h-p)|7~,
we have x|~ = 1. We have

Xg-k = XL(x(h)k+1 = (B XK)Xi
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and thus, x4.x|7~ = 1. By Lemma 2.31 we have g-k € L5/N. O

Definition 2.41. Let H be a subgroup of E(n). Then the set of all orbits
of R™ under the action of H is written as R™/H and is called the quotient
of the action or orbit space.

Remark 2.42. If a group H < E(n) is discrete, then the quotient space
R™/H equipped with the orbit space distance function

R"/H xR"/H —[0,00), (z,y)+ dist(x,y)

is a metric space whose topology is equal to the quotient topology, see,
e.g., [49, §6.6].

Theorem 2.43. Let R be a representation set of ﬁ/w Then, the map

|| R®/G, = ndf~(TF)

pPER

(gp : k7 p) — Indg’f(xkp)a
where | | is the disjoint union, is bijective.

Proof. Let R be a representation set of 7/'7'/ ~. We define the map

o: | |R%/G, — Wmd(TF)

PER
(Gp - k. p) = Ind(xkp).-

First we show that ¢ is well-defined. Let p € R, k,k’ € R% and g € G,
such that ¥ = g - k. Let m: G — S be the natural surjective homomor-
phism. There exist some h € G and | € R% such that g = (L(w(h)),!)
and h - p = x;p. We have

h-(xkp) = (h-xx)(h - p) = XL(x(h)k+1P = Xk P

and thus, Ind(xxp) = Ind(xx p) by Proposition 2.25.

Now we show that ¢ is injective. Let p,p’ € R and k, k' € R% such that
Ind(xxp) = Ind(xxp"). We have to show that p = p’ and G, -k =G, - k.
By Proposition 2.25 there exists some g € G such that g - (xxp) = xxp'-
This is equivalent to g-p = X' L(r(g))x0’, Which implies p ~ p’ and thus,
p = p'. This implies that (L(7(g)), k" — L(w(g))k) € G, and thus,

Gp- k= Gy - (L(x(9)). K — L(x(g))k) - }) = Gy - K.
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Now we show that ¢ is surjective. Let p € TF. Let 0 € R such that
p ~ p'. There exist some g € G and k € R? such that ¢g-p = xxp'. By
Proposition 2.25 we have

¢((Gp - k. p")) = Ind(xpp') = Ind(g - p) = Ind p. O

Corollary 2.44. Let R be a representation set of {p € ﬁ|p|7m =
Ia,}/~, where m € N is such that My = mN. Then the maps

(i) | [{k/N|k e L5, N € My}/G,
PER
—Ind({p e TF|IN € My : ply~ = 1a,})

(Gp - (k/N), p) = Ind(Xp/np)

(ii) | |(L5/N)/G, = Ind({p € TF|ply~ = 14,})

PER
(Gy -k, p) — Ind(xkp),

where | | is the disjoint union, Ind = Indg—]_- and N € My in (i) is
arbitrary, are bijective.

Proof. Let m € N such that My = mN and R be a representation set of
{pe TF | plrm = Ia,}/~. By Lemma 2.36 the set R is a representation
set of 7/']\-"/ ~.

(i) We define the map

vi | {k/N|k € L5 N € My}/G,

PER
—Ind({p e TF|IN € My : ply~ = 14,})
(Gp - (k/N), p) = Ind(xr/np)-

First we show that 1 is well-defined. Let p € R, k € LS and N € M.
Since 7% C 7™ and by Lemma 2.31, we have (xy/np)|l7~v = Ig,. By
Lemma 2.40 for all N € My we have (L%/N)/G, C R /G, and thus, by
Theorem 2.43 the map 1 is well-defined.

Since the map of Theorem 2.43 is injective, also 1 is injective.

It remains to show that 1 is surjective. Let p € TF and N € M,
such that p|y~ = I,. There exists some p’ € R such that p ~ p'.
There exist some ¢ € G and k € R% such that g - p = xzp’. We have
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(9-p)l7~ = 14, = p'|7~ and thus, xx|7~ = 1. By Lemma 2.31 we have
k e L5/N and thus

((Gp - k,p')) = Ind(xxp') = Ind(g - p) = Ind p,

by Proposition 2.25. (ii) The proof is analogous to the proof of (i). O

2.3.3. Harmonic analysis

Definition 2.45. Let S be a set and N € My. A function u: G — S is
called TV -periodic if

u(g) = u(gt) forallgc Gandte TV,

A function u: G — S is called periodic if there exists some N € Mj such
that u is 7V-periodic.
We equip C™*™ with the inner product (-, -} defined by

(A, B) := ZZ aijbi;  forall A, B € C™*"

i=1 j=1
and let || - || denote the induced norm. We define the set

L (G, C™*™) = {u: G — C™*" | u is periodic}.

per

Remark 2.46. (i) The inner product (-, -) on C™*" is the Frobenius
inner product.

(ii) If G is finite and S a set, then every function from G to S is periodic

and in particular, we have L32 (G,C™*") = {u: G — C™*"}.

The following Lemma shows that the above definition of periodicity is
independent of the choice of T.

Lemma 2.47. Let S be a set. A function u: G — S is periodic if and
only if there exists some N € N such that

u(g) = u(gh) for allg € G and h € GV .

Proof. Let S be a set and u: G — S be TN-periodic for some N € M,.
By Theorem 2.17 the function u is 717 N-periodic. By Proposition 2.15
it holds

GISITFIFIN — (TF)FIN (TN F)IFl — TIFIN FIF| _ FIFIN N,
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and thus, we have
u(g) = u(gh) for all g € G and h e GI9/TFIIFIN,

The other direction is trivial since by Theorem 2.17 for all N € N there
exists some n € N such that nN € Mj. O

The following lemma characterizes the periodic functions on G with the
aid of the quotient groups G/TN.

Lemma 2.48. If N € My and u: G — S is TN -periodic, then the func-
tion

QN — S

9T = u(g)

is well-defined. Moreover, we have

per

L3, (G, €)= {G > C™", g s u(gT™) | N € My, u: Gy — €™},

Proof. This follows immediately from the definition of L3¢ (G,C™*™).
O

Lemma 2.49. The set L2 (G, C™*™) is a vector space.

per

Proof. 1f uy € L%, (G,C™*") is TNi_periodic and uy € L5, (G, Cmxm)
is T™N2-periodic for some N1, Na € My, then uy + ug is T N2-periodic.
Thus, L3, (G,C™*") is closed under addition. The other conditions are

trivial. O
Definition 2.50. For all N € M let C be a representation set ofg/TN.
Remark 2.51. (i) If G is finite, we have Cy = G for all N € M.

(ii) Let G be infinite. There exists some m € N such that My = mN
and there exist ¢1,...,tq, € T™ such that {t1,...,tq,} generates
T™. Let C be a representation set of G/T™. Then for all N € M,
a feasible choice for Cp is

Cy = {t?l...tgfg‘nh...,ndz 6{07...,N/m—1},g€C}.

For this choice, for all z € R? and large N € M, the set Cy - x is
similar to a cube which explains the nomenclature.
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We equip the vector space Lpg, (G, C™*") with an inner product.

Definition 2.52. We define the inner product (-, -) on L3 (G,C™*™)
by

— Z (u(g),v(g9)) if u and v are TV -periodic

for all u,v € L (G,C™*™). We denote the induced norm by || - ||2.

per
Definition 2.53. Let & be a representation set of {p € §| p is periodic}.

Remark 2.54. (i) All representations of £ are unitary by Definition 2.19
which is necessary for the Plancherel formula in Proposition 2.56.

(ii) For all N € My a representation of G is 7¥-periodic if and only if
p‘TN = Idp'

(iii) Proposition B.2 shows that
{p S g’pis periodic} = {pOﬂ'N|N € My, p € g/]\\[},

where 7y is the natural surjective homomorphism from G to Gy
for all N € M.

