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1. Introduction

In this thesis we consider a physical system made up of atoms which are
in a static mechanical equilibrium. Thus, we have zero temperature, i.e.,
each atom has zero velocity, and the net force on each atom is zero. The
atoms form an objective (atomic) structure like a lattice, graphene or
a nanotube. Objective structures are defined by means of group theory
which enables us to capitalize on their high symmetry. The atoms inter-
act via a potential, e.g., the Lennard-Jones potential, which implicitly
defines the configurational energy on the space of all periodic displace-
ments. We consider only small displacements; particularly we are in the
elasticity regime. The aim of this thesis is a theory of the (local) stability
of the objective structure in this atomistic model. Usually, stability is
defined by a second derivative test: An object at an equilibrium point is
called stable if the second derivative of the configurational energy (at the
equilibrium point) is coercive with respect to an appropriate seminorm.
In this thesis we study which seminorm is appropriate for this stability
condition. Further, we provide an efficient algorithm which checks the
stability of an objective structure for a given interaction potential. We
illustrate the algorithm by computing numerically the atomistic stability
region of a toy model and a nanotube. In order to justify our choice of the
seminorm, we also show that under certain reasonable assumptions, the
second derivative of the configurational energy is bounded with respect to
this seminorm. Thus, for a stable objective structure, the seminorm in-
duced by the second derivative of the configurational energy is equivalent
to our seminorm. Moreover, we show for a large class of objective struc-
tures as lattices and graphene that our second derivative test is indeed a
sufficient condition for a local minimum of the configurational energy.

If the atoms form a lattice, the theory and the algorithm is well-
understood, see, e.g., [40]. In this thesis we generalize the results from
lattices to objective (atomic) structures, i.e., we assume that the set
of positions of the atoms is equal to the orbit of a discrete subgroup
of the Euclidean group under a point of the Euclidean space. We also
assume that the stabilizer subgroup is trivial and thus we have a natural
bijection between the discrete group and the atoms. The main issues for
the generalization are the following:
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(i) For a lattice there exists only one appropriate seminorm up to
equivalence for the definition of stability. We show that for an
objective structure there generally exist two appropriate nonequiv-
alent seminorms: one for a stretched and one for a unstretched,
i.e., stress-free, objective structure. For this purpose, we prove a
discrete version of Korn’s inequality and the equivalence of different
seminorms for objective structures. If the objective structure is a
lattice, this inequality implies the equivalence of the two appropri-
ate seminorms.

(ii) For lattices it is well-known that their high symmetry implies that
the second derivative of the configurational energy can be block
diagonalized by means of Fourier analysis. We show that this gen-
eralizes to objective structures by means of harmonic analysis. The
crux move is that due to the high symmetry of the objective struc-
ture which we have mathematically specified by the group, the op-
erator associated with the second derivative of the configurational
energy is left-translation-invariant. Thus, by harmonic analysis, the
operator is a convolutional operator as well as a multiplier operator.
Analogously, this is also true for the bilinear form which induces the
appropriate seminorm. Roughly speaking, the Fourier transform si-
multaneously block diagonalizes the (infinite-dimensional) Hessian
matrix and the matrix associated with the seminorm. This enables
us to efficiently check the coerciveness of the second derivative of
the configurational energy and hence the stability of an objective
structure.

1.1. State of the art

The Cauchy-Born rule is a homogenization postulation to relate contin-
uum theory to atomistic theory, see, e.g., the survey article [27]. If for a
lattice the Cauchy-Born rule is valid, an elastic energy expression, more
precisely a continuum energy functional with the linearized Cauchy-Born
energy density, can be rigorously derived from an atomistic model as a
I-limit. This was first done in one dimension [14] and then generalized
to arbitrary dimensions [53, 16, 2, 12]. Also in plate theory, continuum
models have been rigorously derived by I'-convergence, see [32] for thick
films and [51, 52] for thin films. For sheets, plates, and rods, contin-
uum theories have also been derived with generalized Cauchy-Born rules;
see, e.g., [60] for a general overview, [6] for the exponential Cauchy-Born
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rule that takes into account curvature, and [25] for the Saint-Venant’s
principle for nanotubes.

For a given interaction potential, in general it is hard to check the
Cauchy-Born rule. Nevertheless, for a two-dimensional and for an ar-
bitrary-dimensional mass-spring model, the validity and failure of the
Cauchy-Born rule depending on its deformation has been proven in [33]
and in [21], respectively. Also for graphene [31] and nanotubes [30], the
validity of the Cauchy-Born rule has been rigorously proven.

There exist several definitions of stability which, in particular, pro-
vide a detailed analysis of the Cauchy-Born rule. The main difference
between these stability definitions is the space of the allowed perturba-
tions; see, e.g., [26]. For hard-loading devices which we consider in this
thesis, periodic boundary conditions and periodic perturbations are an
appropriate model, see [17]. As mentioned above, for lattices with pe-
riodic boundary conditions, the definition of stability in the atomistic
model by Hudson and Ortner [40] is natural. Their definition requires
that the second derivative is not only positive definite but also coer-
cive. Moreover, they rigorously derive an algorithm such that they can
numerically determine the stability region of a lattice. Based on this,
in [17] the authors discuss the notion of stability in detail and derive
the stability region and the failure of the Cauchy-Born rule analytically
in an example. In [46] the authors generalize results of [40] to multi-
lattices and they also discuss the equivalence class of the appropriate
norm.

An application of this atomistic stability condition is that under its as-
sumption, solutions of the equations of continuum elasticity with smooth
body forces are asymptotically approximated by the corresponding atom-
istic equilibrium configurations. For both the static and the dynamic
case, this has been proven for small displacements on a flat torus [24, 23],
for the full space problem with a far-field condition [48], and for pre-
scribed boundary values [17, 15].

In order to generalize the Cauchy-Born rule to a larger class of objects,
James [41] defines objective structures by means of discrete subgroups of
the Euclidean group. A characterization of the discrete subgroups of
the three-dimensional and of an arbitrary-dimensional Euclidean group
can be found in [18] and [3], respectively. In addition, the irreducible
representations of space groups are well-known, see, e.g., [11, 13, 56].
To examine stability information of objective structures, James says that
one should be able to do phonon analysis along the lines already done
for crystal lattices. In [1] this is done for a three-dimensional objective
structures which can be described by an abelian group.
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1.2. QOutline

In Chapter 2 we study discrete subgroups of the Euclidean group. More-
over, we define periodic functions on these subgroups and adapt well-
known theorems from harmonic analysis to our setting. In Section 2.1
we collect basic definitions and properties of the Euclidean group. In
Section 2.2 we state some well-known theorems about space groups. In
Section 2.3 we cite a characterization of discrete subgroups (of the Eu-
clidean group). In order to define periodic boundary conditions, we after-
wards present a series of normal subgroups for a given discrete subgroup,
see Theorem 2.17. In Subsection 2.3.1 we collect some definitions and
theorems of harmonic analysis like the definition of the dual space and
the definition of induced representations. Up to a negligible set, the dual
space of a discrete subgroup is equal to a set of certain induced repre-
sentations. In Subsection 2.3.2 we analyze these induced representations,
see Theorem 2.43. In Subsection 2.3.3 we define the inner product space
of all periodic functions. Then, we define the Fourier transform for both
periodic and absolutely summable functions and formulate well-known
theorems like the Plancherel formula for our setting. In Subsection 2.3.4
we generalize the Cauchy-Born rule to objective structures. Since we
are interested in the atomistic stability region, we also analyze the de-
pendence of the discrete group on the macroscopic deformation matrix.
In Subsection 2.3.5 we specify a series of normal subgroups for a given
discrete subgroup and represent the corresponding finite quotient groups
as semidirect products. The remainder of the thesis does not depend on
the results of this subsection. In Section 2.4 we describe an orbit of a
point under the action of the discrete subgroup by, for instance, its affine
dimension and a canonical coordinate system.

In Chapter 3 we define and examine the appropriate seminorms on
the space of all periodic displacements. The finite-dimensional kernel
of these seminorms corresponds to the isometries due to the invariance
of the configurational energy under isometries such as a translation. In
Section 3.1 we motivate the definition of the seminorm for the unstretched
case. In particular, we introduce and linearize our physical model; e.g.,
rotations are approximated by infinitesimal rotations. In Section 3.2 we
study this seminorm, prove its equivalence to similar seminorms and show
a discrete version of Korn’s inequality. In the next section we define and
study the seminorm for the stretched case analogously. For the sake
of completeness, in Section 3.4 we consider a third seminorm which is
analogously defined to the two seminorms before. For a lattice, all of
these seminorms are equivalent, see Corollary 3.42. In Section 3.5 we
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provide an example which shows that there exists no trivial formula of
the seminorm in the Fourier space.

Chapter 4 is devoted to generalization the characterization of the sta-
bility constant of [40, Theorem 3.6(b)] from lattices to objective struc-
tures. This characterization resolves the central issue of the validation
of the coerciveness and thus we have an algorithm to check stability.
Moreover, we show that under realistic physical assumptions, the sec-
ond derivative of the configurational energy is bounded by the seminorm.
In Section 4.1 we define a very general many-body interaction potential
with infinite range which we assume to be smooth and invariant under
rotations. The interaction potential induces the configurational energy
on the space of all periodic displacements. Moreover, we define stabil-
ity in the atomistic model and a stability constant. In the next section
we show how to check if an objective structure corresponds to a critical
point of the configurational energy, see Corollary 4.16. For example, a
simple lattice always corresponds to a critical point, see Corollary 4.17.
In Section 4.3 we show for a large class of objective structures as lat-
tices, that the stability of the objective structure is a sufficient condition
that it corresponds to a local minimum of the configurational energy.
In Section 4.4 we show that the second derivative of the configurational
energy is bounded with respect to an appropriate seminorm under cer-
tain assumptions but particularly in dimension three, see Theorem 4.28,
Theorem 4.34 and Theorem 4.39. In the next section we provide a charac-
terization of the stability constant, see Theorem 4.51 and Theorem 4.54.
In the proofs the Clifford theory is used. This theory describes the re-
lation between representations of a group and of a normal subgroup. In
Section 4.6 we summarize all results by providing an algorithm how to
numerically check the stability of a given objective structure and of a
interaction potential. Then we illustrate our results, first by means of a
toy model and then by a nanotube. In particular, we see which seminorm
is appropriate for the stretched and which seminorm is appropriate for
the unstretched case.
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2. Discrete subgroups of the
Euclidean group

We will use the following notation. For all groups G and subsets S, Sy C
G we denote

S1Sy = {8182 ‘ S1 € 51,82 € Sz} cG

the product of group subsets. For all groups G, S C G,n € Zand g € G
we denote

Sti={s"|seS}CcG
and

gS:={gs|se S} CQG.

For two groups G, H we write H < G if H is a proper subgroup of G and
H <G if H is a normal subgroup of G. For a subset S of a group G we
write (S) for the subgroup generated by S.

Moreover, let N be the set of all positive integers {1,2,...}, Z,, be the
group Z/(nZ), e; be the i** standard coordinate vector (0,...,0,1,...,0)
€ R? and I, € R™ ™ be the identity matrix of size n. We use capital
letters for matrices, and the direct sum of two matrices A and B is

A 0
wope (20)

2.1. The Euclidean group

Let d € N be the dimension. We denote the set of all Euclidean distance
preserving transformations of R? into itself by the Euclidean group E(d).
The elements of E(d) are called Fuclidean isometries. It is well-known
that the Euclidean group E(d) can be described concretely as the outer
semidirect product of R and O(d), the orthogonal group in dimension d:

E(d) = O(d) x R
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The group operation is given by
(A1,b1)(A2,b2) = (A1A2,b1 + A1b2)
for all (Ay,b1), (A1, b2) € E(d), and the inverse of (A, b) € E(d) is
(A, b)7 = (A7, —A1D).
Moreover, we define the homomorphism
L: E(d) = O(d)

(A4,0)— A

and the map
7 E(d) — R?
(A,b) — b.

For all (A,b) € E(d) we call L((A,b)) the linear component and 7((4,b))
the translation component of (A,b). Note that every isometry g € E(d)
is uniquely defined by its linear and translation component:

g = (1a,7(9))(L(9),0).

We call an Euclidean isometry (A, b) a translation if A = I;. All transla-
tions form the group of translations Trans(d), which is the abelian sub-
group of E(d) given by

Trans(d) := {I;} x R%.

We call a set of translations linearly independent if their translation com-
ponents are linearly independent. The natural group action of E(d) on
R? is given by

(A,b)-x:= Az +b  for all (4,b) € E(d) and z € R%.

In this thesis we use a calligraphic font for subsets and particularly for
subgroups of E(d). For every group G < E(d) we denote the orbit of a
point z € R? under the action of the group G by

G-x:={g-z|geq}

We endow E(d) with the subspace topology of the Euclidean space R%*? x
R? such that E(d) is a topological group. It is well-known that a subgroup
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G < E(d) is discrete if and only if for every € R? the orbit G-x is discrete,
see, e.g., [19, Exercise 1.1.4]. In particular, every finite subgroup of E(d)
is discrete.

A discrete group G < E(d) is said to be decomposable if the group repre-
sentation

G — GL(d +1,C)
(A,0) — (61 l1)>

is decomposable, i.e., there is a decomposition of R**! into the direct
sum of two proper subspaces invariant under {(4 %) |(4,b) € G}. If this
is not the case, the discrete group G is called indecomposable, see, e.g.,
[18, Appendix A.3]. An indecomposable discrete group G < E(d) is also
called a (d-dimensional) space group. In this thesis we will use the term
space group. In section 2.2 and 2.3 we also present a (well-known) char-
acterization of the space groups and the decomposable discrete subgroups
of E(d), respectively, which does not use representation theory.

In the physically important case d = 3, all space groups and discrete
decomposable subgroups of E(3) are well-known and classified, see, e.g.,
[5] and [47], respectively.

2.2. Space groups

The following theorem is well-known, see, e. g., [18, Appendix A.3].

Theorem 2.1. Let d € N be the dimension. A discrete subgroup of E(d)
s a space group if and only if its subgroup of translations is generated by
d linearly independent translations.

Also the following theorem is well-known.

Theorem 2.2. Let G be a d-dimensional space group and T its subgroup
of translations. Then it holds:

(i) The group T is a normal subgroup of G and isomorphic to 7.
(i) The point group L(G) of G is finite.

(i) The map
G/T = L(G), (Aa)T—A

is bijective and particularly, also G/T is finite.



14 2. Discrete subgroups of the Euclidean group

Proof. (i) This is clear by Theorem 2.1. (ii) See, e. g., [19, Theorem I1.3.1].
(iii) It is easy to see that the map is bijective and by (ii) the set G/T is
finite. O

Corollary 2.3. Let G be a d-dimensional space group and T its subgroup
of translations. Then for all N € N the set TN is a normal subgroup of
G and isomorphic to Z2.

Proof. This is clear by Theorem 2.2(i). O

2.3. Discrete subgroups of the Euclidean group

Two subgroups G1,Ga < E(d) are termed conjugate subgroups under the
group E(d) if there exists some g € E(d) such that ¢g7'G1g = G». Note
that every conjugation of a subgroup of E(d) under E(d) corresponds to
a coordinate transformation in R<.

Now we characterize the discrete subgroups of E(d). For this purpose for
all dq,ds € N we define the group homomorphism

@: O(dy) x E(de) — E(dy + da)
(A1, (Az,b2)) > Ay & (s, by) = ((“(‘)1 £2>, (zi))

Theorem 2.4. Let d € N be the dimension and G < E(d) be discrete.
Then there exist di,ds € Ng such that d = di + ds, a do-dimensional
space group S and a discrete group G' < O(dy) & S such that G is con-
jugate under E(d) to G’ and n(G') = S, where 7 is the natural surjective
homomorphism O(dy) ® E(dz) — E(dz), Ad g g.

Proof. Let d € N be the dimension and G < E(d) be discrete. If G is a
space group, the assertion is trivial. If G is finite, then G is conjugate
under E(d) to a finite subgroup of O(d) x {04} = O(d), see, e.g., [47,
Section 4.12]. If G is an infinite decomposable discrete subgroup of E(d),
the assertion is proven in [18, A.4 Theorem 2]. O

Remark 2.5. Here O(dy) @ S is understood to be O(d) if d; = d and to
be S if dl =0.

For the remainder of this section we fix the dimension d € N, the discrete
group G < E(d) and the quantities d, do, T, F, S, Ts by the following
definition.
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Definition 2.6. Let d € N be the dimension. Let di,ds € Ny be
such that d = d; 4+ dy. Let S be a dy-dimensional space group. Let
G < O(d1) @ S be discrete such that 7(G) = S, where 7 is the natural
surjective homomorphism O(d;) ® E(dz) — E(d2), A® g — g. Let F be
the kernel of 7|g and Ts be the subgroup of translations of S. Let T C G
such that the map T — Ts, g — 7(g) is bijective.

Remark 2.7. (i) By Theorem 2.4 for every discrete group G’ < E(d)
there exists some discrete group G as in Definition 2.6 such that G
is conjugate to G’ under E(d).

(ii) Ifdy =0, we have do =d, G =S, T = Ts and F = {id}. If d; = d,
we have dy = 0, G is finite, G = F and T = {id}.
(iii) The quantities d, dy, da, F, S and Ts are uniquely defined by

G. In general for given G there is no canonical choice for T, see
Example 2.9.

(iv) Let G be given. In general, for every choice of T the set T is not a
subset of Trans(d), see Example 2.8. Moreover, in general for every
choice of T the set 7 is not a group and the elements of 7 do not
commute, see Example 2.10.

(v) Let G be given. One possible choice for T is the following. Let
t1,...,tq, € Ts be such that {¢;,...,tq,} generates Ts. For all
i€{l,...,da} let g; € G such that m(g;) = t;. Upon this, we define

T={g"" ... 95 [n1,...,na, € Z}.

For the following example and the remainder of the thesis for all angles
a € R we define the rotation matrix

R(a) = (COS(O‘) ‘Sm(a)) € 0(2). (2.1)

sin(a)  cos(a)

Example 2.8 (Helical groups). Let d; =2, da = 1, a € R be an angle,
n €N,

T_ <R(a) ® ([171)>7 F= <R(27T/n) ® (1170)>
and

P = <((1J o) @(*11,0)>~

Then T is isomorphic to Z, F is a cyclic group of order n, P is a group
of order 2 and FP a dihedral group of order 2n. Moreover, T, TF,
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TP and TFP are decomposable discrete subgroups of E(3). If we have
a € R\ (27Q), the groups T, TF, TP and TFP are so called helical
groups, i.e. infinite discrete subgroups of the Euclidean group E(3) which
do not contain any translation except the identity.

Example 2.9 (The choice of 7 is not unique.). Let ¢t = (I1,1), Fy =
{2, R(m)}, S =Ts = (t) and

g= {(R(mr/Q)F) et"|neZ,F e .7:0} < E(3).

Then the choice R(m/2) @t € T as well as R(37/2) @t € T is possible.
In particular, the choice of T is not unique.

Example 2.10. We present a discrete group G < E(8) such that for
every choice of T the set 7 is not a group and the elements of 7 do not
commute.

Let a1, € R \ (27‘(’@) be angles, R = R(Oél), Ry = R(Oég), R3 =
R(r/2), S = ({ %), 1 = (Iz,e1) and t3 = (I,e2). Then we have
(R1) 2 Z, (Re) = Z, and (R3,S) < O(2) is a dihedral group. Let
S=Ts= {t?ltgm |n1,n2 € Z},

G = {(R;“ SRV & (S”IRZ)}“"“")) @ (17"t5?)

22 < E(8)

ni,ne € Z,m € {0,2}}

and 7: G — S be the natural surjective homomorphism with kernel F =
{id, (I, ® R3) ®idp(2)}. Let T C G such that the map T — Ts, g — 7(g)
is bijective. Since t1,t2 € Tg, there exist my,mo € {0,2} such that
1= (RO LO(SRY)) @t € Tand th == (I, & Ry @ Ry™) @ty € T.
We have t|t), # tht} since

tt5(t)) 7 (t2) 7! = (L @ (SRE" R3T™ Ry ™ SRy 'T™?)) @ idia)

_ (2.2)
= (I4 @ R%) S ZdE(g).

Thus, the elements of 7 do not commute.

Now we suppose that 7 is a group. Since w’l(idE(g)) = F and by (2.2),
we have 7! (idg(2)) C T. This contradicts the claim that 7|7 is bijective.
Thus, 7 is not a group.

The following lemma characterizes the group G.

Lemma 2.11. (i) The group F is finite.
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(i) For all n € N the set T™F is independent of the choice of T, and
it holds
ThF«g.

In particular, it holds TF <G.

(iii) The map G/TF — S/Ts, gTF — 7w(g)Ts is a group isomorphism,
where w: G — S is the natural surjective homomorphism with kernel
F. In particular, G/TF is finite.

(iv) For all n € N the map Ts — T"F/F, t — ©({i™)F is a group
isomorphism, where @: Tg — T™ is the canonical bijection. In
particular, the group TF/F is commutative.

(v) For alln € Z\ {0} the map T — T", t — t" is bijective.

Proof. Let m: G — S be the natural surjective homomorphism with ker-
nel F.

(i) Since G is discrete, the group F is discrete. Moreover, F is a
subgroup of O(d:) ® {idg(q,)}. Thus, the group F is finite.

(ii) Let n € N. The set 7"F is the preimage of 7& under 7. Since T7&
is a normal subgroup of S, the set T"F is a normal subgroup of G.

(iii) This is clear, since TF is the preimage of 7s under 7.

(iv) Let n € N. Since Ts is isomorphic to Z92, the map ¢1: Ts — T&,
t — t™ is a group isomorphism. Since F is the kernel of m and
T™F the preimage of 7 under m, the map @y: T"F/F — T,
gF — m(g) is an isomorphism. This implies the assertion, i.e. the
map gp;l o ¢ is an isomorphism.

(v) Let n € Z\ {0}. The map ¢: T — T", t — t™ is surjective. Since
the map 7s — 7', t — t" is injective, the map 7 is injective and

thus, bijective. O
Lemma 2.12. Let m € Z\ {0} such that T™ is a group. Then, the map
Ts—>TM
t= (b))

s a group isomorphism, where ¢: Ts — T is the canonical bijection. In
particular, T™ is isomorphic to Z%2.
Furthermore, for alln € 7Z it holds

T AT,
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Proof. Let m € Z\ {0} such that 7™ is a group. Let 7: TF — Ts be the
natural surjective homomorphism with kernel F. Let ¢ be the inverse
function of 7|7, i.e. ¢: Ts — T is the canonical bijection. The map

Vv1:Ts = TFIF, te— ot)F

is an isomorphism. Since 7F/F is isomorphic to Z9 and (TF/F)™ =
T™F/F, the map

Vo: TF)F = T"F)F, twt™
is an isomorphism. Since 7" is a group, the map
Ys: T = TMF|F, g~ gF
is an isomorphism. The map
Ts = T™, te= )™

is equal to 13 Lo 4py 0 1/1 and thus, an isomorphism.
Let n € Z. Since T™ is isomorphic to Z%, we have T™" = (T™)" «
T O

Definition 2.13. We define the set
My :={m € N|T™ is a normal subgroup of G}.