Definition 2.55. For all u € L3, (G,C™*") and for all periodic repre-
sentations p of G we define

1
(p) = 5— > ulg) @ p(g) € Clmde)x (o),

where N € Mj is such that u and p are 7V-periodic and ® denotes the
Kronecker product, see Definition D.1.

Proposition 2.56 (The Plancherel formula). The Fourier transforma-
tion

T L3 (G, ) = TNy (@(p))pee
peE

is well-defined and bijective. Moreover, we have the Plancherel formula

(w,v) = S d(ii(p),0(p))  for all uyv € L,(G,C™7).

peE
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Proof. We show that the well-known Plancherel formula for finite groups,
see, e.g., [54, Theorem II1.8.1], implies the Plancherel formula of the
proposition. Let N € My and nx: G — Gxn be the natural surjective
homomorphism. The map

fiidu: Gy = C™ "} = {u € Ly, (G,C™ ") |u is TN -periodic}
U UOTN

is bijective. Let Ex = {p|p is a representation of Gy, pony € E}. We
have {ponn|p € En} = {p € &|pis TN-periodic}. Thus the map

fo: P Clmdo)x(ndy) _y (N Clmde)(ndp)

peE, pis TN-periodic pPEEN

(Ap)pes, p is TN -periodic (Aporn)peen

is bijective. By Proposition B.2 the set £y is a representation set of Cjz\v
For all u: Gy — C™*™ and p € Ex we define u(p) = @ > gegy W9) ®
p(g). By the Plancherel formula for finite groups, see, e. g., [9, Proposition
16.16], the Fourier transformation

. {u: gN N (men} N @ (C(mdp)x(nd,,), U= (/d(p))pe&v
PEEN

is bijective and it holds ﬁ Y geon (u(9),v(9)) = 22 cey do(tilp), V(p))
for all u,v: Gy — C™*", The diagram

{u e L. (G, Cm™*n) |y is TN-periodic} —ﬁ @ C(md,)x(ndy)
peE
p is TN -periodic

1
I

{u: Gn — men} . @ (C(mdp)x(ndp)

PEEN

commutes, where the top map is defined by u — (u(p))
Thus, the map

pe&,pis TN -periodic*

o {u c ngr(g7(cm><n) |u is 'TN—periodiC} N @ C(mdp)x(nd,)
peE
p is TN -periodic

(2.6)
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is bijective and we have

(u,v) = > dp (U(p), o(p))

pEE, pis TN -periodic

for all TN-periodic functions u,v € L (G, C™*").

per

Since N € My was arbitrary, for all u € L33, (G,C™*"), for all N € My

such that u is 7V-periodic and n € N it holds

> d,|[a(p)|? = [lu)3 = > d,|[a(p)||.
pe&, pis TN-periodic p€eE, pis TN periodic
(2.7)

By (2.7) for all u € L (G,C™*") and N € M, such that u is TV-

per

periodic, we have
{pc&lilp) #0} C{pec&|pis T"-periodic}. (2.8)
By (2.7) and (2.8) the Fourier transformation
. ngr(gv(can) N @C(mdp)x(ndp)
peEE

is well-defined and we have

(u,0) = dy(ii(p), 0(p))

pe

for all u,v € L (G,C™*™). Moreover, since the map defined in (2.6)

per

is injective and L2, (G,C™ ") = Upepp{t € L3 (G,C™*™) [u is TN-
periodic}, the Fourier transformation is injective. Analogously, the Fou-
rier transformation is surjective. O

Remark 2.57. (i) The above proof also shows that for all u: G — C™*"
and N € My such that v is 7VN-periodic, we have

{pe&liu(p) # 0} C {pe&|pis TN-periodic}.
Moreover, for all N € My the map

{u: g — Ccmxn f u is ’TN—periodic} — @ C(md,)x(nd,)
peE
p is TN -periodic

U = (ﬁ(p))

is bijective.
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(ii) It is easy to see that by the above proposition we have also a de-
scription of the completion of L3¢ (G, C™*") with respect to the
norm || - ||2. We have

T e o
Lo, (G, Crxmy 2 = {u: G — C™x

S d, a(p)l? < oo}

peE

and the map

—mn” Il2 md,)x (nd
per(g Cmx { c HC( o)

pEE

Sl < oo

peE

ws (@) pee
is bijective.
Lemma 2.58. Let f € L%, (G,C™*"), g € G and 74f denote the trans-

lated function f(-g). Then we have 74 f € L35, (G,C™*™) and

701 (p) = F(0)Ln ® p(g™"))

for all periodic representations p of G.

Proof. Let f € L35, (G,C™*™), g € G and p be a periodic representation.
Let N € My such that f and p are TV-periodic. The function Tef is
TN_periodic and we have

Wl (o) = o N| > 7 f(h) ® p(h)

heCn

ICNI > fhg) @ p(h)

heCn

ICNI > fh)y@p(hg™)

heCn

= T 2 S & (e ™)

heCn

(|ch S s )< @ plg™)

heCn

= f(p)In @ p(g™")),
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where in the third step we made a substitution and used that Cn and Cng
are representation sets of G/7T% and that the function h — f(h)®@p(hg™1)
is TN-periodic. O

Definition 2.59. For all v € L'(G,C™*") and all representations p of
G we define
t(p) ==Y _ulg) ® plg)-

9eg

Remark 2.60. If the group G is finite, p is a representation of G and
u e L'(G,C™™) = L2 (G,C™*™), then the Definitions 2.55 and 2.59
for u(p) differ by the multiplicative constant |G|, but it will always be
clear from the context which of the both definitions is meant. If G is
infinite, then L!(G,C™*") N L (G, C™*") = {0} and thus, there is no

per
ambiguity.

Definition 2.61. For all u € L'(G,C™™) and v € L2 (G,C™*") we
define the convolution u * v € L2, (G,C*") by

uxv(g) = Z u(h)v(h™'g) forall g € G.
heg

Lemma 2.62. Let u € L'(G,C*™), v € L5e (G, C™>™) and p be a
periodic representation of G. Then

(i) the convolution u x v is TN -periodic if v is T -periodic and

(i) we have

TT(p) = @)D ().
Proof. Let u € L*(G,C™™), v € L%.(G,C™*™) and p be a periodic
representation of G. Let N € My such that v and p are T N-periodic.
By Definition 2.61 it is clear that u * v is 7"-periodic and thus we have
uxv € L2 (G,C™*™) as claimed in Definition 2.61. We have

per

! -1
el gezg‘N %(“(h)”(h 9) ©p(9)
- ﬁ Z Z(u(h) & P(h)) (’U(hilg) ® P(hilg))

geCN heg
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(Zu p(h)> (WL > w(g) ®p(g))

heg geCn
p)o(p)- O

|
)

2.3.4. The Cauchy-Born rule

The Cauchy-Born rule generalizes in a natural way to objective struc-
tures, see [41]. The generalization postulates that if an objective struc-
ture is subjected to a (small) linear macroscopic deformation, all atoms
will follow the deformation still forming an objective structure. Thus,
if the Cauchy-Born rule holds, for each linear macroscopic deformation,
there exists an appropriate group which describes the objective structure.

Definition 2.63. Suppose that L(S) = {I4,} or L(S) = {I4,,—1a4,}
Then, for all transformation matrices A € GL(dz) we define the group

Ga= {(B, (Igl g>b) ‘ (B,b) € g}.

It is easy to see that the group G is isomorphic to G4 and the natural
isomorphism is given by (B,b) — (B, (14, ® A)b). Moreover, the group
Ga is also a discrete subgroup of E(d).

Remark 2.64. (i) The center of O(ds) is {I4,, —1I4,}

(ii) Notice that the premise L(S) = {I4,} or L(S) = {la,,—14,} is
necessary since for an arbitrary G and A € GL(d3) the set

CIDIEEEY

is not a group in general. Also if we assume rank(A — I;,) = 1, the
set G4 is not a group in general, see Example 2.65.

Example 2.65. In this example we present a set S C R? and two discrete
groups G1, G2 < E(2) such that S is the orbit of the two groups, and such
that the group (G1) 4 is well-defined, but the term (Gz2) 4 is in general not
meaningful for A € GL(d3).

Let 2 = (1/2,1/2) € R? and S = x + Z2. Let t; = (Iz,e1), to = (I2,€2)
and gl = <t1,t2>. Let S1 = (127261), S9 = (12,262), p = (R(ﬂ'/?),O) and
Go = (s1,82,p). Then S =G; -z and S = Gy - x. For all A € GL(2) the
group (G1)a is well-defined, but for e.g. A = ({9) it is not possible to
define a group (Gz2) 4 in this way.
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2.3.5. A representation of quotient groups as semidirect
products

By Definition 2.13 for all m € My the group 7™ is a normal subgroup
of G, but in general there does not exist any group H < G such that
G =T™ xH, see Example 2.66. In this section we determine for m € M,
and appropriate N € mN a group H < G/T™ such that

G/TN =T /TN % H,

see Theorem 2.72. The proof is similar to the proof of the Schur-Zassen-
haus theorem, see, e.g., [3]. If G is a space group, for appropriate N € N
the existence of a group H such that G/T = T /TN x H is mentioned
in [7, p.299] and in [29, p. 376].

Example 2.66 (Symmorphic and nonsymmorphic space groups). Here
we give the definition of a symmorphic and a nonsymmorphic space group.
For both of these groups we give an example.

Let G be a space group and 7T its subgroup of translations. If there exists
a group H < G such that G =T x H, then G is said to be a symmorphic
space group, see e. g., [47, Section 9.1]. Otherwise, G is a nonsymmorphic
space group.

Let d = 2, t; = (Is,e1), to = (Is,€2), id = (15,0), p1 = ((§ % ),0) and

p2=((5%),(%)). The space group

{tp|t € (t1,t2),p € {id,p1}} < E(2)

is symmorphic and equal to 7 x H with 7 = (t1,t2) and H = (p1). The
space group

{tp|t € (ti,t2),p € {id, p2} } < E(2)
is nonsymmorphic, since it does not contain any element of order 2, but
the order of the quotient group of the space group by its subgroup of all
translations is 2.

Definition 2.67. Let 7: L(S) — 7(S) be a map such that (P,7(P)) € S
for all P € L(S). We define the map

7: L(8) x L(S) = 7(Ts)
(P, Q) = 7(P) + PT(Q) — 7(PQ).
Furthermore, for all n € N coprime to |L(S)| we define the set

P = {(P,%(P) —an) Y. P, Q)) ’P € L(S)} cs,

QEeL(S)
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where a(n) = max{a € {0,—1,...} | 3b € Z such that @|L(S)|+bn =1}.
For all n € N coprime to |L(S)| let P(™ C G be such that the map

P 5 p
g —m(g)

is bijective, where m: G — S is the natural surjective homomorphism.

Remark 2.68. For all P,Q € L(S) it holds

and thus, the map 7 is well-defined.
If n =1, then a(n) = 0 and Pén) ={(P,7(P))| P € L(S)}.

Lemma 2.69. For alln € N coprime to |L(S)| and for all N € (nN)NM,
it holds

T"FP™ <G and TN «T"FP™.
Proof. Let n € N be coprime to |L(S)].
First, we prove that 7&”7{&70 is a subgroup of S. Let t,s € T3 and
p,q € P(n). We have to show that tp(sq)~! € T”P(n). Clearly, it
holds tp(sq)’1 = tpg ts Y (pg~!)"'pg~!. Since ’T" N S we have that
(pg1)s H(pg~)~' € T&, and hence, it suffices to show that pg~! €
ToPI . Let P = L(p), Q = L(g) and R = PQ~' € L(S). Let a =
max{a € {0,-1,...}|3b € Z such that a|L(S)| + bn = 1} and b € Z
such that a|L(S)| + bn = 1. We compute

= (Pir)-a ¥ Ars)(Q -0 @

SEL(S)

+ta Y QT 5))

SeL(S)
— (R7(P) - PQHQ 0 3 (1(RS) - PQT(Q.5))
SeL(S)
— (RA® - 7(PQ Q) 0 (7(RS) - PQT(Q.5))
SEL(S)

_ (R,%(R) ~ (alL(S)| + b)7(PQ ™, Q)

0 Y (RS- PQ(Q.5)

SEL(S)
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= (trr@) " (7
o Y 6PQQ) +H(RS) - PO rQ.9)))

SeL(S)

~ (1 r(r@) " (7
—a Y (F(PQ')-#(PS)+ PQl%(QS))) :

SeL(S)

We use that > gcr(s) T(S) = Yger(s) T(I'S) for all T € L(S).

p = (1,7 0,@) " (RoAR)

—a Y (FPQH-F#PQ'S) +PQ1%<S>>>

SeL(S)

= (Idzﬂi(Ra Q))_bn (R,?(R) —a Z 7(R, S)) e Tnfp(n).

SEL(S)

Thus, we have ’fglpén) <8S.

Let 7 be the natural surjective homomorphism from G to S with kernel
F. It holds 7~ (7T2PY") = T"FP™ and thus, T"FP™ is a subgroup
of G.

Now let N € (nN) N M. Since n divides N, we have TN ¢ T*FP™)
Since N € My, we have TN « T FP(), O

Recall Definition 2.35.
Remark 2.70. Let n € N be coprime to |L(S)|. Let m € My, N = nm and
ti,...,tq, € T™ such that m({t1,...,tq,}) generates 7, where m: TF —
Ts is the natural surjective homomorphism. Then, the map
{0,....,m—1}% x Fx P™ o (T"FP™)y
(1, o), frp) = 87ty fpT
is bijective.

The following lemma characterizes the elements of the finite groups Gy,
(T"F)n and (T™)y for appropriate n,m, N € N.
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Lemma 2.71. Let ty,...,tq, € T such that the set w({t1,...,td,}) gen-
erates Ts, where m: TF — Ts is the natural surjective homomorphism.
For all N € My it holds

gN: {t;ll'--tsjzprN’nlv"'and‘z 6{077N71}7f€f7p€7)(1)}

and particularly |Gn| = N%|F||L(S)|.
For alln € N and N € (nN) N My it holds

(T"F)n = {t?nl.,.t:;:dszN‘n17...7nd2 € {O,...,N/TL*l},fEf}

and particularly |(T"F)n| = (N/n)%|F|. Moreover, for alln € N and
N € (nN) N My it holds (T"F)n <Gn.
For all m € My and N € mN it holds

(T = {trm =T [,y €40, N/m =1},

(T™) N is a subgroup of the center of (TF)n and particularly |(T™)n| =
(N/m)®%.

Proof. Since P(V) is a representation set of G /7 F, the map T x F xP1) —
G, (t, f,p) — tfp is bijective. The assertions are clear by Lemma 2.11,
Theorem 2.17 and Lemma 2.12, Proposition 2.15. O

The following theorem characterizes the group Gy for appropriate N € N.

Theorem 2.72. Let m € My. Let n € N be coprime to m and |L(S)].
Let N =nm. Then, we have

gN — (,TW)N « (Tn]:zp(n))N
and (T™)n is isomorphic to 7.92.