Remark 2.14. Let N € N. Then, the quotient group G/7T is well-defined
if and only if NV € M,.

Proposition 2.15. For all m € My the group T™ is a subgroup of the
center of TF.

Proof. Let m € My, t € T and g € TF. By Lemma 2.11(iv) there exists
some f € F such that

gt =t"gf.

Since m € My, it follows
f=g T mgtm e T
Since 7™ N F = {id}, we have f = id, i.e. g and t"* commute. O

Lemma 2.16. The set My is not empty.
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Proof. Since F is a normal subgroup of G, for all g € G the map
pg: F=F, frrg'fg

is a group automorphism. Let n be the order of the automorphism group
of F. For all g € G it holds ¢y = id. Thus for all g € G and f € F we
have

g f=1rg", (2.3)
i.e. g¢" and f commute.
Now we show that for all g, h € TF the elements ¢"”! and h commute.
Let g,h € TF. Since TF/F is commutative, there exists some f € F
such that
h=tg"h = g"f.

With (2.3) it follows

hflgn\.ﬂh — (hilgnh)l}-‘ _ (gnf)\.ﬂ _ gn\]:lf\]-'| _ gn\]:|. (24)

Now we show that 7771 is a subgroup of TF. Let t,s € T. We have
to show that "7 s—nlFI* ¢ 707 Let r € T and f € F such that
ts~t = rf. Since TF/F is commutative, there exists some e € F such
that t"71s=71 = ¢l Fle. By (2.4) and (2.3) we have

I g—nlF|?

2 2
(Tl IFYFT = (priFle)IFT = prlF 17 Pl — ol
e T

Now we show that 77*1” is a normal subgroup of G. Let g € G and
t € T. We have to show that

g—ltn\]ﬂzg e Tn\]-'|2'

Since T™F is a normal subgroup of G, there exist some s € 7 and f € F
such that

g—ltng — Snf.
By (2.3) we have

g 1P g = (g g P17 = (snf)IFP = gnlF P pIFIP = gnl PP ¢ lF I,
O

Theorem 2.17. There exists a unique mo € N such that My = moN.
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Proof. We define the set
My :={m € Z|T™ is a normal subgroup of G}.

First we show that @ is a subgroup of the additive group of integers Z.
It is clear that 0 € My. Let ni,n2 € My. We have to show that ny —mns €
My. Let ¢: Ts — T be the canonical bijection. By Proposition 2.15 and
Lemma 2.12, for all ¢, s € Ts it holds

Q)™ T2 p(s) (M) = ()™ p(s) T () T2 (s) "2
(15~ ()
(ts™h)mme e T,

and thus, 7™ ~"2 is a group. It remains to show that 7"*~"2 is a normal
subgroup of G. Without loss of generality we assume that ny,no # 0,
i,e. ning # 0. Let g € Gand t € T. Since 7™ ,7T" <G, there exist
some s1,52 € T such that gt"ig=! = s' and gt"2g~! = s}?. Since
st = gtmm2g=l = "2 and the map T — T™"2, r — r™n2 is
bijective, it holds s; = so. Now we have

Il
€ €

ts~
ts—

gt™ T2 gTh = (gt"g T ) (gt gTh) T = s e T

By Lemma 2.16 and since My C ]\Afo, the group ]\fio is nontrivial. Since
every nontrivial subgroup of Z is equal to nZ for some n € N, see, e.g.,
[20, Article 36], there exists a unique mg € N such that My = moZ. Now,
we have .

M():MQQN:WL()N. O

Remark 2.18. (i) The proof of Lemma 2.16 shows that mg divides
| FI2|Aut(F)|, where mg € N is such that My = moN and Aut(F)
is the automorphism group of F. In particular, we have an upper
bound for my.

(ii) The group G is virtually abelian since for all m € M; the index of
the abelian subgroup 7™ in G is m|F||G/T F| and thus, finite.

2.3.1. The dual space and induced representations

In this subsection we define some terms of representation theory. In our
set-up it is not restrictive to only consider finite-dimensional representa-
tions, see Remark 2.20 below.
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Definition 2.19. Let H be a finite group or a discrete subgroup of E(d).
A representation of H is a homomorphism p: H — U(d,), where d, € N
is the dimension of p and U(d,) is the group of all unitary matrices
in C% >4 Two representations p,p’ of H are said to be equivalent if
d, = d, and there exists some T € U(d,) such that

THp(g)T = p'(9) for all g € H.

A representation p of H is said to be irreducible if the only subspaces of
C4e invariant under {p(g)|g € H} are {0} and C%. Let H denote the set
of all equivalence classes of irreducible representations of . One calls H
the dual space of H. If N is a normal subgroup of H, then the group H
acts on the set of all representations of A by

g-p(n):=p(g~'ng) for all g € H, representations p of A" and n € N.

For given representations p1, ..., p, of H, we define the direct sum

@r_1pi: H — U(m)
g+ ®i—1(pi(9)),

n . .
where m = > ", d,,. In a canonical way, the above group action and
terms dimension, irreducible and direct sum are also defined for equiva-
lence classes of representations.

Remark 2.20. In [45] the following theorem is proved for any locally
compact group: There exists an integer M € N such that the dimension
of every irreducible representation is less than or equal to M if and only
if there is an open abelian subgroup of finite index. This, in particular,
applies to finite groups and discrete subgroups of E(d).

A caveat on notation: For a representation and for an equivalence class
of representations we use the symbol x if it is one-dimensional and p
otherwise. For every one-dimensional representation y its equivalence
class is a singleton which we also call a representation and denote .
The following lemma is well-known.

Lemma 2.21. Let x, p, p1, p2 be representations of a discrete group H <
E(d) such that x is one-dimensional. Then it holds:

(i) The map xp is also a representation of the group H.
(i) If p is irreducible, then also xp is irreducible.

(iii) If p1 and py are equivalent, then also xp1 and xps are equivalent.
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Lemma 2.22. Let H < E(d) be discrete. Then we have
g-p=p forallgé?—[andpeﬁ.

Proof. This is well-known, see, e. g., [28, Subsection XII.1.3], but for the
reader’s convenience we give a proof. Let H < E(d) be discrete, g € H,
p € H and p be a representative of p. Then we have

g-p(h) = plg~ hg) = plg) "' p(h)p(g)  for all h € H.

Thus the representations g - p and p are equivalent and we have g - p =
p- U

We define the induced representation as in [55, Section 8.2], where it is
defined for finite groups.

Definition 2.23. Let H < E(d) be discrete and K be a subgroup of
‘H such that the index n = |H : K| if finite. Choose a complete set
of representatives {hi,...,h,} of the left cosets of K in H. Suppose
p: K — U(d,) is a representation of K. Let us introduce a dot notation
in this context by setting

Ag) = {p(g) if ge K

Oa,,q, else

for all g € H. The induced representation Indjf p: H — U(nd,,) is defined
by

plhytgha) oo plhy " ghn)
Ind} p(g) = for all g € H.
plhytghy) - p(hy ghy)

The induced representation of an equivalence class of representations is
the equivalence class of the induced representation of a representative.

Moreover, let Ind}(K) denote the set of all induced representations of K.
We also write Ind instead of Ind}} if K and H are clear by context.

Remark 2.24. For a general locally compact group the definition of the
induced representation is more complicated, see, e. g., [43, Chapter 2].

The following proposition is standard in Clifford theory.
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Proposition 2.25. Let H < E(d) be discrete and N be a normal sub-
group of H such that the index |H : N| is finite. Then the map

N/H — Ind}(N)

H-prs Indp
is bijective, where N/H = {H -p|p e N}.
Proof. Let H < E(d) be discrete and N be a normal subgroup of H such
that the index n = |H : N| is finite. Let {h1,...,hy,} be a complete set of
representatives of the cosets of N in H and ¢ be the map N'/H — Ind(N),
H - p+— Indp. R
First we show that ¢ is well-defined. Let p € N and g € H. Let o be the

permutation of {1,...,n} and ki,...,k, € N such that gh; = ho)ko()
for all i € {1,...,n}. For all h € N we have
Ind(g - p)(h) = U"(Ind p(h))U
with
U= (p(k1) @@ p(kn))(P; @ 1a,) € U(nd,),
where P, is the permutation matrix (J,(;),;)i;-
It is clear that ¢ is surjective. R
Now we show that ¢ is injective. Let p, p" € N such that Ind p = Ind p'.
Let p and p' be representatives of p and p’, respectively. Since A is a

normal subgroup, for all g € N and i,5 € {1,...,n} we have h; 'gh; € N/
if and only if ¢ = j. Thus we have

(Indp)|y =@ hi-p and  (Indp)|y =Dl hi-p.  (2.5)

Since the representations hy - p,..., hy -pand hy - p',... hy, - p' are irre-
ducible, by (2.5) there exists some i € {1,...,n} such that hy-p = h;-p'.
Thus we have H-p=H - p'. O

2.3.2. The induced representations Ind(7 F)

The following definition and Lemma 2.27 can be found in [44, Chapter
1].

Definition 2.26. A set L C R™ is a lattice if L is a subgroup of the
additive group R™ which is isomorphic to the additive group Z", and
which spans the real vector space R"™.
The dual lattice L* (also called the reciprocal lattice) of a lattice L C R™
is the set

{zr e R"|(x,y) € Z for all y € L}.
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Lemma 2.27. For every lattice in R™ its dual lattice is also a lattice.

Proof. This is well-known, see, e.g., [44, Section 1.2]. For the reader’s
convenience we give a proof. Let L be a lattice and L* its dual lattice.
There exist by,...,b, € R™ such that {by,...,b,} generates L and is a
basis of R%. For all i € {1,...,n} there exists a unique b, € R™ such
that

<b;,bj> :57] for allj S {1,,7?,}

It is easy to see that {b],...,b),} is a basis of R (called the dual basis
of {b1,...,b,}) and

=1

Definition 2.28. We define the lattice

ml,...,mHEZ}. O

Ls == 7(Ts) < R%
and denote its dual lattice by L.

Definition 2.29. For all k € R% we define the one-dimensional repre-
sentation x € TF by

Xk(g) = exp(2mi{k, 7(7(9)))) for all g € TF,
where m: TF — Tg is the natural surjective homomorphism.

Since T F is a normal subgroup of G, G acts on ﬁ
Lemma 2.30. For all g € G and k, k' € R% it holds
XkXk" = Xk+k'
and
9 Xk = XL(n(g))ks
where m: G — S is the natural surjective homomorphism.

Proof. Let g € G, k,k' € R® and m: G — S be the natural surjective
homomorphism. For all h € T F it holds
X (R)xw (h) = exp(27i(k, 7(m(h)))) exp(2mi(k’, 7(m (h))))
= exp(27i(k + k', 7(w(h))))
= Xk+r’ (h)
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and

(9 xx)(h) = xx(9” " hyg)
= exp(2mi(k, 7(n(9~ " hg))))
exp(27i(k, L(n(g~"))7(x(h))))
exp(2mi(L(m(g))k, 7(m(h))))
= XL(x(g))k(h)- [

Lemma 2.31. For all n € N it holds
Ls/n = {k € R® | xeln = 1).

Proof. Let n € N and 7: TF — Ts be the natural surjective homomor-
phism. First we show that L%/n C {k € R% | x4|7» = 1}. Let k € L5/n.
For all t € T it holds 7(m(t")) = n7(w(t)) and thus,

Xk (t") = exp(2wi(k, 7(w(t")))) = exp(2mi{nk, 7(7(t)))) = 1.

Now we show that {k € R% | xg|7» =1} C L%/n. Let k € R% such that
Xk|7n = 1. Let @ € Ls. There exists some ¢ € T such that x = 7(7(t)).
We have

(nk,x) = (nk,7(x(t))) = (k,7(x(t"))) € Z,

where we used that xx(t") = 1 in the last step. Since z € Ls was
arbitrary, we have k € L% /n. O

Definition 2.32. We define the relation ~ on 7 F by
(p~p) = (BgeGIkeR® g p=xip).

Remark 2.33. One can also define an equivalence relation ~ on the set
of all representations of 7F by

(p~p) = (lp] ~ ] for all representations p, p’ on TF.

Lemma 2.34. The relation ~ on TF is an equivalence relation.

Proof. 1t is clear that ~ is reflexive. -
Now we show that ~ is symmetric. Let p,p’ € TF such that p ~ p'.
There exist some g € G and k € R% such that g - p = xxp’. This implies

X=k) (9" (XkP)) = X=Lin(g—1))kP>
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where m: G — § is the natural surjective homomorphism.

Now we show that ~ is transitive. Let p, p’, p”’ € TF such that p ~ p’ and
p' ~ p. There exist some ¢,¢’ € G and k, k' € R% such that g-p = yp’
and ¢’ - p' = xip”. This implies

(9'9)-p=9" (Xxp) = Xr(n(g )+ p
where 7m: G — S is the natural surjective homomorphism. O

Definition 2.35. For all groups H < G and N € M such that 7V is a
normal subgroup of H, let Hx denote the quotient group H/T.

The following lemma gives an algorithm how we can determine a repre-
sentation set of TF/~.

Lemma 2.36. Let m € N such that My = mN.

(i) Every represeﬁt\ation set of {p € TF | plrm = 14,}/~ is a represen-
tation set of TF [r~.

(i) The map
(TF)m = {p € TF|plrm =1a,}, prrpor

where w: TF — (TF)m is the natural surjective homomorphism,

is bijective. In particular, the set {p € 7/']\:|p 7m = 1Iq,} is finite.

(1ii) Let K be a representation set of (Ls/m)/L% and P be a represen-
tation set of G/TF. Then, for all p,p’ € {p € ’f.\F|ﬁ|7—m =14} it
holds

(p~p) = (BgePIkeK: g p=xip).

Proof. Let m € N such that My =mN.
(i) Let R be a representation set of {p € TF |p|rm = I4,}/~. We have

to show that for all p € TF there exists some p' € R such that p ~ p'.
Let p € TF. By Proposition 2.15 the group 7" is a subgroup of the
center of TF and thus, by Proposition B.1 for all ¢ € 7™ there exists
some A € C such that [A\| = 1 and p(t) = Al4,. Hence, there exists some

one-dimensional representation y € 7™ such that plrm = xla,.

There exists some k € R% such that x|7m = xx|7=: By Lemma 2.12 the
group 7™ is isomorphic to Z. Thus, there exist t1,...,tq, € T™ such
that {t1,...,tq,} generates T™. For all j € {1,...,ds} there exists some
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a; € R such that exp(2mia;) = x(¢;). For all i € {1,...,d2} let b; € R%
such that

<bi,T(7T(tj))> :57;]‘ for allj € {1,...,d2},

where 7: TF — Ts is the natural surjective homomorphism. For k =
Z?il a;b; € R% it holds x|7m = xx|7m.

Thus, we have p|lrm = Xxg|7mlq,. Since x_xp € TF and (X—kp)|Tm =
I4,, there exists some p’ € R such that x_xp ~ p'. There exist some
g € G and [ € R% such that g - p’ = xi(x_xp). This implies p ~ p'.

(ii) This is clear by Proposition B.2 and Remark 2.18(ii).

(iii) Let p, p' € T F such that plrm = 1a,, p'|7m = Ia, and p ~ p’. There
exist some g € G and k € R?% such that g-p = xip’. Let h € P such that
gTF = hTF. It holds Idp =(g-p)lrm = (xxp)l7m = Xk T"'LIdp/' This
implies xx|7= = 1 and thus, k € (L5/m) by Lemma 2.31. Let [ € K
such that [Ls = kLS. We have

h-p=g-p=xrp' =xip

where we used Lemma 2.22 in the first step and that xx_; = 1 since
k —1¢€ L% in the last step.
The other direction of the assertion is trivial. O

Corollary 2.37. The set ’7/'7-"/~ is finite.

Proof. This is clear by Lemma 2.36. O

Definition 2.38. For all p € TF we define the set

Gy i= {(L(x(9)), k) [g € Gk € R™ 1 g-p = xup} C E(da),
where m: G — § is the natural surjective homomorphism.

Proposition 2.39. For all p € TF the set G, is a space group and it
holds

Ls < {k € R®|(la,, k) € G,} < Ls/m,
where m € N is such that My = mN.

Proof. Let p € TF and m € N such that My = mN. First we show
that G, is a subgroup of E(d2). Let g1,92 € G,. We have to show that
9195 le G, Let m: G — S be the natural surjective homomorphism. For
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all i € {1,2} let h; € G and k; € R® such that g; = (L(m(h;)), k;) and
hi - p = Xk, p- It holds

(hihy') - p=hy-(hg' - p) =h1- ((hy" - X—ky)P)
= ((hthy") - X—k2) (h1 ) = Xpy — Ln(uns ol
and thus,
9195 " = (L(m(hihy ")), ky — L(w(hahy '))k2) € G,

Let
H = G, N Trans(dy)

be the group of all translations of G,. It is clear that 7(H) = {k €
R | (I4,,k) € G,}.

Now we show that 7(H) < Ls/m. Let k € 7(H), i.e. (Ia,,k) € G,. There
exists some g € G such that g - p = xrp and L(7(g)) = I4,. The latter
implies 7(g) € 7s and thus, g € TF. By Lemma 2.22 we have p = yxp.
Let p be a representative of p. There exists some T" € U(d,) such that
THH(9)T = x1(9)p(g) for all g € TF. Moreover, by Proposition 2.15 the
set T™ is a subset of the center of 7F and hence, by Proposition B.1
p(g) is a scalar multiple of Iy, for all g € 7™. Hence, we have xx(g) = 1
for all g € 7™ and k € L5 /m by Lemma 2.31.

Now we show that L < 7(H). Let k € LS. By Lemma 2.31 we have
Xkl = 1. Since we also have x| = 1, we have x; = 1. Thus we have
idg - p= xkp and (Ig,, k) € H, i.e. k € T(H).

Now we show that G, is discrete. Since 7(#) is a subgroup of L§/m,
the group H is discrete. Since L(G,) is a subgroup of the finite group
L(S), the index |G, : H| = |L(G,)| is finite and thus, by [47, Theorem
7.1] the group G, is discrete. Since LY is a subgroup of 7(#), the group
G, contains ds linearly independent translations. By [18, Lemma 3, p.
415] the group G, is a space group. O

Lemma 2.40. For all N € My and p € TF such that plr~ = Ia,, the
set L5 /N is invariant under G,, i.e. {g-k|g€ G,, k€ Ly/N} = L%5/N.

Proof. Let N € My and p € TF such that plr~ = 1a,. Let k € L5/N
and g € G,. We have to show that g -k € L5/N. Let m: G — S be the
natural surjective homomorphism. There exist some h € G and | € R%
such that g = (L(mw(h)),[) and h-p = xip. Since ply~ = Ig, = (h-p)|7~,
we have x|~ = 1. We have

Xg-k = XL(x(h)k+1 = (B XK)Xi
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and thus, x4.x|7~ = 1. By Lemma 2.31 we have g-k € L5/N. O

Definition 2.41. Let H be a subgroup of E(n). Then the set of all orbits
of R™ under the action of H is written as R™/H and is called the quotient
of the action or orbit space.

Remark 2.42. If a group H < E(n) is discrete, then the quotient space
R™/H equipped with the orbit space distance function

R"/H xR"/H —[0,00), (z,y)+ dist(x,y)

is a metric space whose topology is equal to the quotient topology, see,
e.g., [49, §6.6].

Theorem 2.43. Let R be a representation set of ﬁ/w Then, the map

|| R®/G, = ndf~(TF)

pPER

(gp : k7 p) — Indg’f(xkp)a
where | | is the disjoint union, is bijective.

Proof. Let R be a representation set of 7/'7'/ ~. We define the map

o: | |R%/G, — Wmd(TF)

PER
(Gp - k. p) = Ind(xkp).-

First we show that ¢ is well-defined. Let p € R, k,k’ € R% and g € G,
such that ¥ = g - k. Let m: G — S be the natural surjective homomor-
phism. There exist some h € G and | € R% such that g = (L(w(h)),!)
and h - p = x;p. We have

h-(xkp) = (h-xx)(h - p) = XL(x(h)k+1P = Xk P

and thus, Ind(xxp) = Ind(xx p) by Proposition 2.25.

Now we show that ¢ is injective. Let p,p’ € R and k, k' € R% such that
Ind(xxp) = Ind(xxp"). We have to show that p = p’ and G, -k =G, - k.
By Proposition 2.25 there exists some g € G such that g - (xxp) = xxp'-
This is equivalent to g-p = X' L(r(g))x0’, Which implies p ~ p’ and thus,
p = p'. This implies that (L(7(g)), k" — L(w(g))k) € G, and thus,

Gp- k= Gy - (L(x(9)). K — L(x(g))k) - }) = Gy - K.
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Now we show that ¢ is surjective. Let p € TF. Let 0 € R such that
p ~ p'. There exist some g € G and k € R? such that ¢g-p = xxp'. By
Proposition 2.25 we have

¢((Gp - k. p")) = Ind(xpp') = Ind(g - p) = Ind p. O

Corollary 2.44. Let R be a representation set of {p € ﬁ|p|7m =
Ia,}/~, where m € N is such that My = mN. Then the maps

(i) | [{k/N|k e L5, N € My}/G,
PER
—Ind({p e TF|IN € My : ply~ = 1a,})

(Gp - (k/N), p) = Ind(Xp/np)

(ii) | |(L5/N)/G, = Ind({p € TF|ply~ = 14,})

PER
(Gy -k, p) — Ind(xkp),

where | | is the disjoint union, Ind = Indg—]_- and N € My in (i) is
arbitrary, are bijective.

Proof. Let m € N such that My = mN and R be a representation set of
{pe TF | plrm = Ia,}/~. By Lemma 2.36 the set R is a representation
set of 7/']\-"/ ~.

(i) We define the map

vi | {k/N|k € L5 N € My}/G,

PER
—Ind({p e TF|IN € My : ply~ = 14,})
(Gp - (k/N), p) = Ind(xr/np)-

First we show that 1 is well-defined. Let p € R, k € LS and N € M.
Since 7% C 7™ and by Lemma 2.31, we have (xy/np)|l7~v = Ig,. By
Lemma 2.40 for all N € My we have (L%/N)/G, C R /G, and thus, by
Theorem 2.43 the map 1 is well-defined.

Since the map of Theorem 2.43 is injective, also 1 is injective.