Proof. Let m € My. Let n € N be coprime to m and |L(S)|. Let N = nm.
By Theorem 2.17 we have 7™ <G and TV <G, and by Lemma 2.12 we
have 7V «7™. Hence, we have

(Tm>N<gN. (29)

By Lemma 2.12 the group 7™ is isomorphic to Z and thus, (7™)y is
isomorphic to Z%. By Lemma 2.69 we have

(T"FP™)n < G (2.10)
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For all N € N and # < S such that 7" is a subgroup of H, we denote
HN = ’H/IZSN

Let m: Gy — Sy be the natural surjective homomorphism with kernel
{gT" |g € F}. We have

T((T™)n N (T"FPM™)x) € n((T™)w) N (T FP™) )

= (T&")n N (TEPS )
=(Ts")n N (TS )N
= {id}, (2.11)

where in the third step we used that for all p € Pgl) such that L(p) = I,
we have p € 7¢ and in the last step we used that the numbers n?
and m® are coprime, |(T&")n| = n?2, |(T&)n| = m? and Lagrange’s

theorem. By (2.11) and since |(7m), is injective, we have

(T™)n N (T FP™)y = {id}. (2.12)
We have
G| = [ker(m)||(Gn)| = HgT™ | g € FHISn| = | FIIL(S)IN®, (2.13)
see Lemma 2.71, and
(T FP™)n| = [ker(r| (70 ppo I (T FPU) x|

= |FITEPE ) n| = |FIPS(TE )] = |f||L<s>v(nd2 |
2.14

see Remark 2.70. By (2.13), (2.14) and since (7™)y is isomorphic to
742 we have

Gx | = [(T™)WII(T"FP™) . (2.15)
By (2.9), (2.10), (2.12) and (2.15) we have
Gy = (T™)n % (T"FPM™)y. O

Corollary 2.73. Let m € My, n € N, n = aim|L(S)| + 1 and N = nm.
Then we have

P — {( )+am Y T >’P6L(8)}

QeL(S)
and

Gy = (TM)n % (T"FP™) N
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Proof. Let m € My, i € N, n = fim|L(S)|4+1 and N = nm. In particular,
n is coprime to m and |L(S)|. We have

max{a € {0,—1,...} | 3b € Z such that a|L(S)| +bn =1}
=max{a € {0,—1,...} | 3b € N such that (@+ bam)|L(S)|+b=1}

= —nm

and hence,
P = {(P,%(P) +am Y T(RQ)) ’P € L(S)}~
QeEL(S)

By Theorem 2.72 we have Gy = (T™)n x (T"FP™)y. O

Corollary 2.74. Suppose that G is a space group. Let N € N be coprime
to |L(G)|. Then we have

Gy =Tn x {gT" |g € PM}.

Proof. Let G be a space group. We have F = {id} and My = N. For all
N € N coprime to |L(G)|, we have (TNPWM) /TN = {¢TN |g € P(N)}
Thus, Theorem 2.72 implies the assertion.

Corollary 2.75. Suppose that G is a space group. Letn € N and N =
n|L(G)| + 1. Then it holds

PN = {(P,%(P) +n Y f(P,Q)) ‘P € L(g)}

QeL(9)
and
Gn =Tn @ {gTN [g € PN},
Proof. This is clear by Corollary 2.73 and Corollary 2.74. O

Corollary 2.76. Suppose that G = TF. Let m € My and n € N be
coprime. Let N =mnm. Then it holds

OGN =(T")n x (T"F)n

Proof. Suppose that G = TF. Let m € My and n € N be coprime. We
have § = Ts and L(S) = {I4,}. Without loss of generality we assume
that 7 = 0. We have 7 = 0 and P(n) = {id}. Without loss of generality
we assume that P = {id}. By Theorem 2.72, Lemma 2.11(ii) and
Proposition 2.15 we have Gy = (T™)n x (T"F)n- O
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2.4. Orbits of discrete subgroups of the
Euclidean group

James [41] defined an objective atomic structure which is an orbit of a
point under the action of a discrete subgroup of E(d), see [42, Proposition
3.14]. In this thesis we consider only orbits where the stabilizer subgroup
is trivial and thus we have a natural bijection between the discrete group
and the atoms.

Definition 2.77. We call a subset S of R% a general configuration if
there exist a discrete group G < E(d) and a point € R? such that the
map G — S, g — ¢ - x is bijective.

Remark 2.78. (i) For each discrete group G < E(d) there exists a point
x € R? such that the map G — R?, g +— ¢ -z is injective, see,
e.g., [18, Appendix A.3]. In particular, the set G - x is a general
configuration.

(ii) The representation of a general configuration by a discrete sub-
group of E(d) and a point in R? is not unique, see Example 2.79.
Moreover, the orbit of a point in R? under the action of a discrete
subgroup of E(d) need not be a general configuration, see Exam-
ple 2.80.

Example 2.79. We present an example showing that in general for a
given general configuration S C R? there exist discrete groups Gi,Gs <
E(d) and a point z € R? such that the maps G; — S, g — g -z and
Go — S, g — g -z are bijective but G; and G- are not isomorphic. Let
S = {%e1,*es} CR% G = <(R(7r/2),0)> < E(2),

(0 D )o))<re

and z = e; € R%2. The group G, is the Klein four-group and thus, G;
and G are not isomorphic. However, the maps G; — S, g — ¢ - = and
Go — S, g — g - x are bijective.

Example 2.80. In this example we present an orbit S of a point in R?
under the action of a discrete subgroup of E(3) which is not a general
configuration.

Let be given a regular icosahedron centered at the origin. Let S be the
set of the 30 centers of the edges of the icosahedron (i.e. S is the set
of the vertices of the rectified icosahedron and moreover, S is the set
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of the vertices of a icosidodecahedron). The rotation group Z < SO(3)
of the icosahedron has order 60, see, e.g., [36, Section 2.4] and we have
S = (T x{03}) - zo for every point zo € S. Now we suppose that there
exist a discrete group G < E(3) and a point x € R3 such that the map
G — S, g — g-z is injective. Then we have |G| = |S| = 30. Moreover, the
group G is isomorphic to a finite subgroup of O(3), see, e. g., [47, Section
4.12]. The finite subgroups of O(3) are classified, see, e. g., [36, Theorem
2.5.2], and since every discrete subgroup of O(3) of order 30 contains an
element of order 15, the group G contains an element g of order 15. Since
the order of g is odd, we have L(g) € SO(3), i.e. g is a rotation. Thus,
the set S contains 15 points which lie in the same plane. This implies
that S cannot be the orbit of G, and we have a contradiction.

Lemma 2.81. Let S C R? be a general configuration. Then for all
a € E(d) the set {a-x|x € S} is also a general configuration.

Proof. Let S C RY be a general configuration. There exist some discrete
group G < E(d) and xg € R? such that the map

g— S
gr—g-xp

is bijective. Then, for every a € E(d) the map

aGa ™t = {a-z|z € S}

g g-(a-zo)
is bijective and thus, the set {a-x |z € S} is a general configuration. [
The following definition can be found in, e. g., [59, p. 14].
Definition 2.82. For all A C R" we define
dim(A) := dim(aff(A)),
where aff(A) is the affine hull of A.
The following lemma is clear by the above definition.

Lemma 2.83. For all A C R? and x¢ € A it holds

dim(A) = dim(span({z — zo |z € A})).
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Lemma 2.84. Let G < E(d) be discrete and xo € R? such that the map
G — R g g- g is injective. Let dog = dim(G - xg). Then there
exists some a € E(d) such that for the discrete group G' = aGa™' and
xhH = a-xq it holds

aﬁ(g/ : '7;6) = {Od*daff} x Ré%,
The map G' — R%, g+ g-x} is injective and we have G' -z} = a- (G- o).

Proof. Let G < E(d) be discrete and xo € R? such that the map G — R?,
g — g - xo is injective. Let dag = dim(G - zp). There exists some dug-
dimensional vector space V' such that aff(G - z9) = xo + V. There exists
some A € O(d) such that {Az |z € V} = {0g_g,,} x R%T. The choice
a = (A, —Azg) € E(d) implies the assertion. O

Lemma 2.85. Let G < E(d) be discrete and xg € R? such that aff(G -
29) = {04_q.s} X R%f where dog = dim(aff(G - ). Then we have
G < O(d — dagt) ® E(dag).

Proof. Let G < E(d) be discrete and xp € R? such that V = {04_4,,} X
Rt where V = aff(G - z0) and dag = dim(aff(G - zo)). Let g € G. We
define the map ¢: RY — R%, 2+ L(g)x.