It remains to show that 1 is surjective. Let p € TF and N € M,
such that p|y~ = I,. There exists some p’ € R such that p ~ p'.
There exist some ¢ € G and k € R% such that g - p = xzp’. We have
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(9-p)l7~ = 14, = p'|7~ and thus, xx|7~ = 1. By Lemma 2.31 we have
k e L5/N and thus

((Gp - k,p')) = Ind(xxp') = Ind(g - p) = Ind p,

by Proposition 2.25. (ii) The proof is analogous to the proof of (i). O

2.3.3. Harmonic analysis

Definition 2.45. Let S be a set and N € My. A function u: G — S is
called TV -periodic if

u(g) = u(gt) forallgc Gandte TV,

A function u: G — S is called periodic if there exists some N € Mj such
that u is 7V-periodic.
We equip C™*™ with the inner product (-, -} defined by

(A, B) := ZZ aijbi;  forall A, B € C™*"

i=1 j=1
and let || - || denote the induced norm. We define the set

L (G, C™*™) = {u: G — C™*" | u is periodic}.

per

Remark 2.46. (i) The inner product (-, -) on C™*" is the Frobenius
inner product.

(ii) If G is finite and S a set, then every function from G to S is periodic

and in particular, we have L32 (G,C™*") = {u: G — C™*"}.

The following Lemma shows that the above definition of periodicity is
independent of the choice of T.

Lemma 2.47. Let S be a set. A function u: G — S is periodic if and
only if there exists some N € N such that

u(g) = u(gh) for allg € G and h € GV .

Proof. Let S be a set and u: G — S be TN-periodic for some N € M,.
By Theorem 2.17 the function u is 717 N-periodic. By Proposition 2.15
it holds

GISITFIFIN — (TF)FIN (TN F)IFl — TIFIN FIF| _ FIFIN N,
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and thus, we have
u(g) = u(gh) for all g € G and h e GI9/TFIIFIN,

The other direction is trivial since by Theorem 2.17 for all N € N there
exists some n € N such that nN € Mj. O

The following lemma characterizes the periodic functions on G with the
aid of the quotient groups G/TN.

Lemma 2.48. If N € My and u: G — S is TN -periodic, then the func-
tion

QN — S

9T = u(g)

is well-defined. Moreover, we have

per

L3, (G, €)= {G > C™", g s u(gT™) | N € My, u: Gy — €™},

Proof. This follows immediately from the definition of L3¢ (G,C™*™).
O

Lemma 2.49. The set L2 (G, C™*™) is a vector space.

per

Proof. 1f uy € L%, (G,C™*") is TNi_periodic and uy € L5, (G, Cmxm)
is T™N2-periodic for some N1, Na € My, then uy + ug is T N2-periodic.
Thus, L3, (G,C™*") is closed under addition. The other conditions are

trivial. O
Definition 2.50. For all N € M let C be a representation set ofg/TN.
Remark 2.51. (i) If G is finite, we have Cy = G for all N € M.

(ii) Let G be infinite. There exists some m € N such that My = mN
and there exist ¢1,...,tq, € T™ such that {t1,...,tq,} generates
T™. Let C be a representation set of G/T™. Then for all N € M,
a feasible choice for Cp is

Cy = {t?l...tgfg‘nh...,ndz 6{07...,N/m—1},g€C}.

For this choice, for all z € R? and large N € M, the set Cy - x is
similar to a cube which explains the nomenclature.
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We equip the vector space Lpg, (G, C™*") with an inner product.

Definition 2.52. We define the inner product (-, -) on L3 (G,C™*™)
by

— Z (u(g),v(g9)) if u and v are TV -periodic

for all u,v € L (G,C™*™). We denote the induced norm by || - ||2.

per
Definition 2.53. Let & be a representation set of {p € §| p is periodic}.

Remark 2.54. (i) All representations of £ are unitary by Definition 2.19
which is necessary for the Plancherel formula in Proposition 2.56.

(ii) For all N € My a representation of G is 7¥-periodic if and only if
p‘TN = Idp'

(iii) Proposition B.2 shows that
{p S g’pis periodic} = {pOﬂ'N|N € My, p € g/]\\[},

where 7y is the natural surjective homomorphism from G to Gy
for all N € M.

Definition 2.55. For all u € L3, (G,C™*") and for all periodic repre-
sentations p of G we define

1
(p) = 5— > ulg) @ p(g) € Clmde)x (o),

where N € Mj is such that u and p are 7V-periodic and ® denotes the
Kronecker product, see Definition D.1.

Proposition 2.56 (The Plancherel formula). The Fourier transforma-
tion

T L3 (G, ) = TNy (@(p))pee
peE

is well-defined and bijective. Moreover, we have the Plancherel formula

(w,v) = S d(ii(p),0(p))  for all uyv € L,(G,C™7).

peE
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Proof. We show that the well-known Plancherel formula for finite groups,
see, e.g., [54, Theorem II1.8.1], implies the Plancherel formula of the
proposition. Let N € My and nx: G — Gxn be the natural surjective
homomorphism. The map

fiidu: Gy = C™ "} = {u € Ly, (G,C™ ") |u is TN -periodic}
U UOTN

is bijective. Let Ex = {p|p is a representation of Gy, pony € E}. We
have {ponn|p € En} = {p € &|pis TN-periodic}. Thus the map

fo: P Clmdo)x(ndy) _y (N Clmde)(ndp)

peE, pis TN-periodic pPEEN

(Ap)pes, p is TN -periodic (Aporn)peen

is bijective. By Proposition B.2 the set £y is a representation set of Cjz\v
For all u: Gy — C™*™ and p € Ex we define u(p) = @ > gegy W9) ®
p(g). By the Plancherel formula for finite groups, see, e. g., [9, Proposition
16.16], the Fourier transformation

. {u: gN N (men} N @ (C(mdp)x(nd,,), U= (/d(p))pe&v
PEEN

is bijective and it holds ﬁ Y geon (u(9),v(9)) = 22 cey do(tilp), V(p))
for all u,v: Gy — C™*", The diagram

{u e L. (G, Cm™*n) |y is TN-periodic} —ﬁ @ C(md,)x(ndy)
peE
p is TN -periodic

1
I

{u: Gn — men} . @ (C(mdp)x(ndp)

PEEN

commutes, where the top map is defined by u — (u(p))
Thus, the map

pe&,pis TN -periodic*

o {u c ngr(g7(cm><n) |u is 'TN—periodiC} N @ C(mdp)x(nd,)
peE
p is TN -periodic

(2.6)
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is bijective and we have

(u,v) = > dp (U(p), o(p))

pEE, pis TN -periodic

for all TN-periodic functions u,v € L (G, C™*").

per

Since N € My was arbitrary, for all u € L33, (G,C™*"), for all N € My

such that u is 7V-periodic and n € N it holds

> d,|[a(p)|? = [lu)3 = > d,|[a(p)||.
pe&, pis TN-periodic p€eE, pis TN periodic
(2.7)

By (2.7) for all u € L (G,C™*") and N € M, such that u is TV-

per

periodic, we have
{pc&lilp) #0} C{pec&|pis T"-periodic}. (2.8)
By (2.7) and (2.8) the Fourier transformation
. ngr(gv(can) N @C(mdp)x(ndp)
peEE

is well-defined and we have

(u,0) = dy(ii(p), 0(p))

pe

for all u,v € L (G,C™*™). Moreover, since the map defined in (2.6)

per

is injective and L2, (G,C™ ") = Upepp{t € L3 (G,C™*™) [u is TN-
periodic}, the Fourier transformation is injective. Analogously, the Fou-
rier transformation is surjective. O

Remark 2.57. (i) The above proof also shows that for all u: G — C™*"
and N € My such that v is 7VN-periodic, we have

{pe&liu(p) # 0} C {pe&|pis TN-periodic}.
Moreover, for all N € My the map

{u: g — Ccmxn f u is ’TN—periodic} — @ C(md,)x(nd,)
peE
p is TN -periodic

U = (ﬁ(p))

is bijective.
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(ii) It is easy to see that by the above proposition we have also a de-
scription of the completion of L3¢ (G, C™*") with respect to the
norm || - ||2. We have

T e o
Lo, (G, Crxmy 2 = {u: G — C™x

S d, a(p)l? < oo}

peE

and the map

—mn” Il2 md,)x (nd
per(g Cmx { c HC( o)

pEE

Sl < oo

peE

ws (@) pee
is bijective.
Lemma 2.58. Let f € L%, (G,C™*"), g € G and 74f denote the trans-

lated function f(-g). Then we have 74 f € L35, (G,C™*™) and

701 (p) = F(0)Ln ® p(g™"))

for all periodic representations p of G.

Proof. Let f € L35, (G,C™*™), g € G and p be a periodic representation.
Let N € My such that f and p are TV-periodic. The function Tef is
TN_periodic and we have

Wl (o) = o N| > 7 f(h) ® p(h)

heCn

ICNI > fhg) @ p(h)

heCn

ICNI > fh)y@p(hg™)

heCn

= T 2 S & (e ™)

heCn

(|ch S s )< @ plg™)

heCn

= f(p)In @ p(g™")),
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where in the third step we made a substitution and used that Cn and Cng
are representation sets of G/7T% and that the function h — f(h)®@p(hg™1)
is TN-periodic. O

Definition 2.59. For all v € L'(G,C™*") and all representations p of
G we define
t(p) ==Y _ulg) ® plg)-

9eg

Remark 2.60. If the group G is finite, p is a representation of G and
u e L'(G,C™™) = L2 (G,C™*™), then the Definitions 2.55 and 2.59
for u(p) differ by the multiplicative constant |G|, but it will always be
clear from the context which of the both definitions is meant. If G is
infinite, then L!(G,C™*") N L (G, C™*") = {0} and thus, there is no

per
ambiguity.

Definition 2.61. For all u € L'(G,C™™) and v € L2 (G,C™*") we
define the convolution u * v € L2, (G,C*") by

uxv(g) = Z u(h)v(h™'g) forall g € G.
heg

Lemma 2.62. Let u € L'(G,C*™), v € L5e (G, C™>™) and p be a
periodic representation of G. Then

(i) the convolution u x v is TN -periodic if v is T -periodic and

(i) we have

TT(p) = @)D ().
Proof. Let u € L*(G,C™™), v € L%.(G,C™*™) and p be a periodic
representation of G. Let N € My such that v and p are T N-periodic.
By Definition 2.61 it is clear that u * v is 7"-periodic and thus we have
uxv € L2 (G,C™*™) as claimed in Definition 2.61. We have

per

! -1
el gezg‘N %(“(h)”(h 9) ©p(9)
- ﬁ Z Z(u(h) & P(h)) (’U(hilg) ® P(hilg))

geCN heg
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(Zu p(h)> (WL > w(g) ®p(g))

heg geCn
p)o(p)- O

|
)

2.3.4. The Cauchy-Born rule

The Cauchy-Born rule generalizes in a natural way to objective struc-
tures, see [41]. The generalization postulates that if an objective struc-
ture is subjected to a (small) linear macroscopic deformation, all atoms
will follow the deformation still forming an objective structure. Thus,
if the Cauchy-Born rule holds, for each linear macroscopic deformation,
there exists an appropriate group which describes the objective structure.

Definition 2.63. Suppose that L(S) = {I4,} or L(S) = {I4,,—1a4,}
Then, for all transformation matrices A € GL(dz) we define the group

Ga= {(B, (Igl g>b) ‘ (B,b) € g}.

It is easy to see that the group G is isomorphic to G4 and the natural
isomorphism is given by (B,b) — (B, (14, ® A)b). Moreover, the group
Ga is also a discrete subgroup of E(d).

Remark 2.64. (i) The center of O(ds) is {I4,, —1I4,}

(ii) Notice that the premise L(S) = {I4,} or L(S) = {la,,—14,} is
necessary since for an arbitrary G and A € GL(d3) the set

CIDIEEEY

is not a group in general. Also if we assume rank(A — I;,) = 1, the
set G4 is not a group in general, see Example 2.65.

Example 2.65. In this example we present a set S C R? and two discrete
groups G1, G2 < E(2) such that S is the orbit of the two groups, and such
that the group (G1) 4 is well-defined, but the term (Gz2) 4 is in general not
meaningful for A € GL(d3).

Let 2 = (1/2,1/2) € R? and S = x + Z2. Let t; = (Iz,e1), to = (I2,€2)
and gl = <t1,t2>. Let S1 = (127261), S9 = (12,262), p = (R(ﬂ'/?),O) and
Go = (s1,82,p). Then S =G; -z and S = Gy - x. For all A € GL(2) the
group (G1)a is well-defined, but for e.g. A = ({9) it is not possible to
define a group (Gz2) 4 in this way.
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2.3.5. A representation of quotient groups as semidirect
products

By Definition 2.13 for all m € My the group 7™ is a normal subgroup
of G, but in general there does not exist any group H < G such that
G =T™ xH, see Example 2.66. In this section we determine for m € M,
and appropriate N € mN a group H < G/T™ such that

G/TN =T /TN % H,

see Theorem 2.72. The proof is similar to the proof of the Schur-Zassen-
haus theorem, see, e.g., [3]. If G is a space group, for appropriate N € N
the existence of a group H such that G/T = T /TN x H is mentioned
in [7, p.299] and in [29, p. 376].

Example 2.66 (Symmorphic and nonsymmorphic space groups). Here
we give the definition of a symmorphic and a nonsymmorphic space group.
For both of these groups we give an example.

Let G be a space group and 7T its subgroup of translations. If there exists
a group H < G such that G =T x H, then G is said to be a symmorphic
space group, see e. g., [47, Section 9.1]. Otherwise, G is a nonsymmorphic
space group.

Let d = 2, t; = (Is,e1), to = (Is,€2), id = (15,0), p1 = ((§ % ),0) and

p2=((5%),(%)). The space group

{tp|t € (t1,t2),p € {id,p1}} < E(2)

is symmorphic and equal to 7 x H with 7 = (t1,t2) and H = (p1). The
space group

{tp|t € (ti,t2),p € {id, p2} } < E(2)
is nonsymmorphic, since it does not contain any element of order 2, but
the order of the quotient group of the space group by its subgroup of all
translations is 2.

Definition 2.67. Let 7: L(S) — 7(S) be a map such that (P,7(P)) € S
for all P € L(S). We define the map

7: L(8) x L(S) = 7(Ts)
(P, Q) = 7(P) + PT(Q) — 7(PQ).
Furthermore, for all n € N coprime to |L(S)| we define the set

P = {(P,%(P) —an) Y. P, Q)) ’P € L(S)} cs,

QEeL(S)
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where a(n) = max{a € {0,—1,...} | 3b € Z such that @|L(S)|+bn =1}.
For all n € N coprime to |L(S)| let P(™ C G be such that the map

P 5 p
g —m(g)

is bijective, where m: G — S is the natural surjective homomorphism.

Remark 2.68. For all P,Q € L(S) it holds

and thus, the map 7 is well-defined.
If n =1, then a(n) = 0 and Pén) ={(P,7(P))| P € L(S)}.

Lemma 2.69. For alln € N coprime to |L(S)| and for all N € (nN)NM,
it holds

T"FP™ <G and TN «T"FP™.
Proof. Let n € N be coprime to |L(S)].
First, we prove that 7&”7{&70 is a subgroup of S. Let t,s € T3 and
p,q € P(n). We have to show that tp(sq)~! € T”P(n). Clearly, it
holds tp(sq)’1 = tpg ts Y (pg~!)"'pg~!. Since ’T" N S we have that
(pg1)s H(pg~)~' € T&, and hence, it suffices to show that pg~! €
ToPI . Let P = L(p), Q = L(g) and R = PQ~' € L(S). Let a =
max{a € {0,-1,...}|3b € Z such that a|L(S)| + bn = 1} and b € Z
such that a|L(S)| + bn = 1. We compute

= (Pir)-a ¥ Ars)(Q -0 @

SEL(S)

+ta Y QT 5))

SeL(S)
— (R7(P) - PQHQ 0 3 (1(RS) - PQT(Q.5))
SeL(S)
— (RA® - 7(PQ Q) 0 (7(RS) - PQT(Q.5))
SEL(S)

_ (R,%(R) ~ (alL(S)| + b)7(PQ ™, Q)

0 Y (RS- PQ(Q.5)

SEL(S)
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= (trr@) " (7
o Y 6PQQ) +H(RS) - PO rQ.9)))

SeL(S)

~ (1 r(r@) " (7
—a Y (F(PQ')-#(PS)+ PQl%(QS))) :

SeL(S)

We use that > gcr(s) T(S) = Yger(s) T(I'S) for all T € L(S).

p = (1,7 0,@) " (RoAR)

—a Y (FPQH-F#PQ'S) +PQ1%<S>>>

SeL(S)

= (Idzﬂi(Ra Q))_bn (R,?(R) —a Z 7(R, S)) e Tnfp(n).

SEL(S)

Thus, we have ’fglpén) <8S.

Let 7 be the natural surjective homomorphism from G to S with kernel
F. It holds 7~ (7T2PY") = T"FP™ and thus, T"FP™ is a subgroup
of G.

Now let N € (nN) N M. Since n divides N, we have TN ¢ T*FP™)
Since N € My, we have TN « T FP(), O

Recall Definition 2.35.
Remark 2.70. Let n € N be coprime to |L(S)|. Let m € My, N = nm and
ti,...,tq, € T™ such that m({t1,...,tq,}) generates 7, where m: TF —
Ts is the natural surjective homomorphism. Then, the map
{0,....,m—1}% x Fx P™ o (T"FP™)y
(1, o), frp) = 87ty fpT
is bijective.

The following lemma characterizes the elements of the finite groups Gy,
(T"F)n and (T™)y for appropriate n,m, N € N.



42 2. Discrete subgroups of the Euclidean group

Lemma 2.71. Let ty,...,tq, € T such that the set w({t1,...,td,}) gen-
erates Ts, where m: TF — Ts is the natural surjective homomorphism.
For all N € My it holds

gN: {t;ll'--tsjzprN’nlv"'and‘z 6{077N71}7f€f7p€7)(1)}

and particularly |Gn| = N%|F||L(S)|.
For alln € N and N € (nN) N My it holds

(T"F)n = {t?nl.,.t:;:dszN‘n17...7nd2 € {O,...,N/TL*l},fEf}

and particularly |(T"F)n| = (N/n)%|F|. Moreover, for alln € N and
N € (nN) N My it holds (T"F)n <Gn.
For all m € My and N € mN it holds

(T = {trm =T [,y €40, N/m =1},

(T™) N is a subgroup of the center of (TF)n and particularly |(T™)n| =
(N/m)®%.

Proof. Since P(V) is a representation set of G /7 F, the map T x F xP1) —
G, (t, f,p) — tfp is bijective. The assertions are clear by Lemma 2.11,
Theorem 2.17 and Lemma 2.12, Proposition 2.15. O

The following theorem characterizes the group Gy for appropriate N € N.

Theorem 2.72. Let m € My. Let n € N be coprime to m and |L(S)].
Let N =nm. Then, we have

gN — (,TW)N « (Tn]:zp(n))N
and (T™)n is isomorphic to 7.92.

Proof. Let m € My. Let n € N be coprime to m and |L(S)|. Let N = nm.
By Theorem 2.17 we have 7™ <G and TV <G, and by Lemma 2.12 we
have 7V «7™. Hence, we have

(Tm>N<gN. (29)

By Lemma 2.12 the group 7™ is isomorphic to Z and thus, (7™)y is
isomorphic to Z%. By Lemma 2.69 we have

(T"FP™)n < G (2.10)



2.3. Discrete subgroups of the Euclidean group 43

For all N € N and # < S such that 7" is a subgroup of H, we denote
HN = ’H/IZSN

Let m: Gy — Sy be the natural surjective homomorphism with kernel
{gT" |g € F}. We have

T((T™)n N (T"FPM™)x) € n((T™)w) N (T FP™) )

= (T&")n N (TEPS )
=(Ts")n N (TS )N
= {id}, (2.11)

where in the third step we used that for all p € Pgl) such that L(p) = I,
we have p € 7¢ and in the last step we used that the numbers n?
and m® are coprime, |(T&")n| = n?2, |(T&)n| = m? and Lagrange’s

theorem. By (2.11) and since |(7m), is injective, we have

(T™)n N (T FP™)y = {id}. (2.12)
We have
G| = [ker(m)||(Gn)| = HgT™ | g € FHISn| = | FIIL(S)IN®, (2.13)
see Lemma 2.71, and
(T FP™)n| = [ker(r| (70 ppo I (T FPU) x|

= |FITEPE ) n| = |FIPS(TE )] = |f||L<s>v(nd2 |
2.14

see Remark 2.70. By (2.13), (2.14) and since (7™)y is isomorphic to
742 we have

Gx | = [(T™)WII(T"FP™) . (2.15)
By (2.9), (2.10), (2.12) and (2.15) we have
Gy = (T™)n % (T"FPM™)y. O

Corollary 2.73. Let m € My, n € N, n = aim|L(S)| + 1 and N = nm.
Then we have

P — {( )+am Y T >’P6L(8)}

QeL(S)
and

Gy = (TM)n % (T"FP™) N
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Proof. Let m € My, i € N, n = fim|L(S)|4+1 and N = nm. In particular,
n is coprime to m and |L(S)|. We have

max{a € {0,—1,...} | 3b € Z such that a|L(S)| +bn =1}
=max{a € {0,—1,...} | 3b € N such that (@+ bam)|L(S)|+b=1}

= —nm

and hence,
P = {(P,%(P) +am Y T(RQ)) ’P € L(S)}~
QeEL(S)

By Theorem 2.72 we have Gy = (T™)n x (T"FP™)y. O

Corollary 2.74. Suppose that G is a space group. Let N € N be coprime
to |L(G)|. Then we have

Gy =Tn x {gT" |g € PM}.

Proof. Let G be a space group. We have F = {id} and My = N. For all
N € N coprime to |L(G)|, we have (TNPWM) /TN = {¢TN |g € P(N)}
Thus, Theorem 2.72 implies the assertion.

Corollary 2.75. Suppose that G is a space group. Letn € N and N =
n|L(G)| + 1. Then it holds

PN = {(P,%(P) +n Y f(P,Q)) ‘P € L(g)}

QeL(9)
and
Gn =Tn @ {gTN [g € PN},
Proof. This is clear by Corollary 2.73 and Corollary 2.74. O

Corollary 2.76. Suppose that G = TF. Let m € My and n € N be
coprime. Let N =mnm. Then it holds

OGN =(T")n x (T"F)n

Proof. Suppose that G = TF. Let m € My and n € N be coprime. We
have § = Ts and L(S) = {I4,}. Without loss of generality we assume
that 7 = 0. We have 7 = 0 and P(n) = {id}. Without loss of generality
we assume that P = {id}. By Theorem 2.72, Lemma 2.11(ii) and
Proposition 2.15 we have Gy = (T™)n x (T"F)n- O
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2.4. Orbits of discrete subgroups of the
Euclidean group

James [41] defined an objective atomic structure which is an orbit of a
point under the action of a discrete subgroup of E(d), see [42, Proposition
3.14]. In this thesis we consider only orbits where the stabilizer subgroup
is trivial and thus we have a natural bijection between the discrete group
and the atoms.

Definition 2.77. We call a subset S of R% a general configuration if
there exist a discrete group G < E(d) and a point € R? such that the
map G — S, g — ¢ - x is bijective.

Remark 2.78. (i) For each discrete group G < E(d) there exists a point
x € R? such that the map G — R?, g +— ¢ -z is injective, see,
e.g., [18, Appendix A.3]. In particular, the set G - x is a general
configuration.

(ii) The representation of a general configuration by a discrete sub-
group of E(d) and a point in R? is not unique, see Example 2.79.
Moreover, the orbit of a point in R? under the action of a discrete
subgroup of E(d) need not be a general configuration, see Exam-
ple 2.80.

Example 2.79. We present an example showing that in general for a
given general configuration S C R? there exist discrete groups Gi,Gs <
E(d) and a point z € R? such that the maps G; — S, g — g -z and
Go — S, g — g -z are bijective but G; and G- are not isomorphic. Let
S = {%e1,*es} CR% G = <(R(7r/2),0)> < E(2),

(0 D )o))<re

and z = e; € R%2. The group G, is the Klein four-group and thus, G;
and G are not isomorphic. However, the maps G; — S, g — ¢ - = and
Go — S, g — g - x are bijective.

Example 2.80. In this example we present an orbit S of a point in R?
under the action of a discrete subgroup of E(3) which is not a general
configuration.

Let be given a regular icosahedron centered at the origin. Let S be the
set of the 30 centers of the edges of the icosahedron (i.e. S is the set
of the vertices of the rectified icosahedron and moreover, S is the set
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of the vertices of a icosidodecahedron). The rotation group Z < SO(3)
of the icosahedron has order 60, see, e.g., [36, Section 2.4] and we have
S = (T x{03}) - zo for every point zo € S. Now we suppose that there
exist a discrete group G < E(3) and a point x € R3 such that the map
G — S, g — g-z is injective. Then we have |G| = |S| = 30. Moreover, the
group G is isomorphic to a finite subgroup of O(3), see, e. g., [47, Section
4.12]. The finite subgroups of O(3) are classified, see, e. g., [36, Theorem
2.5.2], and since every discrete subgroup of O(3) of order 30 contains an
element of order 15, the group G contains an element g of order 15. Since
the order of g is odd, we have L(g) € SO(3), i.e. g is a rotation. Thus,
the set S contains 15 points which lie in the same plane. This implies
that S cannot be the orbit of G, and we have a contradiction.

Lemma 2.81. Let S C R? be a general configuration. Then for all
a € E(d) the set {a-x|x € S} is also a general configuration.

Proof. Let S C RY be a general configuration. There exist some discrete
group G < E(d) and xg € R? such that the map

g— S
gr—g-xp

is bijective. Then, for every a € E(d) the map

aGa ™t = {a-z|z € S}

g g-(a-zo)
is bijective and thus, the set {a-x |z € S} is a general configuration. [
The following definition can be found in, e. g., [59, p. 14].
Definition 2.82. For all A C R" we define
dim(A) := dim(aff(A)),
where aff(A) is the affine hull of A.
The following lemma is clear by the above definition.

Lemma 2.83. For all A C R? and x¢ € A it holds

dim(A) = dim(span({z — zo |z € A})).
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Lemma 2.84. Let G < E(d) be discrete and xo € R? such that the map
G — R g g- g is injective. Let dog = dim(G - xg). Then there
exists some a € E(d) such that for the discrete group G' = aGa™' and
xhH = a-xq it holds

aﬁ(g/ : '7;6) = {Od*daff} x Ré%,
The map G' — R%, g+ g-x} is injective and we have G' -z} = a- (G- o).

Proof. Let G < E(d) be discrete and xo € R? such that the map G — R?,
g — g - xo is injective. Let dag = dim(G - zp). There exists some dug-
dimensional vector space V' such that aff(G - z9) = xo + V. There exists
some A € O(d) such that {Az |z € V} = {0g_g,,} x R%T. The choice
a = (A, —Azg) € E(d) implies the assertion. O

Lemma 2.85. Let G < E(d) be discrete and xg € R? such that aff(G -
29) = {04_q.s} X R%f where dog = dim(aff(G - ). Then we have
G < O(d — dagt) ® E(dag).

Proof. Let G < E(d) be discrete and xp € R? such that V = {04_4,,} X
Rt where V = aff(G - z0) and dag = dim(aff(G - zo)). Let g € G. We
define the map ¢: RY — R%, 2+ L(g)x.

First we show that V is invariant under ¢. Let « € V. Since V = aff(G -
xg) — xo, there exist some n € N, z1,...,2, € G-x9 and a1,...,a, € R
such that z = >0 | a;z; and Y. | a; = 0. It holds

L(g)z =Y oiL(g)wi = Y _ai(g-a;) € V.
i=1 i=1
Thus we have {L(g)Z|Z € V} C V. Since L(g) is invertible, it holds
{Lg)z|2€V}=V.
Since L(g) is orthogonal, also the complement V+ = R4~ x {0, _} is
invariant under . This implies L(g) € O(d1) @ O(dz). It holds 7(g) =
g-xo— L(g)xg € V and thus, g € O(d1) ® E(d2). O

Lemma 2.86. Let G < E(d) be discrete and xo € R? such that the map
G —RY g g-ag is injective and aff(G - 29) = {0g_d,, } X R%% where
dog = dim(G - x0). Let G' = {I4—q,, D g|lg € E(d2),FA € O(dy) : Adg €
G}

Then G’ is a discrete subgroup of E(d), the map

g—¢
A®g— T4 q,Dyg if A€ O(d —dat), g € E(duagt) and A g€ G
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is an isomorphism, G - xy = G' - xo and the map G — R%, g — g - xq is
injective.

Proof. Let G < E(d) be discrete and xo € R? such that the map G — R?,
g+ g - xo is injective and aff(G - zo) = {0g_g.,} X R%F where d.g =
dim(G - zp). By Lemma 2.85 we have § < O(d — dag) @ E(dag). Let
G ={li—a.; ®Dglg € E(dz),3A € O(dy) : A® g € G}. We define the

map

p: GG
ADg—Ig g, Dg HA€O(d—dug),g €E(dagr) and Ad g € G.

It is clear that ¢ is a surjective homomorphism. Since z¢ € {0g—_d,,} X
R%t for all g € G it holds g - z9 = @(g) - xo. Particularly, we have
G-x9 =G -xo. Since the map G — R%, g — ¢ - x¢ is injective, the map
¢ is injective and thus, an isomorphism. Since the map G’ — G’ - z¢,
g — g - g is a homeomorphism and G’ - xq is discrete, G’ is discrete. [

Remark 2.87. (i) Let G < E(d) be discrete, zo € R% and A = aff(G-x¢).
For all g € G it holds {g- x|z € A} = A.

(ii) Let G < E(d) be discrete and zg € R%. Let V be the vector space
such that aff (G-zo) = xo+V. Then for all g € G it holds {L(g)x |z €
Vi=V.



3. Seminorms on the vector
space of all periodic
displacements

The main results of this chapter are Theorem 3.34, Theorem 3.37 and
Theorem 3.40.

We use the following notation. Let d, dy, d2, G and T be as in Defini-
tion 2.6, My as in Definition 2.13 and Cy as in Definition 2.50 for all
N € My. Let zy € R? be such that the map G — R%, g — ¢ - g is in-
jective. Let dug denote the dimension dim(G - xg). Moreover we suppose
that

aff(G - x0) = {0g_q,, } x R%,

which can be achieved by a coordinate transformation, see Lemma 2.84.

3.1. Motivation of the model and the
seminorms

In the physical model the dimension d is equal to 3 and there are atoms
at the points G-xg. Since the map G — R%, g — g-xg is injective, we have
a canonical bijection between G and the atoms. We displace the atoms
a little bit and describe the small displacement by a function u: G — R?
such that the atoms are now at the points

(vu(9))geg = (g - (xo +u(9)))geg-

If u = 0, then the atoms are not displaced. If there exists some a € R?
such that L(g)u(g) = a for all g € G, then we have a translation of the
atoms in the physical model. If there exists some R € SO(d) such that
L(g)u(g) = (R —I4)(g - o) for all g € G, then we have a rotation of the
atoms about the origin in the physical model.

Let R be a finite appropriate subset of G. Now we want to define a
seminorm | - ||g on the vector space of all appropriate displacements w,
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which quantifies the size of v, 'modulo local isometries’ Let u: G — R4
be TN -periodic for some N € My. We want to define the seminorm such
that

ull = ~ <|Ctv 3 dist? (vu\gn, {(a ~(h - 0))hegr ’ ac E(d)}));,

geCn

(3.1)

where dist is the induced metric of the Euclidean norm on (R%)®. For
every g € Cy we have

dist (vu|g73, {(a “(h-20))hegr ‘ a € E(d)})
= dist(((9h) - (w0 + u(9h))) e { (@h) - 20) e [ € B } )

- dist((u(gh))hen, {(L(h)T((ah) 20— h-70))n ‘ ac E(d)}).
(3.2)

Let U C E(d) be a sufficiently small open neighborhood of id. Then the
set

{(L(h)T((ah) 20— h-70)),n ‘ ac U}
is a manifold and its tangent space at the point 0 € (R9)® is
Uio(R) = {(L(h)T(b +S(h-20))),cr ‘ beR: S e Skew(d)},

see Proposition 4.19. Since we consider only small displacements u ~ 0,
by (3.2) and Taylor’s theorem we have

dist (Uu|g7?,7 {(a “(h-20))hegr ‘ a € E(d)}) ~ dist(u(g - )|r, Uiso(R))-
(3.3)
By (3.1) and (3.3) we define the seminorm || - ||z by

lull = (|C1N| 3 distz(u<g~>R,Uiso<R>>)2,

geCn

see Definition 3.1 for the precise definition of the seminorm || - ||z.

3.2. The seminorm || - ||»

The main result of this section is Theorem 3.34.
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Definition 3.1. We define the vector spaces
Uper,c == L32.(G,CPY) = {u: G — C*|u is periodic}

and
Uper := {u: G — R%|u is periodic} C Uper.c.

For all R C G we define the vector spaces
Utrans(R) 1= {u: R — R ‘ JaeRiVgeR: L(g)u(g) = a},
Uror(R) := {u: R — R \ 35 € Skew(d) Vg € R : L(g)u(g) =

S(g -0 — 170)}
and
Uiso(R) := Utrans(R) + Urot (R).
For all finite sets R C G we define the norm
-1l {u: R = R — o, 00)

wes (ZRu |2)

and the function

I ll=: Uper = [0,00)

1 2 . . . .
~ (m Z 1700 () (g - )|R)||2) *if wis TN-periodic,
geCn

where 7y, (r) is the orthogonal projection on {u: R — R?} with respect
to the norm || - || with kernel Uiso(R).

Remark 3.2. (i) The map ({u: R — R4}, || - ||) = (CIRL|-|)), u —
(u(g))ger is an isomorphism for all finite sets R C G. Thus there
is no ambiguity between the above definition and Definition 2.45.

(ii) The definition of || - ||z is independent of the choice of Cn for all
N € M.

(iii) One could also consider the vector space
{u: R — R4 ‘ 35 € Skew(d) Vg € R : L(g)u(g) = S(g - xo)},

instead of Uyt (R) since its sum with Ugyans(R) is also Uiso(R). Due
to technical reasons we prefer Uyt (R).
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For the definition of a seminorm see Definition C.1.
Lemma 3.3. For all finite sets R C G the function || - ||z is a seminorm.

Proof. Let R C G be finite, V = {v: G — {w: R — R%} |v is periodic}.
We define the maps

f1: Uper -V
U (v: G—{w:R— ]Rd}7 g inSO(R)(u(g . )|R))
and
fg: V — [0, OO)
1 3
v ( Z ||U(g)||2> if N € My and v is T™-periodic.
Cn|
geCn
It holds || - [|[g = f2 o f1. Since f; is linear and f5 is a norm, the map
|l - |z is a seminorm. O

Remark 3.4. For all finite sets R C G the seminorm || - | satisfies the
parallelogram law, i. e. the seminorm is induced by a positive semidefinite
symmetric bilinear form.

3.2.1. Equivalence of the seminorms || - ||z, and | - ||z,
for appropriate R, R, C G

Definition 3.5. We say R C G has Property 1 if R is finite, id € R and
aff (R - xg) = aff (G - xp).

We say R C G has Property 2 if R is finite and there exist two sets
R',R" C G such that id € R', R’ generates G, R has Property 1 and
R'R" CR.

If R C G has Property 2, then R has also Property 1.

Lemma 3.6. Suppose that R C G has Property 1. Then there exists
some A € R&=#XIRl of rank dag such that

Og—g. v
(9 20— 0)ger = ( d ”ijf’m).
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Proof. Suppose that R C G has Property 1. Since G - z¢g C {04—a,,} X
R%#  there exists some A € R%#*IRl guch that

(g w0 — xo)geR = (2)

It holds
dim(span({g-zo—x0 | g € R})) = dim(aff (R-z¢)) = dim(aff (G-z¢)) = dag
and thus, rank(A) = dag. O
Definition 3.7. For all finite sets R C G we define the function
pr: {u: R = R4 — [0, 00)
w7, Ry (W)l
where 7y, (r) is as above.

Lemma 3.8. For all finite sets R C G the function py is a seminorm
and its kernel is Uiso(R).

Proof. This is clear. O

Definition 3.9. For all finite sets R1, R2, Rz C G such that R; C R3Ro,
we define the function

IR, Ry Rs " {u: Ry — Rd} — [0, 00)

U inf <Z PR, (v |R2)> .

v: RaRa—R?
R
vlry=u 9eTs

Lemma 3.10. The infimum in Definition 3.9 is a minimum, i. e. for all
finite sets R1,Ra, R3 C G such that R1 C R3Ra and for all u: Ry — R
there exists some v: R3Rs — R such that v|lr, =u and

1
2
IRy Ry Rs (U ( Z pR2 |R2)> :

gERs3

Proof. Let R1,R2,R3 C G be finite such that R; C R3R2. We define
the liner map

Ay {v: RsRy — R4} — {w: Ry — R}

U= 7TUiso(’Rz)(U(g : )|R2)



54 3. Seminorms on the vector space of all periodic displacements

for all g € Ro, where 7y, (r,) is as above, and the linear map

A: {v: RsRy = R4} — {w: Ry — R4} Re

v (Agv)gers-
For all g € R3 and v: RgRe — R we have

Pr, (v(g - )Ir,) = [Agv]

and
1

(3 haleto ) = lol.

gERs3

Thus, for all u: Ri — R? there exists some v: R3Rs — R? such that
U|R1 =u a’nd qu,RQ,Rg (U) = ||A'U|| D

Lemma 3.11. Let R1,R2,R3 C G be finite such that Ry C R3Rs. Then
the function qr, », », S @ seminorm.

Proof. Let R1,R2,R3 C G be finite such that Ry C R3R2. We have
to show that ¢p, g, r, is subadditive. Let A: {v: RgRy — R} —
{w: Ry — R4}Rs be the map as in the proof of Lemma 3.10. For all
U1, uz: R1 — RY we have

IR, RyRs (U1 + u2) = inf{||Av|| !v: R3Ro — R v|r, = uy + us}

= inf{||Av1 + Aws| {vl,vgz RsRa — Rd,v1|R1 =uy,v2|R, = ug}

< inf{||Av1|| + || Avs] "02,1}22 R3Ry — R vi|r, = u1,va|r, = UQ}

= (R, Ry Rs (U1) T AR, Ry RS (U2)- O
For the definition of the equivalence of two seminorms see Definition C.2
Lemma 3.12. Suppose that Ry C G has Property 1 and Ro C G has

Property 2. Then there exists a finite set R3 C G such that Ry C R3Ro
and the seminorms pp, and qp, p, r, are equivalent.

Proof. Suppose that Ry C G has Property 1 and Ry C G has Property 2.
By Lemma 3.8 the map pg, is a seminorm with kernel Uj,(R1). By
Lemma 3.11 for all finite sets R3 C G such that Ry C R3R> the function
dR, R, R, 1S @ seminorm. Hence, by Lemma C.4 it suffices to show that
there exists a finite set Rz C G with R1 C R3R2 and

ker(QRl,Rz,Rg) = Uiso(R1).
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First we show that Ujso(R1) C ker(qu’R%Rs) for all finite sets Rs C G
with Ry C RgRQ. Let Rg C G with Ri1 C RgRQ. Let u € Uiso(R1)~
There exist some a € R and S € Skew(d) such that
L(g)u(g) = a+ S(g - zo — x0) for all g € R4.
We define v € Uiso(RgRQ) by
L(g)v(g) =a+ S(g-x0 — x0) for all g € R3Rs.

We have v|g, = u and v(g-)|r, € Uiso(R2) for all ¢ € R3. Using
Lemma 3.8 it follows

2 .
q u) = inf Z P2 R
Rl,Rz,Rg( ) w:R3R2~>Rd ER Rg | 2)
w|72 =u g9 3
Z pR2 |R2)
gERs3
=0.

Hence, we have Uiso(R1) C ker(qp, », r,)-

Now we show that there exists some R3 C G such that ker(¢z, z, r,) C
Uiso(R1). By Property 2 of Ry there exist finite sets R5, R, C G such
that id € RY, RS, generates G, R} has Property 1 and

RLRY C R

Since R/, generates G, there exists some ny € N such that

Ry C {id} U U{gl...gk‘gh...,gk GRIQU(R’Q)_l}.
k=1

Let

1o

Ry = {id} U U{g1.-.gk ‘917~-.,gk EREU(RQ)_1}~
k=1

Let u € ker(qg, »,x,)- By Lemma 3.10 there exists some v: RgRy — R?
such that v|r, = u and pp,(v(g-)lr,) = 0 for all g € R3. Hence, for all
g € R3 there exist some a(g) € R? and S(g) € Skew(d) such that

L(h)v(gh) = a(g) + S(g)(h - zg — x0) for all h € Rs. (3.4)
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Since G- 29 C {04—d,,} X R%, we have h-x¢ —zg € {04_d,, } X R% for
all h € Ry. Hence, for all g € R3 we may assume

0 S (9))
S =
(9) <—51 (9)7 Sal9)
for some Sy (g) € R(@—dam)*dait and Sy(g) € Skew(dag). We prove induc-

tively that for n =0,1,...,ng for all g € {id}UU;_,{91--- 9k |91, -, 9k
€ RHU (RS) ™1} it holds

L(g)a(g) = a(id) + S(id)(g - o — x0) and S(g) = L(g)"S(id)L(g).
(3.5)
For n = 0 the induction hypothesis is true.
We assume the induction hypothesis holds for arbitrary but fixed 0 <

n < no. Let g € {id} UUZzl{gl--yk‘gl,---yk € RyU (72’2)‘1} and
r € RhHU (R
Case 1: r € R},

Since g € R3 and rRY C Rao, by (3.4) we have

L(rh)v(grh) = a(g) + S(g)((rh) - 7o — xo)  for all h € RY. (3.6)
Since gr € R3 and RY C Rq, by (3.4) we have
L(h)v(grh) = a(gr) + S(gr)(h - o — x0) for all h € RY. (3.7)
By (3.6) and (3.7) we have
L(r)a(gr) + L(r)S(gr)(h- 2o — o) = a(g) + S(g)((rh) - zo — z0) (3.8)
for all h € RY. Since id € Ry, by (3.8) we have
L(r)a(gr) = alg) + S(g)(r - 70 — o) (3.9)
and with the induction hypothesis follows

L(gr)a(gr) = a(id) + S(id)(g - xo — x0) + S(id)L(g)(r - £y — x0)
= a(id) + S(id)((gr) - ®o — o).

By (3.8) and (3.9) we have

L(r)S(gr)(h -z — x0) = S(g)((rh) - w0 — 7 - x0)
= S(g)L(r)(h - xo — x0) (3.10)
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for all h € RY. By Lemma 3.6 there exists some A € R%&#xIRz| of
rank d,g such that

O "
(h 20— T0)nery = ( daf;l“% |>.

By (3.10) and the induction hypothesis we have

(star) - Lar) st L) (§) =0, (3.11)

By Lemma 2.85 there exist some By, € O(d — dag) and Cy, € O(dag)
such that L(gr) = By, @ Cyr. Equation (3.11) is equivalent to

((51 (gr) — BgTFT.Sl(z’d)C’g,)A> i
(Sg(g’l") - CgrS2(Zd)C(]7‘)A -

Since the rank of A is equal to the number of its rows, we have
Si(gr) = B].S1(id)Cy, and Sy(gr) = C,,S5(id)Cy, which is equiv-
alent to S(gr) = L(gr)TS(id)L(gr).

Case 2: r~1 € R}.
Since g € R3 and RYy C Ra, by (3.4) we have

L(h)v(gh) = a(g) + S(g)(h - o — o) forall h e RY.  (3.12)
Since gr € R3 and 1 RY C Ra, by (3.4) we have
L(r—*h)v(gh) = a(gr) + S(gr)((r—'h) - 2o — 20) for all h € RS.
(3.13)
By (3.12) and (3.13) we have
a(gr) + S(gr)((r~*h) - zo — o) = L(r)"alg) + L(r)"S(g)(h - w0 — w0)
for all h € RY. Since id € RY, by (3.14) we have 10
a(gr) + S(gr)(r~" - wo — o) = L(r)a(g). (3.15)
By (3.14) and (3.15) we have
S(gr)((r~"h)-xo —x0) = S(gr)(r~"-zo —x0) + L(r) " S(g) (h - 2o — o)
for all h € R}. This is equivalent to

S(QT)L(T>T(h ~xo — Tg) = L(T)TS(Q)(h T — o) (3.16)
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for all h € RY. By Lemma 3.6 there exists some A € R%&sxIRz| of
rank d,g such that

O ’”
(h - To — xo)hERg _ ( dafiilRﬂ).

By (3.16) and the induction hypothesis we have

(stan) - Ll s Leze)(§) =0 @D

By Lemma 2.85 there exist B, By, € O(d—dag) and C,., Cyr € O(dag)
such that L(r) = B, & C, and L(gr) = By @ Cyr. Equation (3.17) is
equivalent to

(S1(g7) = B, S1(id)Cor)CTAY _ o
((Sz(g) cl Sa(id )C’gr)C'TTA> -

Since C. is invertible and the rank of A is equal to the number of
its rows, we have S1(gr) = B;,.S1(id)Cy, and Sy(gr) = C],.S2(id)Cy,
which is equivalent to S(gr) = L(gr)"S(id)L(gr). As S(gr) = L(gr)"
S(id)L(gr), we have by (3.15) and the induction hypothesis that

L(gr)a(gr) = L(g)a(g) — L(gr)S(gr)(r~" - z0 — o)
= a(id) + S(id)(g - xo — x0) — S(id)L(gr)(r~ - zo — x0)
= a(id) + S(id)((gr) - w0 — o).