First we show that V is invariant under ¢. Let « € V. Since V = aff(G -
xg) — xo, there exist some n € N, z1,...,2, € G-x9 and a1,...,a, € R
such that z = >0 | a;z; and Y. | a; = 0. It holds

L(g)z =Y oiL(g)wi = Y _ai(g-a;) € V.
i=1 i=1
Thus we have {L(g)Z|Z € V} C V. Since L(g) is invertible, it holds
{Lg)z|2€V}=V.
Since L(g) is orthogonal, also the complement V+ = R4~ x {0, _} is
invariant under . This implies L(g) € O(d1) @ O(dz). It holds 7(g) =
g-xo— L(g)xg € V and thus, g € O(d1) ® E(d2). O

Lemma 2.86. Let G < E(d) be discrete and xo € R? such that the map
G —RY g g-ag is injective and aff(G - 29) = {0g_d,, } X R%% where
dog = dim(G - x0). Let G' = {I4—q,, D g|lg € E(d2),FA € O(dy) : Adg €
G}

Then G’ is a discrete subgroup of E(d), the map

g—¢
A®g— T4 q,Dyg if A€ O(d —dat), g € E(duagt) and A g€ G
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is an isomorphism, G - xy = G' - xo and the map G — R%, g — g - xq is
injective.

Proof. Let G < E(d) be discrete and xo € R? such that the map G — R?,
g+ g - xo is injective and aff(G - zo) = {0g_g.,} X R%F where d.g =
dim(G - zp). By Lemma 2.85 we have § < O(d — dag) @ E(dag). Let
G ={li—a.; ®Dglg € E(dz),3A € O(dy) : A® g € G}. We define the

map

p: GG
ADg—Ig g, Dg HA€O(d—dug),g €E(dagr) and Ad g € G.

It is clear that ¢ is a surjective homomorphism. Since z¢ € {0g—_d,,} X
R%t for all g € G it holds g - z9 = @(g) - xo. Particularly, we have
G-x9 =G -xo. Since the map G — R%, g — ¢ - x¢ is injective, the map
¢ is injective and thus, an isomorphism. Since the map G’ — G’ - z¢,
g — g - g is a homeomorphism and G’ - xq is discrete, G’ is discrete. [

Remark 2.87. (i) Let G < E(d) be discrete, zo € R% and A = aff(G-x¢).
For all g € G it holds {g- x|z € A} = A.

(ii) Let G < E(d) be discrete and zg € R%. Let V be the vector space
such that aff (G-zo) = xo+V. Then for all g € G it holds {L(g)x |z €
Vi=V.



3. Seminorms on the vector
space of all periodic
displacements

The main results of this chapter are Theorem 3.34, Theorem 3.37 and
Theorem 3.40.

We use the following notation. Let d, dy, d2, G and T be as in Defini-
tion 2.6, My as in Definition 2.13 and Cy as in Definition 2.50 for all
N € My. Let zy € R? be such that the map G — R%, g — ¢ - g is in-
jective. Let dug denote the dimension dim(G - xg). Moreover we suppose
that

aff(G - x0) = {0g_q,, } x R%,

which can be achieved by a coordinate transformation, see Lemma 2.84.

3.1. Motivation of the model and the
seminorms

In the physical model the dimension d is equal to 3 and there are atoms
at the points G-xg. Since the map G — R%, g — g-xg is injective, we have
a canonical bijection between G and the atoms. We displace the atoms
a little bit and describe the small displacement by a function u: G — R?
such that the atoms are now at the points

(vu(9))geg = (g - (xo +u(9)))geg-

If u = 0, then the atoms are not displaced. If there exists some a € R?
such that L(g)u(g) = a for all g € G, then we have a translation of the
atoms in the physical model. If there exists some R € SO(d) such that
L(g)u(g) = (R —I4)(g - o) for all g € G, then we have a rotation of the
atoms about the origin in the physical model.

Let R be a finite appropriate subset of G. Now we want to define a
seminorm | - ||g on the vector space of all appropriate displacements w,
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which quantifies the size of v, 'modulo local isometries’ Let u: G — R4
be TN -periodic for some N € My. We want to define the seminorm such
that

ull = ~ <|Ctv 3 dist? (vu\gn, {(a ~(h - 0))hegr ’ ac E(d)}));,

geCn

(3.1)

where dist is the induced metric of the Euclidean norm on (R%)®. For
every g € Cy we have

dist (vu|g73, {(a “(h-20))hegr ‘ a € E(d)})
= dist(((9h) - (w0 + u(9h))) e { (@h) - 20) e [ € B } )

- dist((u(gh))hen, {(L(h)T((ah) 20— h-70))n ‘ ac E(d)}).
(3.2)

Let U C E(d) be a sufficiently small open neighborhood of id. Then the
set

{(L(h)T((ah) 20— h-70)),n ‘ ac U}
is a manifold and its tangent space at the point 0 € (R9)® is
Uio(R) = {(L(h)T(b +S(h-20))),cr ‘ beR: S e Skew(d)},

see Proposition 4.19. Since we consider only small displacements u ~ 0,
by (3.2) and Taylor’s theorem we have

dist (Uu|g7?,7 {(a “(h-20))hegr ‘ a € E(d)}) ~ dist(u(g - )|r, Uiso(R))-
(3.3)
By (3.1) and (3.3) we define the seminorm || - ||z by

lull = (|C1N| 3 distz(u<g~>R,Uiso<R>>)2,

geCn

see Definition 3.1 for the precise definition of the seminorm || - ||z.

3.2. The seminorm || - ||»

The main result of this section is Theorem 3.34.
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Definition 3.1. We define the vector spaces
Uper,c == L32.(G,CPY) = {u: G — C*|u is periodic}

and
Uper := {u: G — R%|u is periodic} C Uper.c.

For all R C G we define the vector spaces
Utrans(R) 1= {u: R — R ‘ JaeRiVgeR: L(g)u(g) = a},
Uror(R) := {u: R — R \ 35 € Skew(d) Vg € R : L(g)u(g) =

S(g -0 — 170)}
and
Uiso(R) := Utrans(R) + Urot (R).
For all finite sets R C G we define the norm
-1l {u: R = R — o, 00)

wes (ZRu |2)

and the function

I ll=: Uper = [0,00)

1 2 . . . .
~ (m Z 1700 () (g - )|R)||2) *if wis TN-periodic,
geCn

where 7y, (r) is the orthogonal projection on {u: R — R?} with respect
to the norm || - || with kernel Uiso(R).

Remark 3.2. (i) The map ({u: R — R4}, || - ||) = (CIRL|-|)), u —
(u(g))ger is an isomorphism for all finite sets R C G. Thus there
is no ambiguity between the above definition and Definition 2.45.

(ii) The definition of || - ||z is independent of the choice of Cn for all
N € M.

(iii) One could also consider the vector space
{u: R — R4 ‘ 35 € Skew(d) Vg € R : L(g)u(g) = S(g - xo)},

instead of Uyt (R) since its sum with Ugyans(R) is also Uiso(R). Due
to technical reasons we prefer Uyt (R).
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For the definition of a seminorm see Definition C.1.
Lemma 3.3. For all finite sets R C G the function || - ||z is a seminorm.

Proof. Let R C G be finite, V = {v: G — {w: R — R%} |v is periodic}.
We define the maps

f1: Uper -V
U (v: G—{w:R— ]Rd}7 g inSO(R)(u(g . )|R))
and
fg: V — [0, OO)
1 3
v ( Z ||U(g)||2> if N € My and v is T™-periodic.
Cn|
geCn
It holds || - [|[g = f2 o f1. Since f; is linear and f5 is a norm, the map
|l - |z is a seminorm. O

Remark 3.4. For all finite sets R C G the seminorm || - | satisfies the
parallelogram law, i. e. the seminorm is induced by a positive semidefinite
symmetric bilinear form.

3.2.1. Equivalence of the seminorms || - ||z, and | - ||z,
for appropriate R, R, C G

Definition 3.5. We say R C G has Property 1 if R is finite, id € R and
aff (R - xg) = aff (G - xp).

We say R C G has Property 2 if R is finite and there exist two sets
R',R" C G such that id € R', R’ generates G, R has Property 1 and
R'R" CR.