Since Rq C R3 and v|g, = u, we have by (3.4) and (3.5) that
L(g)u(g) = L(g)v(g) = L(g)a(g) = a(id)+S(id)(g-zo—z0o) for all g € Ry
and thus, u € Ujso(R1). O

Theorem 3.13. Suppose that R1,Ro C G have Property 2. Then the
two seminorms || - ||r, and || - ||z, are equivalent.

Proof. Suppose that R1,Ro C G have Property 2. It is sufficient to
show that there exists a constant C' > 0 such that |- ||z, < C| - |»,-
Property 2 implies Property 1 and thus, by Lemma 3.12 there exists a
finite set R3 C G such that Ry C R3R2 and some C' > 0 with pp <
Cqr, r, rs- L€t u € Uper. There exists some N € My such that u is
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TN-periodic. We have

geCn
|C ‘ Z q’Rl,Rg,’R3 (9-)Iry)
geCn
DRI SN
| N‘ gECN v: R3Ro—R? GERS

v|r, =u(g)|r,

ICN\ >N vk, (ulgd)Ir,)

geCN GER3

Z Z pRz lr.)

QGRGQGCNQ
= CQ|R3|HUH’R2>

Ir.)

59

where we used that Cn§ is a representation set of G/T™ for all § € R

in the last step. Hence, we have || - |[r, < C|Rs|z]| - |z,

O

Remark 3.14. In Theorem 3.13 the premise that R; and R9 have Prop-
erty 2 cannot be weakened to the premise that R; and R, are generating

sets of G and have Property 1, see Example 3.33.

3.2.2. The seminorms || - ||, o, || [[rv @nd | - [z v

Definition 3.15. For all R C G we define the vector spaces

Urot0(R) = {u: R — R ‘ 35S € Skewo.q, (d) Vg € R : L(g)u(g)

S(g-wo— Io)}
C Urot(R)
and

Uiso,O(R) = Utrans (R) + Urot,O(R) C Uiso (R)a
where

S S

Skewo a, (d) := {(_ oT 02) ‘sl € Skew(d;), Ss € Rledz} C Skew(d).
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Definition 3.16. For all u € U, and finite sets R C G we define the
discrete derivative
Veu: G — {v: R — R%}
g (Vru(g): R = R b — u(gh) — L(h)Tu(g)).
Remark 3.17. Let R C G be finite, u € Uper and v,: G — R g —
g - (xo + u(g)) which describes the position of the atoms in the physical

model, see Section 3.1. Then the relation between the derivative of v,
and the discrete derivative Vzu is given by

(valgh) = vu(9)) er = ((9h) - 70 = g+ 70 + Lgh) (Tru(9))(R) )

forall g € G.

If u € Uper is TN-periodic for some N € My and R C G is finite, then
also the discrete derivative Vgu is 7N -periodic.

heR

Definition 3.18. For all finite sets R C G we define the seminorms

I l1=.0: Uper = [0, 00)

( Z 7000 9= ) if u is 7N -periodic,

gEC

[ME

I 1=, v: Uper = [0, 00)

(|C | Z 170, r) (VrRU(g ))||2) °if wis TN-periodic,
geCn
and

|- [I=,v,0: Uper = [0,00)

1 1
u (m > HWUmo(n)(Vnu(g))Ilz) *if wis 7V-periodic,
N
geCn

where 7y ((R)s MU (R) and Ty, o(r) are the orthogonal projections
on {u: R — R4} with respect to the norm || - || with kernels Usso,0(R),
Urot (R) and Uyor,0(R), respectively.

Remark 3.19. (i) For all finite sets R C G, the proof that the functions
Il - =05 || - l=,v and || - |z, v,0 are seminorms is analogous to the
proof of Lemma 3.3.

(i) We have || - lr,v = || - [r\{ia}y,v and || - |=,v,0 = || - =\ {id},v,0 for
all finite sets R C G
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(iii) Let t; = (Ig,e;) for all ¢ = 1,...,d. If G = (t1,...,tq) and
R = {t1,...,tq}, then we have |7y, () (Vru(g))| = [[(Vru(g) +
(Vru(g))")/2| for all u € Upe, and g € G.

Proposition 3.20. Let R C G be finite and id € R. Then the semi-
norms || - [|r and || - ||r,v are equivalent and the seminorms || - ||r,0 and
Il - =, v,0 are equivalent.

Proof. Let R C G be finite, id € R and without loss of generality R #
{id}. Let u € Uper. There exists some N € My such that u is TV-
periodic. We have

lull%,v = |c | Y 70y (VRu(9) 1

geCn

|C | Z || U;go('R) )|R)H2

geCn
= |lull%
and thus, || |r.v > || - |lr. Let R = R\ {id}. For all g € Cy it holds
1700 (R) (ulg ')|R)H2

. . 2
- bleand SESll?ef\;v H( u(gh) —=b—S(h - a0 _xo))heRH

beRC SeSkew(d)
)
= inf (|b||2 + inf |(L(h)u(gh) —u(g) — b

beR4 SeSkew(d)
2)

R sednl ol (L(Ru(gh) - u(g) — b
)
> inf <|b||2+ 1 <1 inf |[(L(h)u(gh) — u(g)
~ beRd IR'|

2 SeSkew(d)
)

= inf (|u(g) —b|*+ inf [[(L(R)u(gh)—b

—S(h-zg—2x

0))h€72’

— S(h - To — o
> inf <|b||2 -
beRd

—Sh-zy—x

Diers

0)) her:

—S(h'xo—l'o 2

))he’R' o || (b)he’R’
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1
= g1t (VRu(@)] ?

)

where in the second to last step we used that ||v +w||? > ||v]|?/2 — ||w]|?
for all v,w: R’ — R%. Thus, we have

e = g 3 ety g )]

geCn

1 2
2 s v
= 2‘R/||CN| gGZCNHﬂ—Umt(R)( RU(Q))H

1 2
= WHUHR,V'

Hence, we have || - ||z, v < V2|[R/||| - [|»-

The proof of the equivalence of the seminorms | - ||gr,0 and | - [|z,v,0 is
analogous.
3.2.3. Equivalence of the seminorms | - ||z and |- ||,

The following lemma is well-known.

Lemma 3.21. There exists a constant ¢ > 0 such that for every n € N
it holds

Hac@yT—&-AH > c(”x@yTH + HAH) for all x,y € C"*, A € Skew(n, C).

Proof. Let z,y € C™ and A € Skew(n,C). Since C"*" = Sym(n,C) &
Skew(n,C) we have

Hx@yT—i—AHQZHl(ﬂc®yT+y®xT)H2
= HeoyT*+ 3 (Zw)
> ooy
If |[A]| < 2l © 7|, then
e @y + Al = Hx®yTH> (Hx®yTH+||A||)
It [ A]| > 2]}z © y"]|, then

lz@y" +A| > Al -|zey"|| > (H:c@yTH +[14])- O
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For the proof of Theorem 3.24 we need the following lemma.

Lemma 3.22. Letn €N, g € Ny and B1,...,8; € R. Then there exists
an integer N € N such that

max

q
max oo (sin(man).....sin(man) + 3 sin(m) By + m H 18]

k=1

foralla e C*, ay,...,a, €ER, By,...,B, € C"*™ and S € Skew(n,C).
q

Remark 3.23. If ¢ = 0, then the term Y i_, sin(mfy)By, is the empty
sum.

Proof. Tt suffices to prove that there exists a constant ¢ > 0 such that for
alln € N, g € Ny and f§1,..., 84 € R there exists an integer N € N such
that

max

q
e a® (sin(may), ... ,sin(man))+z sin(m,@k)Bk—FmSH > |||

k=1

for all a € C", au,...,an € R, By,..., B, € C"" and S € Skew(n,C)
due to the fact that for N=J2 1N we have

a ® (sin(may), ..., sin(may)) + Z sin(mp)Br + mS’H

max
me{l,...,N} k=1
> max Ha@(sm( ([%]al)),...,sin(m([llan
me{l ..... N

+ > sin(m([4164)) B + m(1119)|

Since

1 s
i,je{l,:..,n}
1<J
for all M = (m;;) € C"*", it suffices to prove the assertion for n = 2.
Let ¢ € Ng and 54,...,8, € R. Without loss of generality we assume
B1,...,8; € R\ (mQ): Let ng € N be such that no8; € 7Z for all
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ke {l,...,q} with 8; € 7Q. Then we have

max
me{l,...,noN}

a ® (sin(may),sin(mas)) + Z sin(mpy) By + mSH
k=1

> max

e a ® (sin(m(noay)), sin(m(noaz)))

+ Z sin(m(noBx )Bk+m(noS)H
/Bk%ﬂ@

forall N € N,a € C? aj,a2 € R, By,..., B, € C**?and S € Skew(2,C).
For all a > 0 we define the function

|“]a: R = [0,00)
x — dist(z, aZ).

Moreover, without loss of generality we may assume |8 — SBi]2r > 0 for
all k # [ and since

sin(mfB) = —sin(m(27 — 3))

also |8k + Bilax # 0 for all k # [. For the definition of a suitable integer
N € N and the following proof we define some positive constants. By
Lemma 3.21 there exists a constant ¢y, > 0 such that

lz @ y" + Sl > crllzll(ya] + ly21) + cr S]]

for all 7,y € C% and S € Skew(2,C). In particular, this inequality implies
the assertion for ¢ = 0. Hence we may assume g # 0, i.e. ¢ € N. Let

; n (3™
= min — T R
L et gy L 2R T 5 on
Y1FEY2
4(2 1 6 4 2 32nC
C1=(q7+), Co =2 and C3:max{ g+ , T 2}.
M1 p1 p1 01

By Kronecker’s approximation Theorem D.5, for all k € {1,...,q} there
exists an integer g such that 2C5 + 2 < ¢ and

1 1
‘ <

| Be 1
Uk ™ 1_37T03.
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2C 167C
lemax{[l“ﬂq,l—ﬁ-[ T 2—‘,(]1,..-,(](;}61&
Cr, 51

For all @ € R we define ()2, € R by {(a)2r} = [-7,7) N (e +27Z). We
have |(@)2r| = |a|2r. By Taylor’s Theorem we have for all «, 8 € R and
necN

sin(na) = sin(n(8+(a—08)2r)) = sin(nB)+n(a—23)ax cos(nf)+R(n, a, B)
where R(n, «, 3) is the remainder term. Let d2 > 0 be so small such that
IR(n, @, B)] < Lnla — Blaclcos(nB)| (3.18)

forall n € {1,..., N1}, @ € R with |a — B|ar < d2 and g € {0, 7, B1,.. .,
Bq}. Let

Let

1 24+1 2
03 = min{d1,d2}, p2= ((LP’) T and o= 9+3

2q+2 2T 125
Let
N =max{Ny,1+ [C4]} € N.

T 2 by bl 2x2
Now, let a = (a1,a2)' € C*, ay,as € R, By = (b};) b(1’3>) € C=*< for all
21 22

ke{l,...,q} and S = (9 ) € Skew(2,C). We denote

LHS = max
me{l,...,.N}

a ® (sin(may ), sin(mas)) + Zsm mpBr)By + mSH
k=1
Case 1: Vi € {1,2} : ((|ail2n < 02) V (Ja; — Tlar < 02)).
Case 1.1: 370 || Bill > Ci([lal[(|az]x + |azlx) + [IS]])-
Let i,j € {1,2} with Zz:1|b£—f)\ > 137 IIBkll. By the definition
of §; we have

. i i . 1= 7212
min ‘el’h _ el’Yz| > min w >
Y1,v2€{£B1,...,£Bq} Y1,72€{£pB1,...,£Bq} s

Y1FY2 Y17#Y2

o
™

By Turdn’s third Theorem D.6 there exists some v € {1,...,2¢}
such that

q
Z bk sm (vBk)

k=1

k
Z(lbg 71uﬁk I lb( : wﬁk)‘
2

k=1

>




66 3. Seminorms on the vector space of all periodic displacements

> Z|b(k)

q

> B -

We have

— lla @ (sin(vay), sin(vag))|| = [[v5]]

Z sin(v ) B

k=1

H1
e ZHBkII—2qHall(\a1Iﬂ+la2| ) —2q||S|

LHS >

k=1
> ||S]l-
Case 1.2: 3751 [|Brll < Cillall(lealx + lazlx) + [1S])-
We have
q
LHS > ||a ® (sin(Nyaq),sin(Nyas)) + N1.S|| — Zsin(Nlﬁk)Bk
k=1
q
> crlall(|sin(Nran)| + [sin(Nraz)[) + e N S| = Y| Bill
k=1
( . ) CLN
> 1||a||(|041|7r+|042\ )+ eS| - ZHBkH
k=1
CLN1
> =5 (lall(lanlx +lazl=) + IIS1) + *||5|| Z”BkH
CL
> = .
> Lis)

Case 2: Fie {1,2}, Ik € {1,...,q} : ((Jas — Br|axr < d2) V
(i + Brlax < 02)).
Without loss of generality let ¢ = 1 and k¥ = 1. Without loss of
generality we may assume |a3 — 51]2x < 2 since

a ® (sin(may),sin(maz)) = (—a) @ (sin(m(—aq)), sin(m(—az)))

for all m € N. Let §; be equal to 1 if £k = 0 and equal to 0 otherwise.
Case 2.1: Y% _ |asdk—_1 + bé§)| > Cylaz||lar — Bil2x and
max{]as|as — Blzr, Sy azbir + b5 |} > Cals.
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Since C5 > 1 the condition is equivalent to

q q
2\025k—1+bg§)| > Cslas|lar—Pif2r and Z|a25k—1+b$)| > Css|.
k=1 k=1

By Turan’s third theorem (analogously to Case 1.1) there exists an
integer v € {1,...,2q} such that

q
(ag(sk—l + bé’i)) sin(v )
k=1

zq: i(a20k-1 +08) s —ilazdeoy +05Y) s
—2 e + 5 e

k=1
2 k
> 1 Z‘az&cq + bél) .
k=1
We have

(3.18) | 4
LHS > Z(agdk_1+bgi))sin(yﬂk)

k=1

3
= glazlvlar = Bilax|cos(vBi)] — vls|

v

q
B B Z k
(5+%) k_l‘%%-l + 05| = Balaallas — Bilx — 2as]

v

|s]

1
= —|9].
\/5” |
Case 2.2: Y 1_ |asdr_1 + bé’?| < Cslagllan — Bilax and
max{|as|[ar = Bilor, i |asdk 1+ b57 [} > Cylsl.

By Turan’s third theorem there exists an integer v € {Ny — 1, N1 }

such that
01
> -

_ |1,ivpB 1,—ivB
|cos(vf1)] = ‘56”’ T gen R > i

We have

(3.18) 1
LHS > §|a2\|cos(uﬁl)|u|a1

- 61‘271’ -

—vls]

q
> (@201 + b)) sin(vp)
k=1
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51(N1 — 1) (51V
> - - 7 - —
— ( 167T + 1671- |a’2||a1 51|27T

q
— Z|a25k_1 + bgm —vls|
k=1
> vs|

1
> —|9].
> ISl

Case 2.3: max{|as||aqr — Bil2r, > f_i|a2dp—1+ bgi)\} < Csls].
By Definition of ¢; we have

lcos(q1B1)] = [sin(q181 + 5)| < lgquBr + 5l = 7| 222 4+ 1|y < 5.

So we have

(3.18) ,
LHS > qi]s| — 3|azl|cos(q11)|q1|ar — Bil2x

q
— D" (azdp—1 +b5) sin(g1 8¢
k=1

> (145 +0s)lsl = 5 lasllon — il

— Z’a25k71 + bé’i)‘
k=1

1
> —|9|.
> ﬁll |
Case 3: 31 € {1,2} : (o — Blar > 62 VB €{0,m,£61,...,£8,}).
Without loss of generality let ¢ = 1.
Case 3.1: |aa| + > 1_ |b(k)| > Cyls].
By Definition of 53 we have

min |ei“’1 - e”z{
Y1, v2€{xa1,£81,...,.£8,}

Y172
> mi |’Y1 - ’72|27r
T yive€{tal,£B1,...,£8q} ™

Y1FEY2
> min{51, 52}
- s
d3
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By Turén’s third theorem there exists an integer v € {1,...,2¢+2}
such that

ag sin(vay) + E b21 sin(v )
k=1

() :p (k)
10,2 —1ua1 N —iag wozl +Z( b —1uBk + _1b21 e”ﬁk)‘

2 2 2
> u2(|a2 +Z\b<’“> )
We have
LHS > |agsin(rva) me sin(vB)| — v|s|
k=1
>M2(|“2|+Z|b(k)> (2q +2)|s]
> |s

|
1
V2

Case 3.2: |az| + ZZ:1|b§’;)| < Cyls].
We have

1S1]-

q
Z b21 sin(NB)

51~ (las +Zrbm r)_

LHS > N|s| — |agzsin(Nay)| —

v

|s|
1
= —|S].
ﬂll |
Since case 2 and case 3 include the case
Ji € {1,2}: ((Jailon > 02) A (Joi — T|2r > 62)),
the assertion is proven. O

Theorem 3.24 (A discrete Korn’s inequality). Suppose that R C G has
Property 2. Then the two seminorms || - |r and || - ||r,0 are equivalent.
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Proof. Suppose that R C G has Property 2.
First we show the trivial inequality || - [|= < |- [|=.0:
Let u € Uper. Let N € My be such that u is TN_periodic. Since
Uiso,0(R) C Uiso(R), we have
1
Julfe = g 3 I (u(a )P

geCN

1
< ] 22 I (0l IR

geCnN
= [|ull%,o-

Now we show with the aid of the Plancherel formula that there exists a
constant ¢ > 0 such that || - [|g > ¢| - ||=.0:

By Theorem 2.17 there exists some m € N such that My = mN. By
Lemma 2.12 the group 7™ is isomorphic to Z% and thus, there exist
t1,...,ta, € T™ such that {¢1,...,t4,} generates 7™. Since L(T™) is
a subgroup of ®(0(d — dag) X O(dag — d2) x {I4,}) and the elements
t1,...,tq, commute, by Theorem D.4 we may without loss of general-
ity (by a coordinate transformation) assume that there exist matrices
A1, ..., A4y, an integer g € {0,..., |(dag — d2)/2]}, vectors vy,...,v4, €
{£1}dan=d2=20 and angles 0y 1,...,04,.4 € [0,27) such that

L(t;) = Ajddiag(vi)) DR(0i1)D-- - DR(0;,4)®1q, forallic {1,...,d2}.
d2 g
a® (sin(naq),...,sin(nag,)) — Z Z sin(nb; ;)B; ; —nS ‘
i=1j=1

> |15l (3.19)

By Lemma 3.22 there exists an integer Ny € N such that

max
n€{l,...,No}

for all a € C%, ay,..., a4, € [0,27), B11,...,Ba,q € C%2%% and S ¢
Skew(dy,C). Let Ro = {t?"|i € {1,...,d2},n € {£1,...,£No}} C T™.
Since || - [|[rRuRo,0 = || - Ir,0 and by Theorem 3.13, we may without loss
of generality assume that Rg C R. For all finite sets R’ C G we define
the map

gr': Skew(d,C) — CH¥IR'l
S+ (L(h)"S(h- o — x0))her-
Now we show that there exists a constant ¢y > 0 such that

[Cc(h)o = L(1)T0), ) = 9R0 (S)]| = coll Ss] (3.20)
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for all x € T, v e Cland S = (5 ) € Skew(d + ds, ©),

Let y € T, v = (”1) € Chtdz and § = (Sl *SE) € Skew(dy + da, C).
V2 Sy Ss
We have

LHS = || (x(h)o = L()Tv), = gr, (9)
(h)

> H (X h)vy — vy — (S2,83)(h - xg — 350))

heRo

(H(X (t})vg — va — (Sa, S3)(t} xo—ajo))

1€{1,...,d2}

ie€{l,...,da2}

+ %‘H

H(X Jva — vg — (52, 83)(t; '960—360))

)

2 7H<(X(t") X(&;7))v2 = (82, S3)(87 - 2o — ;7 O)>i€{1 dz}’
(3.21)

Sl

for all n € {1,...,No}. For all j € {1,...,d2} we define a; € [0,27) by

el% = x(t;). Let 291 € R4 and zg2 € R% be such that zg = (io’l).
0,2

For all j € {1,...,q} we define n; =dy —2(¢—j+1), mj =2(¢—j) and

bj = SQ(Onj’nj (S5 (g _02) S Omj7mj)x0,1 € (Cd2.

Let 72: 7™ — R% be uniquely defined by the condition 7(t) = (TOLZ;/))
2

for all t € 7™. Then for all i € {1,...,d2} and n € {1,..., Ny} we have

(S2,83)(t - o — ;" - o)

= S2(04, 24 ® (R(nbi 1) — R(—nb; 1)) @ --- ® (R(nb; 4) — R(nbi 4))) 20,
=+ 271537'2(@)

I
.MQ

sin(n@iﬁj)Sz (Onj7nj D ((2) 52) D Omj,mj)xo,l + 271537'2(@)

<
Il
-

I
'M*‘

sin(n@ivj)bj + 271537'2 (tl)

~
I
—

For all i € {1,...,d2} and j € {1,...,q} we define B;; = b; ® e] €
Ch2xd2 Let T = 2(72(t1), ..., 72(ta,)) € GL(d2). By equation (3.21) for
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all n € {1,..., No} we have

2ive ® (sin(nay), ..., sin(nag,))

1
LHS > —
= /2

d2 g
- Z Z sin(m?m)Bi’j - ’I’LSgTH

i=1 j=1

> H(QiTTvg) ® (sin(naq), . .., sin(nag,))

d>  q
— Z Z Sin(nei,j)TTBi’j — nTT53T

i=1j=1

I

where ¢; = omin(T~7)/v/2 > 0, 0min(M) denotes the minimum singular
value of a matrix M and we used Corollary 9.6.7 in [10] in the last step.
With equation (3.19) it follows

LHS > ¢ || T7S5T|| > col| S5,

where cg = omin(T)%c; > 0.

By Proposition 3.20 it suffices to show that there exists a constant ¢ > 0
such that || - ||r.v > ¢|| - ||r,v,0- Let u € Uper. Let N € My be such that
u is TN-periodic. In particular, m divides N. Let v: G — Skew(d) be
TN-periodic such that 7, (r)(Vru(g)) = Vru(g) — gr o v(g) for all
g €G. Let

v G — {( o 502) ‘51 € Skew(dy), S5 € Rdlw}
2

and
ve: G — {04,.4, S| S € Skew(dz)}
such that v = vy + ve. For all g € C,,, we define the functions
ug: T™ = C t v u(gt)
vg: T™ — Skew(d, C), t — v(gt)
vi,g: T™ — Skew(d,C), t — v1(gt)
and
vo gt T™ — Skew(d, C), t — va(gt).
Let &' ={x € Tm | x is periodic}. For all g € C,,, and x € £’ it holds

Ug(x) = T1,g(x) + T2,4(x),

U15(x) € {( %T %2) ‘5‘1 € Skew(dy,C), S; € (Cd1><d2}
P2
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and
U24(x) € {04,,4, ®S|S € Skew(ds,C)}.
We have
1
lull%v = [ > 170,00 (R) (VRU(gE)) ||

(g,£)ECH X (T™NCnN)

:|cN|Z > IVru(gt) — gr o v(gt)|

g€Cm teT™NCN

1
> m Z Z Vr,ulgt) — gr, o v(gt)|?

gECm teT™NCN

Z Z | (ug (th) L(h)Tug(t))heRO

| Nl 9€Com teTmncN

o o)’
g€Cm XEE’
— 9Ro O@(X)||2

2
C m .
z—|cg| > T newl 3 I 00l°

9g€Cm X€EE’

Z Z [v2,4(t)

gec teT™NCN

2
¢
= |TO| > [v2(gt)II?
N (g.tyecnx(Tmnen)
= cpllvall3- (3.22)
In the first and last step we used that U ;yec,. x(7mney) {9t} is a rep-

resentation set of G/T™. In the fifth and seventh step we used Proposi-
tion 2.56 for the group 7™ and T N-periodic functions and Lemma 2.58.
Note that 7™ N Cy is a representation set of 7™ /T™. In the sixth step
we used (3.20). Let C = |R|max{||h - x0 — zo|| | h € R}. We have

s = = 3 [Vrulo) = g o0l

geCn

Z ( IVrulg) — gr o v1(9)1? - ||9R°U2(9)|2)

gEC
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1
2 o] 2

geCn

1
(31tn i (Tl = Clla(0)1?)
1 2 2
= Ll w0~ Cllal (323)

where in the second step we used that (a—b)? > a?/2—b? for all a,b > 0.
Let c; = min{1/2,¢2/(2C)}. By (3.22) and (3.23) we have

1
lullzw > 5llullzw +callullz.y

Y

@ 2 T _ Cllus 12
9 [[vall2 + c2 5 |ull%,v,0 [[vall2

C2
> 5||“||gz,v,o-

Thus, we have || - |[r.v > v/c2/2]| - [|r.v.0- -
3.2.4. The kernel of the seminorm || - ||z

In this section we define and analyze the vector spaces Urans and Urot,0,0
which correspond in the physical model to the space of all translations
and infinitesimal rotations about the subspace {04,} x R% of G - o,
respectively.

Definition 3.25. For all R C G we define the vector spaces
Urot00(R) == {u: R = RY \35 e Skew(d;) ¥g € R : L(g)u(g)

= (S D Odz,dz)(g *To — 3:0)}
C Uot,0(R) N{u: G — R™ x {04,}}
and

Uiso,O,O(R) = Utrans(R> + Urot7O(R) - Uiso,O(R)~
For brevity, we define

Utrans = Utrans(g)
Urot,0,0 := Urot,0,0(9)

and

Uiso,O,O = Uiso,O,O(g)~
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Remark 3.26. We have Uyot,0,0 C Urot,0(G). If d > 2 and da > 1, then
we have Urot,0,0 € Urot,0(G). Moreover, in general we have Ugrans € Uper
and Usot,0,0 ¢ Uper- For example let o € R\ (27Q) be an angle, G =
(R(a) ® (I1,1)) < E(3) and zp = e;. Then we have dim(Uye,0(G)) =
3, dim(Uyot,0,0) = 1 and dim(Uyot,0,0 N Uper) = 0. Moreover, we have
dim(Usrans) = 3 and dim(Ugrans N Uper) = 1.

Example 3.27. If d; = 1 or dug = d2, then we have Uyo 0,0 = {0}. In
particular, if G is a space group, then we have Uyot,0,0 = {0}.

The next proposition characterizes the vector spaces Uirans(R), Urot (R),
Urot,O(R), Urot,O,O(R), Uiso(R)» Uiso,O(R) and Uiso,O,O(R) for appropriate
R C G. In particular, the proposition characterizes Usrans, Urot,0,0 and
Uiso,0,0 since G has a subset with Property 1.

Proposition 3.28. Suppose that R C G has a subset with Property 1.
Then the maps
Y1 Rd — Utrans(R)
a (R — R g L(g)Ta),
g R93Xdatt Skew(dagr) = Uyot(R)
(A1, A2) — ('R — R4, g L(Q)T(f?q ﬁ;)(g STy — xO))a
pg: RB*H 5 R%X% 5 Skew(dy) x R“*% — Uper o(R)
(Ah AQ; A37 A4)
0 A A,
= (R Rhg e )70 2 1) g0 —a0),
—A} —AT o
and
V4 Rdst4 X SkeW(d4) — Urot70,0(R>
(A1, A2) — (R - R g L(Q)T(<,?¢q ﬁ;) D Odz,dz)(g ~ Ty — xo))

are isomorphisms, where dg = d — d.g and dy = dag — do. In particular,
we have

dim(Ugrans(R)) = d

dim(Urot(R)) = dasi(d — §dasr — 3),

dim(Uyor,0(R)) = dsdagr + 2da(dag + do — 1)
and

dim(Urot,0,0(R)) = da(ds + d1 — 1)/2.
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Moreover we have

Uiso(R) = Ugrans(R) @ Urot(R),

Uis0,0(R) = Ugrans(R) @ Urot,0(R)
and

Uis0,0,0(R) = Utrans(R) @ Usot,0,0(R).

Proof. Let d3 =d — d.g, dy = dag — ds and R C G be such that R has a
subset with Property 1. In particular, we have id € R.

Since L(id) = I4, the map ¢; is injective and thus, an isomorphism.
Now we prove that ¢3 is an isomorphism. The map 3 is well-defined
and linear.

First we show that g is surjective. Let u € Uso1,0(R). There exist some
A; € Skew(d;) and Ay € R4 gych that

L(g)u(g) = (f‘,;; ‘?f)(g xog— 1) forallgeg.

Let Ay € Skew(ds), Ay € R¥*1 Ay € Skew(dy), Ay € R%*% and
A € R%*% he such that

A= <7A21 ::‘5‘) and As = (ig)

Since G - 29 C {04, } x R% we have ¢3(Aq4, Ag, A5, A7) = u.

Now we show that s is injective. Let the matrices Ay, B; € R%*ds,
Ay, By € R¥3%d2 Ay By € Skew(dy) and Ay, By € R%*% be such that
303(A1,A2,A3,A4) = @3(31,32,33,34). Let R’ C R be such that R’
has Property 1. By Lemma 3.6 there exists some C' € R%a*IR'l of rank
dag such that

(g -0 —fﬂo)geR/ = (8)
The identity ©3 (Al, AQ7 Ag7 A4) = @3(31, BQ, B3, B4) implies
0 A1 A2 0 Bl BZ
<—AI Ag A4>(g.x0 —;L-O) = (—BI B3 B4>(g.m0 _xo)
—Al —A] o —-B) -B] 0
for all g € R and in particular, we have
(A1 A2)C\ _ ((B1 B2)C
(A3 A4)C ) = \(Bs B4)C )°
Since the rank of C' is equal to the number of its rows, we have A; = B;
forall i € {1,...,4}.
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The proofs that ¢ and ¢4 are isomorphisms are analogous.
For all u € Uyt (R) we have u(id) = 0 and for all u € Ugans(R) and g € R
we have L(g)u(g) = u(id). This implies Uirans(R) N Urot(R) = {0} and
thus Uiso(R) = Uprans(R) @ Urot(R). Analogously, we have Uigo 0(R) =
Utrans(R) 2 Urot,O(R) and Uiso,O,O(R) = Utrans(R) 2 Urot,O,O(R)- O
Lemma 3.29. If the group L(G) is finite, then we have Uiso 0,0 C Uper-
Proof. Suppose that L(G) is finite. Let n = |L(G)|. For all g € G we have
L(g)" = 1. (3.24)

By Theorem 2.17 there exists some N € My such that n divides N. Let
u € Uiso0,0- By definition there exist some a € R? and S € Skew(d;)
such that

L(g)u(g) =a+ (S®0)(g - xo) for all g € G.

For all g € G and t € T we have
u(gt") = L(gtN) ( + (S ®0)((gt") - mo — m0))
= L(t “Ha+ (S@0)(g - (L(t)Nwo) — wo)
(5 ©0) (9) t™))
= L(g) ™" (a+ (S®0)(g - 20 — o))
= u(g),

where we used (3.24), that L(G) < ®(0(dy) x O(dz)) and that 7(G) C
{04,} x R% in the second to last step. Thus, u is 7 ~-periodic and we
have u € Uper. O

The following theorem characterizes the kernel of the seminorm || - ||z

Theorem 3.30. Suppose that R C G has Property 2. Then we have
ker(|| - [[r) = Uiso,0,0 N Uper-

Proof. Suppose that R C G has Property 2.
First we show that Uise,0,0 N Uper C ker (]| - ||=):
Let u € Uis,0,0 N Uper- There exist some a € R? and S € Skew(d) such
that
L(g)u(g) = a+ S(g -z — x0) for all g € G.

Let g € G. For all h € R it holds
L(h)u(gh) = L(g)"a + L(g)"S((gh) - 2o — x0)
= L(g)"a+ L(g)"S7(g) + L(g) "SL(g)(h - zo — my).
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Since L(g)TSL(g) € Skew(d), we have u(g - )|r € Uiso(R)-
Let N € M be such that u is 7V-periodic. Since g € G was arbitrary,
we have

> v ) (ulg IR)I? = 0.

geCN

Julfe =
Thus, we have u € ker(]| - || =)-

Now we show that ker(|| - ||r) C Uiso,0,0 N Uper:

Let u € ker(]| - ||g). By definition of || - ||z we have u € Upe. Let
g € G. By Theorem 3.13 we have u € ker(|| - |rugg}) and thus ulgryggy €
Uiso(R U {g}). There exist some a € R? and S € Skew(d) such that

L(h)u(h) =a+ S(h-z¢ — x0) for all h € RU {g}. (3.25)

Since R has Property 2, it holds id € R and thus, a = u(id). In particu-
lar, the vector a is independent of g.

Since R has Property 2, by Lemma 3.6 there exists some A € R%
of rank d,g such that

04—
(920 — T0)ger = < ¢ d;l“’m).

HX'R‘

Since G-z C {044, } x R4, without loss of generality we may assume

that 5
_( 0 1
s= (Lo &)

for some S € R(@-dan)xdait and Sy € Skew(dag). By equation (3.25) we

have
(L(h)u(h) — a)her = (_ng g;) (2) = (gﬁ) (3.26)

Since the rank of A is equal to the number of its rows, by (3.26) the
matrix S is independent of g.
Since g € G was arbitrary, we have

L(g)u(g) = a+ S(g - ©o — x0) forall g € G. (3.27)

Let C = sup{||u(g)||| g € G}. Since u is periodic, we have C' < co. Let
t € T. By (3.27) for all n € N we have

nl| ST = I1STE")]| = [[ILE" )u(t") — a — SL{t")zo + Sxol|
<20+ 2[|S][[oll
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and thus, S7(t) = 0. Since t € T was arbitrary, we have
Sz =0 forall zecspan({r(t)|t e T}) ={0g4,} x R,
and thus, S € &(Skew(d1) X {04, .4, })- By (3.27) we have u € Ujgo,0,0. O

Corollary 3.31. Suppose that L(G) is finite and R C G has property 2.
Then we have

ker(|| - [|r) = Uiso,0,0-

Moreover, the map

RY x R%*44 » Skew(ds) — ker(]| - | =)
(0,7141,142)

A
= (g - R g~ L(Q)T<a + ((,Eq An) ©0d,.4,) (g - 0 — xo)))
is an isomorphism and in particular we have
dim(ker(]| - ||r)) = d + da(ds + d1 — 1)/2,

where ds = d — d,g and dy = dag — ds.

Proof. The assertion is clear by Theorem 3.30, Lemma 3.29 and Propo-
sition 3.28. O

Corollary 3.32. Suppose that G is a space group and R C G has property
2. Then we have

ker(H : ||R) = Usrans-
Proof. This is clear by Corollary 3.31 and Example 3.27. O

Example 3.33. We present an example which shows that in Theo-
rem 3.13 the premise that R; and Rs have Property 2 cannot be weak-
ened to the premise that R, and R, are generating sets of G and have
Property 1.

Suppose that d =2, dy =1, dy =1, t = (I3,e2), G = (t), g = 0, R =
{id,t} and Ry = {id,t,t*}. The set Ry generates G and has Property 1
but does not have Property 2. The set Ro has Property 2. Using that the
seminorms || - || and || - ||g\(iq},v are equivalent by Proposition 3.20, it
follows

ker(|| - |r,) = {u € Uper | Fa € RV g € G : ua(g) = a}.
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By Corollary 3.31 and Example 3.27 we have

ker(H : ||R2) - Uiso,O,O - Utrans-

Since the kernels of || - ||z, and || - ||r, are not equal, the seminorms
I ll=, and || - ||z, are not equivalent.

The following theorem summarizes the main results of this section.

Theorem 3.34. Suppose that the sets R1, Ro C G have Property 2. Then

the seminorms || - [|r,, ||+ lras | [IR105 | [IR2005 || [IR0,9s [ 1R2,w
| =y, w0 and || - IRy, v,0 are equivalent and their kernel is Uiso,0,0 N Uper -

Proof. This is clear by Theorem 3.13, Proposition 3.20, Theorem 3.24
and Theorem 3.30. O

3.3. The seminorm || - HR,0,0

Recall Definition 3.25.
Definition 3.35. For all finite sets R C G we define the seminorms

111,00 Uper = [0,00)

! 2
we (11 2 Mot (uls ) IP)

geCN

Nl=

and
|- I=,v,0,0t Uper — [0,00)

w (g 2 It aair(Vruto)?)

geCn

[N

where u is 7V-periodic and the maps MUio.0.0(R) a0d Ty, o (R) are the
orthogonal projections on {u: R — R?} with respect to the norm || - ||

with kernels Uiso,0,0(R) and Uyot,0,0(R), respectively.

Remark 3.36. For all finite sets R C G we have | - || < || - ||®,0,0, but
the seminorms || - ||z and || - ||z,0,0 need not be equivalent, see Proposi-
tion 3.43.

Theorem 3.37. Suppose that R1,Ro C G have Property 2. Then the

seminorms || - [ry,00 | - [Ro,0,0: I [IR1.v.0,0, and || - |r,,v,0,0 are equiv-
alent and their kernel is Uiso,0,0 N Uper-
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Proof. Suppose that Ri,Ro C G have Property 2. The proof that the
seminorms | - ||r,,00 and || - ||r,,00 are equivalent is analogous to the
proof of Theorem 3.13: For all finite sets we define the seminorm

Por: {u: R — Rd} — [0, 00)

u = ||7TUiso,0,0(R) (u) ||>

where 7y, (r) is the orthogonal projection on {u: R — R?} with re-
spect to the norm || - || with kernel Uiso.0,0(R). Analogously to Lemma 3.8
the kernel of the seminorm Por I8 Uiso,0,0(R). Analogously to Defini-
tion 3.9 for all finite sets Ry, R, R3 C G such that Ry C R3Rs, we

define the seminorm

Q0.Ry Ro.Rs" {u: Ry — Rd} — [0, 00)

2

u— inf d< Z Por, (v(g- )|R2)) ;
v: R3Ra—RY cR
U\Rlzu 9 3

where the infimum is even a minimum, see Lemma 3.10. Analogously
to Lemma 3.12 for all R1,Re C G such that R; has Property 1 and
R> has Property 2 we have that there exists a finite set R3 C G such
that Ry C R3R2 and the seminorms pg  and ¢z, », g, are equivalent.
Analogously to the proof of Theorem 3.13 this implies that the seminorms
Il - l=y,0,0 and || - [|r,,0,0 are equivalent.

Analogously to the proof of Proposition 3.20, the seminorms || - ||z.0,0
and || - ||r,v,0,0 are equivalent for all finite sets R C G such that id € R.
In particular, if R C G has Property 2, then || - ||r,0,0 and || - [|r,v.0,0 are
equivalent.

Suppose that R C G has property 2. Analogously to the proof of Theo-
rem 330, we have Uiso,O,OmUper C ker(H . ||7g7070). Since || . ||’R < H . ||R7070,
by Theorem 3.30 we have ker(|| - ||z.0,0) C Uiso,0,0 N Uper- O

3.4. The seminorm ||V% - ||
Definition 3.38. For all finite sets R C G we define the norm
| ]l2: {u: G = {v: R = R} | u is periodic} — [0, 00)

1

1 3
U= - l[u(g)]? if u is 7V -periodic.
<|CN| HEZCN )
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Remark 3.39. For all finite sets R C G the map
({u: G = {v: R — R} |uisperiodic}, || - |2) = (L32.(G, R>IRI), |- ||2)
urs (G — R>R g (v(g))ger)

is an isomorphism. Thus there is no ambiguity between the above defi-
nition and Definition 2.52.

Theorem 3.40. Let R1,Ro C G be finite generating sets of G. Then
the seminorms ||Vg, - ||2 and ||[Vr, - |2 on Uper are equivalent and their
kernel is Ugrans N Uper-

Proof. Let R1,Ro C G be finite generating sets of G. Analogously to
Lemma 3.3, the functions |[Vg, - ||2 and [|[Vg, - ||2 are seminorms.

First we show that the seminorms [|[Vg, - ||z and ||Vg, - ||2 are equiv-
alent. It suffices to show that there exists a constant C' > 0 such that
VR, - ll2 < C||Vg, - |l2- Since R4 generates G, for every r € R4 there ex-
ist some n, € Nand s,1,...,5-n, € R2 U’R2_1 such that 7 = s,.1 ... 51,
Let u € Uper. Let N € My be such that u is TN_periodic. Then we have

IVl = e 3 [Vr,u(o)]?

geCN
- 2 2 ILlen) -~ @)
geCn reR1
|CN| Z Z ZL Sp,1 .- Sri— 1)(L(Sm~)u(gsr,1...sm»)

geCny reRy =1

2

—u(gsyq ... s,.,i_l))

2
1
< xl Z Z (ZIIL Spi)u(gs1 - Sr,i)_u(gsr,1-~-5r,i—1)|>
eCN reER,
1
< enl Z 2n S D50 50 = (g 501
N eCN reERy i=1
C -
< X X IEeuae) — o)l
g €Cn SERs
=C||VR2U||2a

where C' = > n2. In the fifth step we used that the arithmetic
mean is lower or equal than the root mean square. In the sixth step,



3.5. Fourier transformation of a seminorm 83

if s,; € Ra, we substituted gs,1...s,,-1 by g, and if s,; € R;l, we
substituted gs,1...5.; by g.

Let R = R1. Now we show that ker(||Vxz - |l2) = Utrans N Uper- It is
clear that Upans N Uper C ker(||Vr - |l2). If u € ker(||Vg - ||2), then for
all g € G we have

0 = [[Vruggrullz > [IL(g)u(g) — u(id)|, (3.28)

where we used that the seminorms ||[Vx - |2 and [|[Vrugg) - [|2 are equiv-
alent. By (3.28) we have L(g)u(g) = u(id) for all ¢ € G and thus
u € Utrans- D

Remark 3.41. For all finite sets R C G we have || - ||z,00 < [|[Vg - |2, but
the seminorms || - [|r,0,0 and ||Vg - || need not be equivalent since their
kernels are not equal, see Theorem 3.37 and Theorem 3.40.

Theorem 3.24 yields the following corollary.
Corollary 3.42. (A discrete Korn’s inequality for space groups) Suppose

that G is a space group and R C G has Property 2. Then the seminorms
- ll=, I - |R.0,0 and ||V - ||2 are equivalent.

Proof. Suppose that G is a space group and R C G has Property 2. Then
we have Urot0(R) = Urot,00(R) = {0} and || - lr,v,0 = [ [[r,v.00 =
IVR - ||2 With Theorem 3.34 and Theorem 3.37 follows the assertion. [

3.5. Fourier transformation of a seminorm

Proposition 3.43 and Proposition 3.44 are very similar. In Proposi-
tion 3.43 we have d.g = 1 and in Proposition 3.44 we have d,g = 2.

Proposition 3.43. Suppose that t = (I3,e2) € E(2), G = (t) < E(2),
zo =0 € R? and R C G has Property 2, e.g. R = {id,t,t*>}. Then the
seminorms || - ||r.0,0 and [|[Vg - |2 are equivalent and there exist constants
C,c > 0 such that for all u € Uper we have

dVrull3 < > kR0 < ClIVrull3
k€[0,1)NQ
and

A~ ~ 2
dulr< Y (|k|1*|u1<><k>|2+|k|%|u2<xk>! ) < Cllulla,

k€[0,1)NQ

where |- |1: R — [0,00), k — dist(k,Z) is the distance to nearest integer
function.
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Proof. Suppose that ¢t = (I,e2), G = (t) and 29 = 0. We have d = 2
and d; = do = 1. The set {id,t,t?} has Property 2 and by Theorem 3.40
and Theorem 3.34 without loss of generality, let R = {id,t,t*}. Since
Urot,0,0(R) = {0}, we have || - ||z,v,00 = ||[Vr - |2 and thus the semi-
norms || - ||r0,0 and ||Vg - ||2 are equivalent by Theorem 3.37.

By Definition 2.29 for all k € R and n € Z, we have x(t") = e2™"*, The
maps

and

0,1) N Q — {x € G|y is periodic}, k — xx
are bijective. Thus, without loss of generality, let £ = {x | k € [0, 1)NQ},
see Definition 2.53.