If R C G has Property 2, then R has also Property 1.

Lemma 3.6. Suppose that R C G has Property 1. Then there exists
some A € R&=#XIRl of rank dag such that

Og—g. v
(9 20— 0)ger = ( d ”ijf’m).
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Proof. Suppose that R C G has Property 1. Since G - z¢g C {04—a,,} X
R%#  there exists some A € R%#*IRl guch that

(g w0 — xo)geR = (2)

It holds
dim(span({g-zo—x0 | g € R})) = dim(aff (R-z¢)) = dim(aff (G-z¢)) = dag
and thus, rank(A) = dag. O
Definition 3.7. For all finite sets R C G we define the function
pr: {u: R = R4 — [0, 00)
w7, Ry (W)l
where 7y, (r) is as above.

Lemma 3.8. For all finite sets R C G the function py is a seminorm
and its kernel is Uiso(R).

Proof. This is clear. O

Definition 3.9. For all finite sets R1, R2, Rz C G such that R; C R3Ro,
we define the function

IR, Ry Rs " {u: Ry — Rd} — [0, 00)

U inf <Z PR, (v |R2)> .

v: RaRa—R?
R
vlry=u 9eTs

Lemma 3.10. The infimum in Definition 3.9 is a minimum, i. e. for all
finite sets R1,Ra, R3 C G such that R1 C R3Ra and for all u: Ry — R
there exists some v: R3Rs — R such that v|lr, =u and

1
2
IRy Ry Rs (U ( Z pR2 |R2)> :

gERs3

Proof. Let R1,R2,R3 C G be finite such that R; C R3R2. We define
the liner map

Ay {v: RsRy — R4} — {w: Ry — R}

U= 7TUiso(’Rz)(U(g : )|R2)
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for all g € Ro, where 7y, (r,) is as above, and the linear map

A: {v: RsRy = R4} — {w: Ry — R4} Re

v (Agv)gers-
For all g € R3 and v: RgRe — R we have

Pr, (v(g - )Ir,) = [Agv]

and
1

(3 haleto ) = lol.

gERs3

Thus, for all u: Ri — R? there exists some v: R3Rs — R? such that
U|R1 =u a’nd qu,RQ,Rg (U) = ||A'U|| D

Lemma 3.11. Let R1,R2,R3 C G be finite such that Ry C R3Rs. Then
the function qr, », », S @ seminorm.

Proof. Let R1,R2,R3 C G be finite such that Ry C R3R2. We have
to show that ¢p, g, r, is subadditive. Let A: {v: RgRy — R} —
{w: Ry — R4}Rs be the map as in the proof of Lemma 3.10. For all
U1, uz: R1 — RY we have

IR, RyRs (U1 + u2) = inf{||Av|| !v: R3Ro — R v|r, = uy + us}

= inf{||Av1 + Aws| {vl,vgz RsRa — Rd,v1|R1 =uy,v2|R, = ug}

< inf{||Av1|| + || Avs] "02,1}22 R3Ry — R vi|r, = u1,va|r, = UQ}

= (R, Ry Rs (U1) T AR, Ry RS (U2)- O
For the definition of the equivalence of two seminorms see Definition C.2
Lemma 3.12. Suppose that Ry C G has Property 1 and Ro C G has

Property 2. Then there exists a finite set R3 C G such that Ry C R3Ro
and the seminorms pp, and qp, p, r, are equivalent.

Proof. Suppose that Ry C G has Property 1 and Ry C G has Property 2.
By Lemma 3.8 the map pg, is a seminorm with kernel Uj,(R1). By
Lemma 3.11 for all finite sets R3 C G such that Ry C R3R> the function
dR, R, R, 1S @ seminorm. Hence, by Lemma C.4 it suffices to show that
there exists a finite set Rz C G with R1 C R3R2 and

ker(QRl,Rz,Rg) = Uiso(R1).
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First we show that Ujso(R1) C ker(qu’R%Rs) for all finite sets Rs C G
with Ry C RgRQ. Let Rg C G with Ri1 C RgRQ. Let u € Uiso(R1)~
There exist some a € R and S € Skew(d) such that
L(g)u(g) = a+ S(g - zo — x0) for all g € R4.
We define v € Uiso(RgRQ) by
L(g)v(g) =a+ S(g-x0 — x0) for all g € R3Rs.

We have v|g, = u and v(g-)|r, € Uiso(R2) for all ¢ € R3. Using
Lemma 3.8 it follows

2 .
q u) = inf Z P2 R
Rl,Rz,Rg( ) w:R3R2~>Rd ER Rg | 2)
w|72 =u g9 3
Z pR2 |R2)
gERs3
=0.

Hence, we have Uiso(R1) C ker(qp, », r,)-

Now we show that there exists some R3 C G such that ker(¢z, z, r,) C
Uiso(R1). By Property 2 of Ry there exist finite sets R5, R, C G such
that id € RY, RS, generates G, R} has Property 1 and

RLRY C R

Since R/, generates G, there exists some ny € N such that

Ry C {id} U U{gl...gk‘gh...,gk GRIQU(R’Q)_l}.
k=1

Let

1o

Ry = {id} U U{g1.-.gk ‘917~-.,gk EREU(RQ)_1}~
k=1

Let u € ker(qg, »,x,)- By Lemma 3.10 there exists some v: RgRy — R?
such that v|r, = u and pp,(v(g-)lr,) = 0 for all g € R3. Hence, for all
g € R3 there exist some a(g) € R? and S(g) € Skew(d) such that

L(h)v(gh) = a(g) + S(g)(h - zg — x0) for all h € Rs. (3.4)
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Since G- 29 C {04—d,,} X R%, we have h-x¢ —zg € {04_d,, } X R% for
all h € Ry. Hence, for all g € R3 we may assume

0 S (9))
S =
(9) <—51 (9)7 Sal9)
for some Sy (g) € R(@—dam)*dait and Sy(g) € Skew(dag). We prove induc-

tively that for n =0,1,...,ng for all g € {id}UU;_,{91--- 9k |91, -, 9k
€ RHU (RS) ™1} it holds

L(g)a(g) = a(id) + S(id)(g - o — x0) and S(g) = L(g)"S(id)L(g).
(3.5)
For n = 0 the induction hypothesis is true.
We assume the induction hypothesis holds for arbitrary but fixed 0 <

n < no. Let g € {id} UUZzl{gl--yk‘gl,---yk € RyU (72’2)‘1} and
r € RhHU (R
Case 1: r € R},

Since g € R3 and rRY C Rao, by (3.4) we have

L(rh)v(grh) = a(g) + S(g)((rh) - 7o — xo)  for all h € RY. (3.6)
Since gr € R3 and RY C Rq, by (3.4) we have
L(h)v(grh) = a(gr) + S(gr)(h - o — x0) for all h € RY. (3.7)
By (3.6) and (3.7) we have
L(r)a(gr) + L(r)S(gr)(h- 2o — o) = a(g) + S(g)((rh) - zo — z0) (3.8)
for all h € RY. Since id € Ry, by (3.8) we have
L(r)a(gr) = alg) + S(g)(r - 70 — o) (3.9)
and with the induction hypothesis follows

L(gr)a(gr) = a(id) + S(id)(g - xo — x0) + S(id)L(g)(r - £y — x0)
= a(id) + S(id)((gr) - ®o — o).

By (3.8) and (3.9) we have

L(r)S(gr)(h -z — x0) = S(g)((rh) - w0 — 7 - x0)
= S(g)L(r)(h - xo — x0) (3.10)
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for all h € RY. By Lemma 3.6 there exists some A € R%&#xIRz| of
rank d,g such that

O "
(h 20— T0)nery = ( daf;l“% |>.