Since {k € [0,1)|e~2™* = 1} = {0} and by Taylor’s theorem, there exists
a constant ey € (0, 1) such that for all k € [0,1) and n € {1,2} we have

erlkly < |e7?™F — 1, (3.29)

cerle ™ — 1| < [kl (3.30)
and

erle™ ™M — 1 + 2mink| < |k[3. (3.31)

For all u € Uper we have

S |Vru0)|”

xXEE

= Z H(Xk(h)_la(Xk)—@(Xk))heRHZ

ke[0,1)NQ

2
ST fer 1P atw)| (3.32)

k€[0,1)NQ n=1

IVRull3

where we used Proposition 2.56 in the first step and Lemma 2.58 in the
second step. Equations (3.29), (3.30) and (3.32) imply the first assertion.
Now we show the second assertion. Let R’ = {t,t?}. By Proposition 3.20
the seminorms || - ||z and || - ||z, v are equivalent, i.e. there exist some
constants C, ¢ > 0 such that

dl-ll= <-llr v <Cf - lI=- (3.33)
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We define the linear map
gr': Skew(2,C) — C2¥I%’l

S (S(hl‘o _x0)>h€72"

For all u € Uper we have
lulle 5 = wt{ [ Vrru — grr o vl |0 € L3z,(G, Skew(2,C))}

= inf{zuﬂ,\u(x) —grod()|* |7 € @Skew(Q,@)}

XEE x€E
= Zinf{HV/R/\U(X) — gr/(9)|” ’ S e Skew(z,c)}
xX€EE
= . inf{H(Xk(h)_lﬂ(xk) — U(xx)
k€[0,1)NQ

2

- (2 BS)(h'Io *xo))heR,

SE(C}

2
— Z irlf{§:||(e2’ﬁ"”C — Du(xg) + nsel||2
n=1

k€[0,1)NQ

SGC},

(3.34)

where we used Proposition 2.56 in the second step and Lemma 2.58 in
the fourth step.
It holds

n n 2 n

S a2 < (Z ) <nYa? (3.35)
i=1 i=1 ;

for all n € N and ay,...,a, > 0.

We define the functions

f1:]0,1) x C? x C = [0,00)
2
(k,v,8) — ZH(G_Q”i”k — v+ nselH
n=1

and
f2: [Oa 1) X (C2 — [0700)
(k,v) = [E[T o] + [k[1|va].
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By (3.33), (3.34) and (3.35) it suffices so show that there exist some
constant C, ¢ > 0 such that for all (k,v) € [0,1) x C? we have

i < <Ci . .
cinf fi(k,v,5) < fa(k,v) < Cinf fi(k,v, ) (3.36)

First we show the left inequality of (3.36). By (3.30) and (3.31) for all
(k,v) € [0,1) x C? we have

in(fcfl(k,v,s) < f1(k,v,2mikvy)
s€

M

(’e—Qwink —14+ 27Ti’/lk“111| —+ ‘e—QTrink _ 1“1)2')
1

fz(k}7’l)).

Now we show the right inequality of (3.36). Let (k,v,s) € [0,1) x C% x C.
By (3.29) we have

o

IN

[

S

fi(k,v,8) > ’e_%ikvl — v + s| + %|e_4’”kv1 — vy + 25‘
> %|2(672mk01 —v1+8)— (674””“1)1 — v + 2$)|
= Le=2mk _ 1oy
> F{kf3ul (3:37)
and
filk,v,8) > |e_2’rik — 1| jvg| = eplk|1|vel- (3.38)
By (3.37) and (3.38) we have

fik,v,5) > E fo(k, v). 0

Proposition 3.44. Suppose that t = ((')),e2) € E(2), G = (t) <
E(2), 70 = e; € R? and R C G has Property 2, e.g. R = {t°,... t3}.
Then the seminorms || - ||r,0,0 and ||V - ||2 are equivalent and there exist
constants C,c > 0 such that for all uw € Uper we have

AVrul3 < > (Ik— 3110w 2 + kB a2 0a)2) < Ol Vrull

k€[0,1)NQ
and
~ . ~ ~ 2
lule < 2 (Ik = Bl 2 + k12 2i(k — Y (i) — G20e) )
ke[0,1)NQ

< Cllull,



3.5. Fourier transformation of a seminorm 87

where | - |1: R — [0,00), k > dist(k,Z) is the distance to nearest integer
function.

Proof. Suppose that t = (( ' V), e2), G = (t) and 29 = €;. We have d = 2
and d; = dy = 1. Theset {t°,...,#3} has Property 2 and by Theorem 3.40
and Theorem 3.34 without loss of generality, let R = {t°,...,#3}. Since
Urot,0,0(R) = {0}, we have | - ||r,v,00 = [|[V= - |2 and thus the semi-
norms || - ||r0,0 and ||Vg - ||2 are equivalent by Theorem 3.37.

By Definition 2.29 for all k € R and n € Z, we have x(t") = e*™"F. The
maps

0,1) = G, k> xx
and

0,1) N Q — {x € G|y is periodic}, k — &

are bijective. Thus, without loss of generality, let £ = {x | k € [0, 1)NQ},
see Definition 2.53.

Since {k € [0,1)|e™?™* = 1} = {0}, {k € [0,1) |e"?"* = —1} = {1}
and by Taylor’s theorem, there exists a constant cr € (0, 1) such that for
all k €[0,1) and n € {1,2,3} we have

cerlkly < |e7?™F — 1], (3.39)

erlk— 3|, < e +1], (3.40)

crle™®™ — 1| < [kl1, (3.41)

cple™®™ M — ()| < k- &, (3.42)
and

el — (1) 4 (~1)"2nin(k - 1| < [k - L5 (3.43)

For all u € Uper we have

IVrul3 = 3| Vru(v)|*

x€E

= > [lta®™'a0w) = L) a0w)ner |

k€[0,1)NQ

> iHe-W’mxk) — (39 0w

k€[0,1)NQ n=1

2
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3
= Z Z(|672‘n’ink _ (_1)n|2’ﬂ1(Xk)’2

ke[0,1)NQ n=1
—27i 2|~ 2
o2 1 P () ), (3.44)
where we used Proposition 2.56 in the first step and Lemma 2.58 in the
second step. Equations (3.39), (3.40), (3.41), (3.42) and (3.44) imply the
first assertion.
Now we show the second assertion. Let R’ = {t!,#2,t*}. By Propo-

sition 3.20 the seminorms || - ||z and | - [|r/, v are equivalent, i.e. there
exist some constants C,c > 0 such that

cdl-llr <l llrew <Cll- = (3.45)
We define the linear map
gr': Skew(2,C) — C>*I®I
S = (L(h)TS(h-x0 — 30)), -

For all u € Uper we have

Jullfr v = inf{||VR/u — grr o3 ‘v € L3, (Q,SkeW(Q,(C))}

= inf{zuﬁg/\u(x) —gr’© 17()()“2 Ve @Skew(Q,(C)}
X€EE X€EE
=3 nt{ | Fru) - g (9)]* j S € Skew(2,0) }
xX€EE
= > inf{[|(a®) " a0a) - L) Tl
k€[0,1)NQ
— L7250 (he w0 — 20)) [P 5 € €}

3
>t {37 i) — (39)"n)
k€[0,1)NQ n=1
_qyntt 2
()| fse ek (3.46)
where we used Proposition 2.56 in the second step and Lemma 2.58 in

the fourth step.
It holds

n n 2 n
Zaf < <Z ai) < nZaf (3.47)
i=1 i=1 i=1
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for all n € N and ay,...,a, > 0.
We define the functions

f1:10,1) x C? x C — [0, 00)

(hv,8) = ZH ko= ()= ()
and
f2:10,1) x C* = [0, 00)
(k,v) = |k — 33|v1] + [k[1]2mi(k — $)vr — val.

By (3.45), (3.46) and (3.47) it suffices so show that there exist some
constant C, ¢ > 0 such that for all (k,v) € [0,1) x C? we have

cinf fi(k,v,s) < fa(k,v) < Cinf fi(k,v,s). (3.48)
seC seC

First we show the right inequality of (3.48). Let cg > 0 be small enough,
3

.8 cr = 555 Let (k,v,s) € [0,1) x C? x C. By (3.39) and (3.40) we

have

—2mik 4rik

fl(k,v,s)2| vl+v1—s|+%|e 1 —vl—|—25}
> %| (e™2™Fy) 4 up —s) +e 1Ry — vy + 25|
_ %| 271-1k+1’ |’U1|
2
> ik~ 3] (3.19)
and
filk,v,8) > Z ’e_%mkvg — Vg + 25|
ne{1,3}
> ’e_%ikvg — vy + 25 — (e7 5 kyy —uy + 28)’
_ |6727rik n 1H —2mik 1|‘U2|
> ¢kl [k = ]1|val. (3.50)
Case 1: k € [0, 41] [% 1).
}Slince k€[0,3]U[3,1), we have |k — 3|, > 1. By (3.49) and (3.50) we
ave

fi(k,v,8) > crlk — 2[5 |v1| + mer|vi| + crlk|i|v2] > crfalk,v),

where in the last step we used the triangle inequality.
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Case 2: k € (%, %)
Since k € (1, 2), we have |k|; > 1. By (3.39) and (3.43) we have

1(k,v,8) > [(e7™F — 1)vy + 25| + [(e72™F — 1)y + 25|
(77 — Loy + 25 — (7 — 1)v + 29)
= [e7?™* — 1]|(e7*™* + 1)vy — vy
E[(e7™F + vy — ve
< |2mi(k — Loy —vo| — %|e72ﬂk +1—27i(k — %)Hvﬂ

2k~ 3o — va] — [k~ 32l (35)

Y

AVARLYS

Y

By (3.49) and (3.51) we have f1(k,v,s) > crfa(k,v).

Now we show the left inequality of (3.48). Let Cf, > 0 be large enough,
e.g. Cp = %. Let (k,v) € [0,1) x C2. We have

fa(k,0) > [kl k= 1|, |27k — L)or —vo| > [k|1|k— 4|, Jva] = |k — L [ Jun.
(3.52)

By (3.52) and the definition of fo, we have

fg(k,l}) Z %|k|1|k*%|1|1}2| (353)
Case 1: k € [0, 715] [% 1).
Since k € [0, 1] U [2,1), we have |k — 3|; > . We have

Sireléfl(k7v7s) S fl(kavao)

3
S 6|’01| =+ |U2| Z|e*2ﬂink _ 1‘

n=1

= 6|v1| + |e*2”ik - 1||v2\ Z

n=1

n—1
§ ef2ﬂ1mk:

m=0

< 6or| + [kl ]ve]
< Csz(k%U),

where we used (3.41) in the second to last step and (3.53) in the last
step.

Case 2: k € (1,2).



3.5. Fourier transformation of a seminorm 91

Since k € (1, 2), we have |k|; > 1. By (3.43) and (3.42) we have

12{: filk,v,8) < f1(k,v,v2)

NE

(‘(6727rink o (71)71)1}1 + (71)nnv2| + |6727rink o (71)n||v2|)

3
Il
—

NE

< (|6—27rink — (=)™ + (=1D)™2xin(k — %)||Ul|

1

s

1

n|2mi(k — Loy — vy| + e 2mink — (71)”||v2|)
< S (Jk = 3ol + [2iCk = $on = va| + [k — 3 Joal ). (359
By (3.53) and (3.54) we have

ilél(fcfl(kj,’l],s) SCLfQ(k7’U)' O






4. Stability of objective
structures

We use the following notation. Let d, dy, do, G, 7 and F be as in
Definition 2.6, My as in Definition 2.13 and Cy as in Definition 2.50 for
all N € My. We assume that the group G is not trivial. Let 2o € R? be
such that the map G — RY, g — ¢ - o is injective. Let dng denote the
dimension dim(G - xg). Moreover we suppose that

aff(G - w0) = {0a—dq } x R%H,

which can be achieved by a coordinate transformation, see Lemma 2.84.
Let R C G be such that R has Property 2.
For all sets H C G we define a group action of O(d) on {y: H — R?} by

(Ay)(g) := A(y(g)) for all A € O(d), y: H —R% and g € G.

In the following we do not distinguish between the functions {y: G \ {id}
— R?} and the vectors (R4)9\id}

4.1. The interaction potential, configurational
energy and stability
Definition 4.1. Let
Vi (RHND 5 R

be the interaction potential. We assume that V has the following prop-
erties:

(H1) (Invariance under rotations) For all R € SO(d) and y: G\ {id} —
R? we have
V(Ry) =V (y).

(H2) (Smoothness) For all y: G\ {id} — R the function

L>=(G\ {id},R?) - R
2= V(y+2)
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is two times continuously Fréchet differentiable, where L (G \ {id},
R?) is the vector space of all bounded functions from G\ {id} to
R? equipped with the uniform norm || - |-

For all y: G\ {id} — R? and g,h € G\ {id} we define the partial Jaco-
bian row vector 9,V (y) € R¢ by

(DgV ()i :=V'(y)(d4€:) for alli e {1,...,d}
and the partial Hessian matrix 9,0,V (y) € R¥*? by

(g0 V (y))ij == V" (y)(4€i, One;) for all 4,5 € {1,...,d},
where 6;: G\ {id} — {0,1}, 1 — dg; forall k € G.
(H3) (Summability) For all y: G \ {id} — R? we have

Yo 19Vl <oo and Y 19,00V (y)] < oo
9eG\(id) 9.hEG\Lid)

We say a set Ry C G\ {id} is an interaction range of V if for all
for all y: G\ {id} — R? we have V(y) = V(xr,y), where xgr, is
the indicator function. We say that the interaction potential V' has fi-
nite interaction range if V has a finite interaction range. We denote
Yo = (9 o — o) geq\ fiay € (RN If V has finite interaction range,
then we extend the domain of V’(yo) and V" (yo) to {z: G\ {id} — R%}
and {z: G\ {id} — R?}2, respectively, by

V' (yo)z1 := V'(y0)(xry 21)
and

V" (y0)(21, 22) :== V" (y0) (XRy 215 XRy 22)

for all 21,20 € {z: G\ {id} — R} \ L>=(G\ {id},R?), where Ry is a
finite interaction range of V.

Remark 4.2. (i) For all functions y: G\ {id} — R? and z,z;,20 €
L>=(G \ {id}, R?) we have

Viyz= > 9,V()29)
g€G\{id}
and
V') (21, 20) = > 21(9) 0400V (y)22(h).
g,hegG\{id}
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(ii) In Section 4.3 and Section 4.4 we assume that V has finite interac-
tion range.

(iif) If V has finite interaction range, then (H2) implies (H3).

(iv) For simplicity we assume that the domain of V is the whole space
(RH9MidE Tt would be sufficient if V is defined only on 3o + U,
where U is a small neighbourhood of 0 € (R?)9\#} with respect
to the uniform norm.

Example 4.3. An example of an interaction potential consisting of pair
potentials is

Vi RHYND SRy Y o(lly(g)
9€G\(id)

where
v: (0,00) = R, rrspr 12 p70
is the Lennard-Jones potential.

As we have seen in Section 3.1, in our physical model we have a canonical
bijection between G and the atoms. For a given displacement u: G — R?
the atoms are at the points (g - (zo + u(g))geg and in particular v = 0
is the identity. Only in the following definition and in Definition 4.8, in
contrast to the remainder of this thesis, the physical model is that for a
given deformation u: G — R? the atoms are at the points (g - u(g))geg
and in particular © = xgz¢ is the identity.

Definition 4.4. Let
E:Uper + R
u = |CN| Z V( gh) (gh)*g'u(g))heg\{id})v
geCn
where u is TV -periodic and N € My, be the configurational energy.

Remark 4.5. The function F is well-defined and independent of the choice
of the representation set Cy for all N € M.

Lemma 4.6. The function E is two times continuously Fréchet differ-

entiable with respect to the uniform norm || - ||co. We have
E(xgwo) = V(yo)
U
E (XQ'TO |C | Z V yO (gh) _u(g))heg\{id}7

ge€CN
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and

E" (xgzo)(u |CN\ Z V" (yo ( h)u(gh) — u(yg ))heg\{id}’

geCn
(L(R)o(gh) = v(9)) seqn iy )
for all u,v € Uper and N € My such that u and v are TN -periodic.
Proof. By (H1) we have

> v( (h-u(gh) — u(g ))heg\{id}) (4.1)

~Iewl N| ol

for all u € Uper and N € My such that u is TN-periodic. By (H2) the
function V' is two times Fréchet differentiable. We define the vector space

W= {w: G — L*>(G\ {id},R%) ‘w is periodic}

and equip Uper and W each with the uniform norm || -||«. The linear
map

o1: Uper = W
wrs (6 LX)\ (1), R, g > (Lulgh) — u(@)neor (i)

is bounded and thus two times continuously Fréchet differentiable. The
first and second derivative of the function

po: W =R
1
w W Z V((T(h))heg\{id} + w(g)) if wis TN—periodic
N geCn
is given by
b (w)wy = >V ((r(R)neg\giay + w(g))wilg)
|CN|
geCN
and
w)wnm) = 5o 30V (rWhe g +0(0)) (w1(5). wals)

geCn

for all w,wi,ws € W and N € M, such that w, w; and wy are TN-
periodic. Thus o is two times continuously Fréchet differentiable. Since
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E = @5 0 1, also the function F is two times continuously Fréchet dif-
ferentiable.

Equation (4.1) also implies the representations of F(xgxo), E'(xgxo) and
E"(xgo)- O

Remark 4.7. (i) If the map in (H2) is n times (continuously) Fréchet
differentiable for some natural number n, then also E is n times
(continuously) Fréchet differentiable with respect to the uniform
norm || - ||oc- The proof is analogous.

(ii) The function E need not be continuous with respect to the norm
Il - [|2. In particular E is not two times Fréchet differentiable with
respect to ||V - ||2 although in other models a similar proposition
is true, see, e. g., [48, Theorem 1].

Definition 4.8. We say that u € Upe, is a critical point of E if E'(u) = 0.
We say that (G, xg,V) is stable (in the atomistic model) with respect to
Il lr (resp. || |lr.0,0) if xgzo is a critical point of E and the bilinear
form E"(xgxo) is coercive with respect to || - ||z (resp. |- |lr.0,0), i €.
there exists a constant ¢ > 0 such that

cllull% < E"(xgxo)(u,u) for all u € Upe,.
We define the constants

Xa :=sup{c € R |Vu € Uper : cllul| < E”(xgxo)(u,u)} € RU{—o0}
and
Aa0,0 :=sup{c € R ‘ Vu € Uper : c|\u||$170)0 < E"(xgwo)(u,u)}

€ RU{—o0}.
Remark 4.9. (i) The bilinear form E”(xgz) is coercive with respect
to the seminorm || - ||z (resp. || - ||r,0,0) if and only if A, > 0 (resp.
)\a,0,0 > 0).

(i) If (G,x0,V) is stable with respect to || - |r,0,0, then (G,zo,V) is
also stable with respect to || - ||z, see Remark 3.36.

(iii) The above definition of the stability and the constant A, generalizes
the definition in [40, p. 89] where these terms are defined for lattices.
For lattices we have A, = A, 0,0 since then || - |l = || - ||=.0.0-

(iv) By Theorem 3.34 the stability of (G, zo,V) is independent of the
choice of R.
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(v) The constants A, and A, 0 need not be finite, see Example 4.40
and Example 4.41. In Section 4.4 we present sufficient conditions
for both A\, € R and A, 0,0 € R.

The following proposition states a characterization of A, and X\, 0,0 by

means of the dual problem.

Proposition 4.10. We have

Aa = inf{E//(ngO)(uau) ‘u € Upcrv ||7-LH72 = 1}
and
Aa,0,0 = Inf{E" (xgxo)(u,u) |u € Uper, ||lullr,00 = 1}.

Proof. We denote RHS = inf{E" (xgzo)(u, u) | v € Uper, |lullr = 1}. Tt
is clear that \, < RHS. Let ¢ € R be such that ¢ > A,. There exits
some u € Uper such that cllull% > E”(xgzo)(u,u). By Theorem 3.34,
Proposition 3.28 and since the group G is not trivial, we have ker(|| - ||r) #

Uper- Thus and since || - ||g < || - [loo, We may assume that ||ul|lg = 1.
Thus we have RHS < ¢. Since ¢ was arbitrary, we have A\, > RHS.
The proof of the characterization of A, o is analogous. O

4.2. Characterization of a critical point
Definition 4.11. We define the row vector

evi= > 03V(yo)(L(g) - Ia) € R?
g€G\{id}

and the function fy € L'(G,R¥*?) by

ol = 5 (S B0 0V ) 0)
h1,h2 eg\{ld}

- 5g,h2—1L(h2)T3h23h1 V(y0) = 0g,n1 Ons0n, V (yo) L(h1)
+ 5g,id5h28hlv(yo)>

forall g € G.
Remark 4.12. (i) By (H3) the function fy is well-defined and we have

Yoo = D (Llhe) = 10) Ony0n,V (y0) (L) — La).

geg h1,ho€G\{id}
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(if) If Ry is an interaction range of V', then we have
supp fv C Ry Rv URy URy.

In particular, if V' has finite interaction range, then the support of
fv is finite.

Definition 4.13. For all N € My and g,h € Gy we define the partial
Jacobian row vector 9, E(xgzo) € R? by

(04E(xg0))i := E'(xgwo)(d4€:) foralli € {1,...,d}
and the partial Hessian matrix 9,0, E(xgzo) € R¥*? by
(0y0nE(xgw0))ij := E" (xgx0)(dg€i,0pe;) foralli,j e {1,...,d},
where 0: G — {0,1}, I = dy 7~ for all k € Gn.
The following lemma characterizes the first and second derivative of F.

Lemma 4.14. Let N € My. We have

04E(xgxo) = for all g € Gn

1
[
and

D409, E(xg0) = Z fv(g for all g1,92 € G .

9692 91
In particular we have
9¢E(xgwo) = 0iaE(xgTo) for all g € Gn
and

09,09, E(Xg0) = 0ia0,—1 4 E(Xg0) for all g1, 92 € Gn.

Proof. Let N € My, g1,92 € G and for all g € Gy let §, be as in Defini-
tion 4.13. Since 7V is a normal subgroup of G, we have

Z dg, v (gh) = Z Z Ogin-1,gt =1 for all h € G. (4.2)

g€eCN geECN teTN
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Using Lemma 4.6, Remark 4.2(i) and (4.2), we have
ag1TNE(XQxO) = (E/(XQxO)(émTNei))ie{L Ld}
Z Z MV (y0) (0g, 7~ (gh)L(h) — b4, 7~ (9)1a)

g€CN hegG\{id}

> WV (yo)(L(h) — Ia)

heg\{ id}

|N|

1

= — 4-3
Toe N (4.3)

The right hand side of (4.3) is independent of g; 77 and in particular,
we have

99,7 E(xgwo) = O~ E(xgo)-
Since TV is a normal subgroup of G, for all k1, hy € G we have

Z 8,7 (gh2)dg, 75 (gh1) = Z Z Oy, hy'.gs q1h t,gs

geCN geCn t,scTN

= Z 5gzh;1,g1h;1t

teTN

= Sthgr e (4.4)

teTN

Using Lemma 4.6, Remark 4.2(i) and (4.4), we have

3gQTN3ngNE( g70) = (E" (xgx0) (0g,7v e, g 7n€1)), ity

T Y X Gurs(gh)k(h) = b))

9gECN h1,h2€G\{id}
3h25h1 (40) (84,7 (gh1) L(h1) — 84,7~ (9)1a)

|CN| ) > (5h21h1,gz1g1tL(h2)T8h23h1V(yo)L(fh)

teTN hi,haeG\{id}
— Oyt g LR 2) " O, 0, V (0) — Oy g5 2g1¢0n2On, V (y0) L (1)
+6z d,g, gltahZahl ( ))

|C 2 vl o). (4.5)

teTN
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The right hand side of (4.5) is only dependent on g5 'g; 7V and in par-
ticular, we have

8927-N6g17-NE(Xg£E0) = 8idagglngN E(ngo). O

Remark 4.15. (i) The configurational energy is left-translation-invari-
ant, i.e. for all u € Upe, and g € G it holds E(u) = E(u(g-)).
This implies that also E'(xgxo) and E”(xgzo) are left-translation-
invariant, i.e. E'(xgzo)u = E'(xgzo)u(g - ) and E”(xgzo)(u,v) =
E(xgzo)(u(g-),v(g-)) for all u € Uper and g € G. Thus we have
0g,E(xgx0) = 0iaE(Xxgwo) and 0y, 0g, E(xgx0) = aidagglglE(Xga:o)
for all N € My and g1,92 € Gn.