By (3.10) and the induction hypothesis we have

(star) - Lar) st L) (§) =0, (3.11)

By Lemma 2.85 there exist some By, € O(d — dag) and Cy, € O(dag)
such that L(gr) = By, @ Cyr. Equation (3.11) is equivalent to

((51 (gr) — BgTFT.Sl(z’d)C’g,)A> i
(Sg(g’l") - CgrS2(Zd)C(]7‘)A -

Since the rank of A is equal to the number of its rows, we have
Si(gr) = B].S1(id)Cy, and Sy(gr) = C,,S5(id)Cy, which is equiv-
alent to S(gr) = L(gr)TS(id)L(gr).

Case 2: r~1 € R}.
Since g € R3 and RYy C Ra, by (3.4) we have

L(h)v(gh) = a(g) + S(g)(h - o — o) forall h e RY.  (3.12)
Since gr € R3 and 1 RY C Ra, by (3.4) we have
L(r—*h)v(gh) = a(gr) + S(gr)((r—'h) - 2o — 20) for all h € RS.
(3.13)
By (3.12) and (3.13) we have
a(gr) + S(gr)((r~*h) - zo — o) = L(r)"alg) + L(r)"S(g)(h - w0 — w0)
for all h € RY. Since id € RY, by (3.14) we have 10
a(gr) + S(gr)(r~" - wo — o) = L(r)a(g). (3.15)
By (3.14) and (3.15) we have
S(gr)((r~"h)-xo —x0) = S(gr)(r~"-zo —x0) + L(r) " S(g) (h - 2o — o)
for all h € R}. This is equivalent to

S(QT)L(T>T(h ~xo — Tg) = L(T)TS(Q)(h T — o) (3.16)
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for all h € RY. By Lemma 3.6 there exists some A € R%&sxIRz| of
rank d,g such that

O ’”
(h - To — xo)hERg _ ( dafiilRﬂ).

By (3.16) and the induction hypothesis we have

(stan) - Ll s Leze)(§) =0 @D

By Lemma 2.85 there exist B, By, € O(d—dag) and C,., Cyr € O(dag)
such that L(r) = B, & C, and L(gr) = By @ Cyr. Equation (3.17) is
equivalent to

(S1(g7) = B, S1(id)Cor)CTAY _ o
((Sz(g) cl Sa(id )C’gr)C'TTA> -

Since C. is invertible and the rank of A is equal to the number of
its rows, we have S1(gr) = B;,.S1(id)Cy, and Sy(gr) = C],.S2(id)Cy,
which is equivalent to S(gr) = L(gr)"S(id)L(gr). As S(gr) = L(gr)"
S(id)L(gr), we have by (3.15) and the induction hypothesis that

L(gr)a(gr) = L(g)a(g) — L(gr)S(gr)(r~" - z0 — o)
= a(id) + S(id)(g - xo — x0) — S(id)L(gr)(r~ - zo — x0)
= a(id) + S(id)((gr) - w0 — o).

Since Rq C R3 and v|g, = u, we have by (3.4) and (3.5) that
L(g)u(g) = L(g)v(g) = L(g)a(g) = a(id)+S(id)(g-zo—z0o) for all g € Ry
and thus, u € Ujso(R1). O

Theorem 3.13. Suppose that R1,Ro C G have Property 2. Then the
two seminorms || - ||r, and || - ||z, are equivalent.

Proof. Suppose that R1,Ro C G have Property 2. It is sufficient to
show that there exists a constant C' > 0 such that |- ||z, < C| - |»,-
Property 2 implies Property 1 and thus, by Lemma 3.12 there exists a
finite set R3 C G such that Ry C R3R2 and some C' > 0 with pp <
Cqr, r, rs- L€t u € Uper. There exists some N € My such that u is
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TN-periodic. We have

geCn
|C ‘ Z q’Rl,Rg,’R3 (9-)Iry)
geCn
DRI SN
| N‘ gECN v: R3Ro—R? GERS

v|r, =u(g)|r,

ICN\ >N vk, (ulgd)Ir,)

geCN GER3

Z Z pRz lr.)

QGRGQGCNQ
= CQ|R3|HUH’R2>

Ir.)
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where we used that Cn§ is a representation set of G/T™ for all § € R

in the last step. Hence, we have || - |[r, < C|Rs|z]| - |z,

O

Remark 3.14. In Theorem 3.13 the premise that R; and R9 have Prop-
erty 2 cannot be weakened to the premise that R; and R, are generating

sets of G and have Property 1, see Example 3.33.

3.2.2. The seminorms || - ||, o, || [[rv @nd | - [z v

Definition 3.15. For all R C G we define the vector spaces

Urot0(R) = {u: R — R ‘ 35S € Skewo.q, (d) Vg € R : L(g)u(g)

S(g-wo— Io)}
C Urot(R)
and

Uiso,O(R) = Utrans (R) + Urot,O(R) C Uiso (R)a
where

S S

Skewo a, (d) := {(_ oT 02) ‘sl € Skew(d;), Ss € Rledz} C Skew(d).
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Definition 3.16. For all u € U, and finite sets R C G we define the
discrete derivative
Veu: G — {v: R — R%}
g (Vru(g): R = R b — u(gh) — L(h)Tu(g)).
Remark 3.17. Let R C G be finite, u € Uper and v,: G — R g —
g - (xo + u(g)) which describes the position of the atoms in the physical

model, see Section 3.1. Then the relation between the derivative of v,
and the discrete derivative Vzu is given by

(valgh) = vu(9)) er = ((9h) - 70 = g+ 70 + Lgh) (Tru(9))(R) )

forall g € G.

If u € Uper is TN-periodic for some N € My and R C G is finite, then
also the discrete derivative Vgu is 7N -periodic.

heR

Definition 3.18. For all finite sets R C G we define the seminorms

I l1=.0: Uper = [0, 00)

( Z 7000 9= ) if u is 7N -periodic,

gEC

[ME

I 1=, v: Uper = [0, 00)

(|C | Z 170, r) (VrRU(g ))||2) °if wis TN-periodic,
geCn
and

|- [I=,v,0: Uper = [0,00)

1 1
u (m > HWUmo(n)(Vnu(g))Ilz) *if wis 7V-periodic,
N
geCn

where 7y ((R)s MU (R) and Ty, o(r) are the orthogonal projections
on {u: R — R4} with respect to the norm || - || with kernels Usso,0(R),
Urot (R) and Uyor,0(R), respectively.

Remark 3.19. (i) For all finite sets R C G, the proof that the functions
Il - =05 || - l=,v and || - |z, v,0 are seminorms is analogous to the
proof of Lemma 3.3.

(i) We have || - lr,v = || - [r\{ia}y,v and || - |=,v,0 = || - =\ {id},v,0 for
all finite sets R C G
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(iii) Let t; = (Ig,e;) for all ¢ = 1,...,d. If G = (t1,...,tq) and
R = {t1,...,tq}, then we have |7y, () (Vru(g))| = [[(Vru(g) +
(Vru(g))")/2| for all u € Upe, and g € G.

Proposition 3.20. Let R C G be finite and id € R. Then the semi-
norms || - [|r and || - ||r,v are equivalent and the seminorms || - ||r,0 and
Il - =, v,0 are equivalent.

Proof. Let R C G be finite, id € R and without loss of generality R #
{id}. Let u € Uper. There exists some N € My such that u is TV-
periodic. We have

lull%,v = |c | Y 70y (VRu(9) 1

geCn

|C | Z || U;go('R) )|R)H2

geCn
= |lull%
and thus, || |r.v > || - |lr. Let R = R\ {id}. For all g € Cy it holds
1700 (R) (ulg ')|R)H2

. . 2
- bleand SESll?ef\;v H( u(gh) —=b—S(h - a0 _xo))heRH

beRC SeSkew(d)
)
= inf (|b||2 + inf |(L(h)u(gh) —u(g) — b

beR4 SeSkew(d)
2)

R sednl ol (L(Ru(gh) - u(g) — b
)
> inf <|b||2+ 1 <1 inf |[(L(h)u(gh) — u(g)
~ beRd IR'|

2 SeSkew(d)
)

= inf (|u(g) —b|*+ inf [[(L(R)u(gh)—b

—S(h-zg—2x

0))h€72’

— S(h - To — o
> inf <|b||2 -
beRd

—Sh-zy—x

Diers

0)) her:

—S(h'xo—l'o 2

))he’R' o || (b)he’R’
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1
= g1t (VRu(@)] ?

)

where in the second to last step we used that ||v +w||? > ||v]|?/2 — ||w]|?
for all v,w: R’ — R%. Thus, we have

e = g 3 ety g )]

geCn

1 2
2 s v
= 2‘R/||CN| gGZCNHﬂ—Umt(R)( RU(Q))H

1 2
= WHUHR,V'

Hence, we have || - ||z, v < V2|[R/||| - [|»-

The proof of the equivalence of the seminorms | - ||gr,0 and | - [|z,v,0 is
analogous.
3.2.3. Equivalence of the seminorms | - ||z and |- ||,

The following lemma is well-known.

Lemma 3.21. There exists a constant ¢ > 0 such that for every n € N
it holds

Hac@yT—&-AH > c(”x@yTH + HAH) for all x,y € C"*, A € Skew(n, C).

Proof. Let z,y € C™ and A € Skew(n,C). Since C"*" = Sym(n,C) &
Skew(n,C) we have

Hx@yT—i—AHQZHl(ﬂc®yT+y®xT)H2
= HeoyT*+ 3 (Zw)
> ooy
If |[A]| < 2l © 7|, then
e @y + Al = Hx®yTH> (Hx®yTH+||A||)
It [ A]| > 2]}z © y"]|, then

lz@y" +A| > Al -|zey"|| > (H:c@yTH +[14])- O
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For the proof of Theorem 3.24 we need the following lemma.

Lemma 3.22. Letn €N, g € Ny and B1,...,8; € R. Then there exists
an integer N € N such that

max

q
max oo (sin(man).....sin(man) + 3 sin(m) By + m H 18]

k=1

foralla e C*, ay,...,a, €ER, By,...,B, € C"*™ and S € Skew(n,C).
q

Remark 3.23. If ¢ = 0, then the term Y i_, sin(mfy)By, is the empty
sum.

Proof. Tt suffices to prove that there exists a constant ¢ > 0 such that for
alln € N, g € Ny and f§1,..., 84 € R there exists an integer N € N such
that

max

q
e a® (sin(may), ... ,sin(man))+z sin(m,@k)Bk—FmSH > |||

k=1

for all a € C", au,...,an € R, By,..., B, € C"" and S € Skew(n,C)
due to the fact that for N=J2 1N we have

a ® (sin(may), ..., sin(may)) + Z sin(mp)Br + mS’H

max
me{l,...,N} k=1
> max Ha@(sm( ([%]al)),...,sin(m([llan
me{l ..... N

+ > sin(m([4164)) B + m(1119)|

Since

1 s
i,je{l,:..,n}
1<J
for all M = (m;;) € C"*", it suffices to prove the assertion for n = 2.
Let ¢ € Ng and 54,...,8, € R. Without loss of generality we assume
B1,...,8; € R\ (mQ): Let ng € N be such that no8; € 7Z for all
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ke {l,...,q} with 8; € 7Q. Then we have

max
me{l,...,noN}

a ® (sin(may),sin(mas)) + Z sin(mpy) By + mSH
k=1

> max

e a ® (sin(m(noay)), sin(m(noaz)))

+ Z sin(m(noBx )Bk+m(noS)H
/Bk%ﬂ@

forall N € N,a € C? aj,a2 € R, By,..., B, € C**?and S € Skew(2,C).
For all a > 0 we define the function

|“]a: R = [0,00)
x — dist(z, aZ).

Moreover, without loss of generality we may assume |8 — SBi]2r > 0 for
all k # [ and since

sin(mfB) = —sin(m(27 — 3))

also |8k + Bilax # 0 for all k # [. For the definition of a suitable integer
N € N and the following proof we define some positive constants. By
Lemma 3.21 there exists a constant ¢y, > 0 such that

lz @ y" + Sl > crllzll(ya] + ly21) + cr S]]

for all 7,y € C% and S € Skew(2,C). In particular, this inequality implies
the assertion for ¢ = 0. Hence we may assume g # 0, i.e. ¢ € N. Let

; n (3™
= min — T R
L et gy L 2R T 5 on
Y1FEY2
4(2 1 6 4 2 32nC
C1=(q7+), Co =2 and C3:max{ g+ , T 2}.
M1 p1 p1 01

By Kronecker’s approximation Theorem D.5, for all k € {1,...,q} there
exists an integer g such that 2C5 + 2 < ¢ and

1 1
‘ <

| Be 1
Uk ™ 1_37T03.
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2C 167C
lemax{[l“ﬂq,l—ﬁ-[ T 2—‘,(]1,..-,(](;}61&
Cr, 51

For all @ € R we define ()2, € R by {(a)2r} = [-7,7) N (e +27Z). We
have |(@)2r| = |a|2r. By Taylor’s Theorem we have for all «, 8 € R and
necN

sin(na) = sin(n(8+(a—08)2r)) = sin(nB)+n(a—23)ax cos(nf)+R(n, a, B)
where R(n, «, 3) is the remainder term. Let d2 > 0 be so small such that
IR(n, @, B)] < Lnla — Blaclcos(nB)| (3.18)

forall n € {1,..., N1}, @ € R with |a — B|ar < d2 and g € {0, 7, B1,.. .,
Bq}. Let

Let

1 24+1 2
03 = min{d1,d2}, p2= ((LP’) T and o= 9+3

2q+2 2T 125
Let
N =max{Ny,1+ [C4]} € N.

T 2 by bl 2x2
Now, let a = (a1,a2)' € C*, ay,as € R, By = (b};) b(1’3>) € C=*< for all
21 22

ke{l,...,q} and S = (9 ) € Skew(2,C). We denote

LHS = max
me{l,...,.N}

a ® (sin(may ), sin(mas)) + Zsm mpBr)By + mSH
k=1
Case 1: Vi € {1,2} : ((|ail2n < 02) V (Ja; — Tlar < 02)).
Case 1.1: 370 || Bill > Ci([lal[(|az]x + |azlx) + [IS]])-
Let i,j € {1,2} with Zz:1|b£—f)\ > 137 IIBkll. By the definition
of §; we have

. i i . 1= 7212
min ‘el’h _ el’Yz| > min w >
Y1,v2€{£B1,...,£Bq} Y1,72€{£pB1,...,£Bq} s

Y1FY2 Y17#Y2

o
™

By Turdn’s third Theorem D.6 there exists some v € {1,...,2¢}
such that

q
Z bk sm (vBk)

k=1

k
Z(lbg 71uﬁk I lb( : wﬁk)‘
2

k=1

>
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> Z|b(k)

q

> B -

We have

— lla @ (sin(vay), sin(vag))|| = [[v5]]

Z sin(v ) B

k=1

H1
e ZHBkII—2qHall(\a1Iﬂ+la2| ) —2q||S|

LHS >

k=1
> ||S]l-
Case 1.2: 3751 [|Brll < Cillall(lealx + lazlx) + [1S])-
We have
q
LHS > ||a ® (sin(Nyaq),sin(Nyas)) + N1.S|| — Zsin(Nlﬁk)Bk
k=1
q
> crlall(|sin(Nran)| + [sin(Nraz)[) + e N S| = Y| Bill
k=1
( . ) CLN
> 1||a||(|041|7r+|042\ )+ eS| - ZHBkH
k=1
CLN1
> =5 (lall(lanlx +lazl=) + IIS1) + *||5|| Z”BkH
CL
> = .
> Lis)

Case 2: Fie {1,2}, Ik € {1,...,q} : ((Jas — Br|axr < d2) V
(i + Brlax < 02)).
Without loss of generality let ¢ = 1 and k¥ = 1. Without loss of
generality we may assume |a3 — 51]2x < 2 since

a ® (sin(may),sin(maz)) = (—a) @ (sin(m(—aq)), sin(m(—az)))

for all m € N. 