(ii) By the above lemma we have
ey = (E/(XQIO)(XQEZ')))ie{17.,,)d}'

Now we suppose that V' has finite interaction range Ry C G \ {id}.
By Remark 4.12(ii) we have

supp fv C Ry Rv URy URy =: Ry,
and by the above lemma we have
Cn|0:a0,7~ E(xgx forallg e R
fV (g) _ | ‘ qT ( 0) fv
04,d else
for all N € Mj large enough, precisely for all N € Mj such that

TYNR; IRy, C {id}.

Corollary 4.16. It holds E'(xgxo) = 0 if and only if ey =0
Proof. This is clear by Lemma 4.14. O

Corollary 4.17. Suppose that G < Trans(d). Then we have E'(xgzo) =
0.

Proof. This is clear by Corollary 4.16. O

Theorem 4.18. The triple (G, xo, V') is stable with respect to || - ||r (resp.
Il - l=,0,0) if and only if ey =0 and Aq > 0 (resp. Ag0,0 > 0).

Proof. This is clear by Corollary 4.16 and Remark 4.9(i). O
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4.3. A sufficient condition for a minimum

As motivated in Section 3.1, the following proposition shows that Uis, (R)
is really a tangent space.

Proposition 4.19. There exists an open neighborhood U C E(d) of id
such that the set

{urR >R Ja€eUVgeR g (zo+ulg) =a-(g9-20)}
is a manifold and Uiso(R) is its tangent space at the point 0.

Proof. Let B = {S € Skew(d) |||S|| < log(2)}. By [10, Theorem 11.5.2
and Proposition 11.6.7], the matrix exponential exp: B — exp(B) is a
homeomorphism and we have exp(B) C SO(d). Let log be its inverse
map. Let U C Skew((d — dagr) + dagr) be a neighborhood of 0 such that
the map

f: U — Skew(d)
( SjT ) — log(exp( ?4T 5242) exp(so1 8))

is well-defined. By the inverse function theorem there exists an open
neighborhood V' C U of 0 such that W := f(V) is an open neighborhood
of 0 and the map f|y: V — W is a diffeomorphism. Without loss of
generality we may assume that

v={(5r2)]s e vi(4,8) e a),

where Vi C Skew(d — d.g) is an open neighborhood of 0 and V5, C
R(d=dat) ¥ dait x Skew(d,q) is an open neighborhood of 0. The set X :=
{(exp(A),b) | A € W,b € R} C E(d) is an open neighborhood of id. We
have
= {u: R—)Rd|3a6XVgER:g~(a:o—|—u(g)) =a-(g-wo)}
= {(L(9)" (b + (exp(A) — 1a)(g - x0)))ger |b € R!, A € W}

{ exp(_?ﬂg)—Id>(g-x0—x0)))g€R’b€]Rd,

(A4,9) € V2}
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since g - g — 2o € {04_a,,} X R%f for all g € R. Thus the map
h: R x Vy — M
(b:4,8) = (L(g)" (b+ (exp( % &) = 1a) (g @0 — 20)))

gER
is surjective. By Lemma 3.6 there exists some C' = (c,)ger € RéarxIRI
of rank dug such that (g- 2o — z9)ger = (). We have

R(0): R x Vo — (RY)R
(b,4,5) = (L(9)T (b+ (422 )))geR'

Since ¢d € R and the rank of C' is equal to the number of its rows, the map
R'(0) is injective. Thus there exist an open neighborhood Y C R? x V4
of 0 and an open neighborhood Z C M of 0 such that hly:Y — Z is a
homeomorphism. In particular M is a manifold and Uss, (R) is its tangent
space at 0. O

Remark 4.20. A chart of the manifold of the above theorem is given in
the proof.

The following theorem gives a sufficient condition for ygzg to be a min-
imum point of E for the cases that G is finite, G is a space group, and
dy = 1.

Theorem 4.21. Suppose that di € {0,1,d}, V has finite interaction
range, ey = 0 and Ag00 > 0. Then E has a local minimum point at
Xgxo with respect to || - ||loo, @ €. there exists a neighborhood U C Uper of
0 with respect to || - ||oo such that

E(xgzo +u) > E(xgxo) forallueU.

Proof. Suppose V has finite interaction range, eyy =0 and A, 0,0 > 0.
First we assume that d; € {0,1}. Let Ry C G\ {id} be a finite interac-
tion range of V. Since ey = 0, by Corollary 4.16 we have E'(xgxo) =
0. By Theorem 3.37 there exists a constant ¢; such that | -||r,0,0 >
c1ll - lrRury w.0.0- Let 2 = c3Xa0.0/2 > 0. We have

E" (xgwo)(u,u) > Aajo,0

Aa
> 222 ulf 0.0 + e2llulfrurey w00
>

\U”%ao,o

Aa

52 |ull% 0.0 + c2llullzy v,00

A
= 292 |ull% 0,0 + 2l VR ull3 (4.6)
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for all u € Uper. In the last step we used that || - |ry.v.00 = [[Vry - |2
since dy € {0,1} and thus Uso,00(Rv) = {0}. Since Ry is a finite
interaction range of V, by Taylor’s theorem there exists some £ > 0 such
that for all z: G\ {id} — R with ||z| s < & we have

V(yo+2) = V(yo) + V'(yo)z + V"(y0) (2, 2) — e2llzlm, 7. (4.7)

For all u € Uper with ||ul|e < £/2 we have

E(xgwo + u) \CN| > V( (o + ulgh)) = (wo + “(9)))heG\{id})
geCn
> ot 3 (Vi) + Vo) (L (ulgh) — u()neg o
Cn| 2,

+ V(o) (L(R)ulgh) = ulg)neogays (L(R)ulgh) = u(9)neartiay )

~ [V, u(9) )
= E(xgzo) + E' (xgzo)u + E" (xgzo) (u, u) — c2|| Vry ul)3

Aa.
> E(xgzo) + =5 |[ul7 0.0,

where N € My such that u is 7™ -periodic and we used (H1) in the first,
(4.7) in the second and (4.6) in the last step.

Now we assume that d; = d, i.e. G is finite. Thus we have U5 (R) =
Uiso,00(R). By Proposition 4.19 there exists a neighborhood U C E(d)
of id such that the set

M = {ueUperHaEUVgeg:g-(xo+u(g)):a~(g-1;0)}

is a manifold and Ujse0,0 is its tangent space at 0. For all v € M and
v € Uper wWe have

E(xgzo+u+v) = E(Xg:vo + (L(g)T(b +(A—1I4)(g- xo)))geg + v)

- é Z V(((gh) . (a:o + L(gh)T(b+ (A — I3)((gh) - o)) + U(gh))
geg

—g- (xo +L(g)T(b+ (A= Ia)(g - o)) + U(g)>>h69\{id}>

~ gl ZV(< ( (zo +w(gh)) —g- (20 +w(g))))h€g\{id}>
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_ ﬁ Zg V(((gh) (w0 +w(gh)) — g+ (w0 + w(g))>heg\{id}>

— B(xgro + w). (4

where (A,b) € U such that g - (20 +u(g)) =a- (g-xo) for all g € G, the
function w: G — R? is defined by g — L(g)TATL(g)v(g), and we used
(H1) in the second to last step. In particular we have

E(xgzo +u) = E(xgzo) for all uw € M. (4.9)

Since ey = 0, by (4.8) and Corollary 4.16 for all u € M and v € Upe, we
have

E(XQIO +u+ tl)) — E(Xgl‘o + U)

E'(xgzo + u)v = lim

t—0 t
. E(xgzo + tw) — E(xgzo)
= lim
t—0 t
= E'(xgzo)w
=0, (4.10)

where w is defined as above. By (4.10) we have
E'(xgro+wu)=0  forallue M. (4.11)

In the following, ¢ > 0 denotes a sufficiently small constant, which may
vary from line to line. Since A, 0,0 > 0, we have

E"(xgwo)(u,u) = clulk oo forall u€ Uper.

Let U, 0.0 be the orthogonal complement of Usso, 0,0 with respect to || - 2.
By Theorem 3.34 the seminorm || - [|g |y = is a norm and thus we have

E"(xgwo)(u,u) > cluly,  for all u € Ui, g0-

Since E” is continuous in (Uper, || - |loo), without loss of generality we may
assume that M is such that

E" (xgxo + u)(v,v) > c||v]|% for all u € M and v € Uy, 0. (4.12)

Without loss of generality let M be such that by (4.11), (4.12), Taylor’s
theorem and (4.9) there exists a neighborhood V' C Uéo,()’o of 0 such that

E(xgzo+u+v) > E(xgzo+u) = E(xgzo) forall u e M and v € V.

Since M + V C Uper is a neighborhood of 0, the assertion is proven. [O
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Remark 4.22. Suppose that d; € {0,1}, V has finite interaction range,
ey = 0 and A, 0,0 > 0. Then there even exists a neighborhood U C Upe,
of xgxo with respect to || - ||oo such that

E(xgxo +u) > E(xgwo) + /\"“20’0 llull%.0.0 for all w € U.

The above proof also shows this assertion.

4.4. Boundedness of the bilinear form E”(xgz))

In this section we present sufficient conditions for the boundedness of
E"(xgxzp). The boundedness of E”(xgxo) with respect to || - ||zx and
Il - l=,0,0 particularly implies the finiteness of A, and A, o0, respectively.
With respect to || - ||z, the main result is Theorem 4.28. With respect to
Il - ll=,0,0 and for the physical important case d = 3, the main results are
Theorem 4.34 and Theorem 4.39. In this section we assume that V' has
finite interaction range.

4.4.1. The general case

We recall the definition of the boundedness of a bilinear form.

Definition 4.23. Let W be a real vector space, | - || be a seminorm on
W and B be a bilinear form on W. We say the bilinear form B is bounded
with respect to || - || if there exists a constant C' > 0 such that

|B(v, w)| < C|v]|||wl| for all v, w € Uper-

The following lemma is well-known.

Lemma 4.24. Let W be a real vector space, || - || be a seminorm on W
and B be a symmetric bilinear form on W. Then B is bounded with
respect to || - || if and only if there exists a constant C > 0 such that

|B(v,v)| < C|lv|? for allv e W.
Proof. The assertion is proved in, e.g., [50, Section 92]. O

Proposition 4.25. The bilinear form E"(xgxzo) is bounded with respect
to [|[Vg - |2
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Proof. Let Ry C G\ {id} be a finite interaction range of V. By Theo-
rem 3.40 we may assume that Ry C R. There exists a constant C' > 0
such that

[V"(yo)(2,2)| < Cllzlry > forall z € L>®(G \ {id},R?).  (4.13)
Let u € Uper and N € M such that u is TN-periodic. We have

|E”(ng0)(u,u)| = ‘ClN| Z V“(yo)((L(h)u(gh) - U(g))heg\{id}a

geCnN

(L(h)u(gh) — U(g))heg\{id}> ‘

C
<—— >V 2
—»‘CAN || 72”(9)”

geCln
= C||Vrull3, (4.14)

where we used Lemma 4.6 in the first step and (4.13) in the second step.
Equation (4.14) and Lemma 4.24 imply the assertion. O

The property (H1) of V implies the following lemma.
Lemma 4.26. For all S € Skew(d) and z: G\ {id} — R? we have

V" (y0)(Syo, z) = =V"(y0)(S2).
Proof. By (H1) for all z: G\ {id} — R% and A € SO(d) we have
V(Ayo + tAz) — V(Ayo) V(yo +t2) — V(yo)

! s .
Vi Aw)42) = iy t i t

For all S € Skew(d) and z: G \ {id} — R? we have

V'(yo + tSyo)z — V' (yo)z
t
o VIS + 1530 (e152) V(o)
=20 t
LV )(a— t5)2) — V()

t—0 t

= —V'(30)(5%2),

where we used (4.15) in the second step and Taylor’s theorem in the third
step. O

7 T
V"(40)(Syo, 2) = lim
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Remark 4.27. If V' does not have finite interaction range, then for all
S € Skew(d1) © {04,,4, } and z € L35, (G \ {id}, R?) we have

V" (y0)(Syo, 2) = =V (y0)(Sz).
The proof is analogous since we have Syo = (S(L(g)r0 — %0))geg\fia} €
L>=(G\ {id},R?) for all S € Skew(d1) ® {04y.4,}-

In the following theorem the assumption V'(yo) = 0 is comparatively
strong.

Theorem 4.28. Suppose that V'(yo) = 0. Then E”(xgxo) is bounded
with respect to || - ||r. In particular we have Ay € R and Aq00 € R.

Proof. Suppose that V'(yo) = 0. Let u € Uper and N € My such that u
is TN -periodic. Let S € L (G, Skew(d)) be T™-periodic such that

per
Vru(g) = 7u,..r) (Vru(g))+(L(h) " S(g)(h-zo—0)), s for all g € Cy,

where 7y, (r) is the orthogonal projection on {v: R — R?} with respect
to the norm || - || with kernel U0t (R). In the following, C' > 0 denotes a
sufficiently large constant, which is independent of u, and may vary from
line to line. Let Ry C G\ {id} be a finite interaction range of V. We
have

V" (o) (2, 2)| < Cllzlr, |I? for all z: G\ {id} — R (4.16)
We have
|E" (xgwo) (u, )|

_ ’|Civ| ) V"(yo)((L(h)U(gh) = U9)) heg\ fiay

geCN

(L(h)u(gh) — U(g))heg\{id}> ‘

- ’@ S Vo) (Eulah) = ule) = SR 20~ 70)) gy

geCN

(L(h)U(gh) —u(g) — S(g)(h-zo — xo))heg\{id})‘

Z |70 (R) (VR2(9)) ||

geCN
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= Cllulz v
< Cllul?, (4.17)

where we used Lemma 4.6 in the first step, Lemma 4.26 in the second step,
(4.16) in the third step and Theorem 3.34 in the last step. Lemma 4.24
and (4.17) imply the assertion. O

Proposition 4.29. Suppose that E'(xgxo) = 0. Then we have
E" (xgzo)(u,v) =0 for all w € Usso,0,0 N Uper and v € Upey.

Proof. Suppose that E'(xgzo) = 0. Let © € Uiso,0,0 N Uper and v € Uper.
There exist some a € R? and S € Skew(d1) ® {04,.4, } such that

L(g)u(g) = a+ S(g - x0 — x0) forall g € G.
Let N € My such that u and v are 7~ -periodic. We have

E” (xg0)(u,v)
= o 2 V) (L0)ulah) — (), 0, oy

geCn

(L(h)v(gh) — (g ))heg\{id})

Z V" (yo) ( )TSL(Q)(h " xo — xo))heg\{id}’

(L(h)v(gh) — (g ))heg\{id})

- |C 2 Vo) (Eo)TSL)ER)(5h) ~ v(6)) g gy
g€eCn

=1 ‘V( )((L(h)—ld) > L(g)TSL(g)v(g))

geCn heg\{id}

= O7
where we used Lemma 4.26 in the third step, for all h € G\ {id} the
equality

Y L(9)"SL(g)L(h)u(gh) = Y L(gh™")"SL(gh™")L(h)v(g)

geCn geCn

= Y L(h)L(9)"SL(g)v(g)

geCn

in the fourth step and Corollary 4.16 in the last step. O
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Remark 4.30. (i) In the above proposition the assumption E’'(xgzo) =
0 is necessary, see Example 4.40.

(ii) In the above proposition the assumption V has finite interaction
range is not necessary. Using Remark 4.27 instead of Lemma 4.26,
the proof is analogous. See also Lemma A.3.

(i) If V is weakly* sequentially continuous in addition to the above

assumptions, then we also have %E(ngo + Tu)|T:0 = 0 for all

U € Uigo,0,0 N Uper, see Proposition A.3.

4.4.2. The case d = d;, i.e. G is finite
Theorem 4.31. Suppose that G is finite and E'(xgxo) = 0. Then

E"(xgxo) is bounded with respect to || - ||r. In particular we have A\, =
)\a,0,0 eR.

Proof. Suppose that G is finite and E’(xgzo) = 0. In particular A\, =
Xa0,0 € R since G being finite entails || - [|[x = || - |r,0,0. Let U be a
subspace of Uper such that Uper = Uiso,0,0 ® U. By Theorem 3.34 the
seminorm || - ||z is a norm on U and thus there exists a constant C' > 0

such that || - ||oo < C|| - |lr on U. We have
sup{|E”(Xg:c0)(u,u)\ |u € Uper, |lu]|r < 1}
= sup{|E" (xgzo)(u, u)| | u € U, |ullr <1}
< sup{|E" (xgo) (u, u)| |u € U, ||ull < C}
< o0,

where we used Proposition 4.29 and Theorem 3.34 in the first step and
in the last step that E”(xgxo) is bounded with respect to || -]l by
Lemma 4.6. With Lemma 4.24 the assertion follows. O

4.4.3. The case d = d,, i.e. G is a space group

If G is a space group, then by Corollary 3.42 there exists a constant ¢ > 0
such that
cAy < )\a,0,0 < %/\a

and thus it is sufficient to consider only A,.

Theorem 4.32. Suppose that G is a space group. Then E"(xgxo) is
bounded with respect to both || - ||z and | - ||r.0,0- In particular we have
)\m )\a,070 c R.

Proof. This is clear by Proposition 4.25 and Corollary 3.42. O
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4.44. Thecased=1+d,

Theorem 4.33. Suppose that d = 1+ dy. Then E”(xgxzo) is bounded
with respect to || - ||r,0,0- In particular we have Ag 0,0 € R.

Proof. Suppose that d = 1+ ds. Then we have Uot,00(R) = {0} and
thus || - |r,v,00 = [V®r - [l2. With Theorem 3.37 and Proposition 4.25
follows the assertion. O

4.4.5. The case d € {1,2,3}

Theorem 4.34. Suppose that d € {1,2,3}, (d,d2) # (3,1) and E'(xgzo)
= 0. Then E"(xgxo) is bounded with respect to || - ||r0,0. In particular
we have Ag 0,0 € R.

Proof. This is clear by Theorem 4.31, Theorem 4.32 and Theorem 4.33.
O

Remark 4.35. For the case (d,d2) = (3,1) see Theorem 4.39.

4.4.6. The case d =2+ d,
For the proof of Theorem 4.39 we need the following definition.
Definition 4.36. For all u € Uper we define the function S, of
0 A0
L= (97 { ( ~AT 4, o) ’ A; € Rl dam)x(darr=d2) A, € Skew (dagr — d2)}>
0 00

by the condition
VRU(G) = T,y 00R) (VRU(G)) + (L(9h) T Su(9) L(9)(h - 20 — 20)) e

for all g € G, where 7y, , ,(r) is the orthogonal projection on {v:R =

R4} with respect to the norm || - || with kernel Usot.0.0(R).

Remark 4.37. For all u € Upe, the function S, is well-defined: Let g € G.
By Lemma 2.85 there exist By € O(d — dag), B2 € O(dug — d2) and
Bs € O(ds) such that L(g) = By & By @ Bs. By Proposition 3.28 we have

Urot,0,0(R)
—{R>RLR o )T (( g 41) ©Oaas ) (- w0 — o)

(A1, As) € T}
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= {R RO b LT (g, 5iaems) @ Oana ) (-0 = 20)|
(A1, As) € T}
— {R — R B L(gh)T((f(iq 3;) @ 0d2,d2>L(9)(h -2 — x0) ‘

(A1, As) € T},

where T = R4~ das)x(das=d2) » Skew(dug — do).

Lemma 4.38. For all gg € G there exists a constant C > 0 such that

o 3 Sulom) = Su0)* < Clulf
gECN

for all u € Upey and N € My such that u is T -periodic.

Proof. Let go € G. By Lemma 3.6 there exists some R’ C R and A €
GL(dag) such that

(90— T0)ger = (21)

By Theorem 3.37 without loss of generality, we may assume that {go} U
goR' C R. Let u € Uper and N € My such that u is T™-periodic. Using
that go € R we have

||“H32,V,0,0 |C | Z HVRU gh)"S,(9)L(g)(h - zo — xo))hERHQ

Z | L(g0)u(g990) — u(g) — L(9)TSu(9)L(9) (g0 - z0 — z0)||".
geCn
(4.18)

Using that gy R’ C R, we have

/2,700 = @ > [ruto) - () Sutata)n-an - 20 nere|

> N| > Y [[Z(goh)u(ggoh) — u(g)

geCn heR’/
— L(9)"Su(9)L(9)((90h) - w0 — zo)||". (4.19)
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Using that Cygo is a representation set of G/7V and R’ C R, we have

1
Il w00 = 5 O | Vrulggo)
ICn|
geCn

—f(L<ggoh>T5'<ggo>L<ggo>uL~wo——aw))heRH2

> N| > > [[L(goh)ulggoh) — L(go)ulggo)

geCN heR!

- L(Q)TSu(ggo)L(ggo)(h “ Xy — 370)“ . (4.20)

By (4.18), (4.19) and (4.20) there exists a constant ¢ > 0 (independent
of u and N) such that

||U||32 v,0,0

> oo 2 3 |[Eayutonm) — ulo) ~ L) Su(9)L(a) g0 - w0 — w0)

g€CN heR!
— L(goh)u(ggoh) + u(g) + L(9)" Su(9)L(9)((g90h) - x0 — x0)

+L@MW@%M—wawww—L@f&@%M@%W%m—xww

\CN\ > [[(Sulg) = Sulg90)) L(9g0) (2) 2

geCn

By Lemma 2.85 for all g € Cy there exist Bi(g) € O(d — dagt), B2(g) €
O(dag), T1(g) € RU@—das)xdas and Ty(g) € Skew(dag) such that

L(gg0) = (BIO@) BQO(Q)> and S.(g) — Su(9g0) = <_T(1)(g) %gg)
By (4.21) we have

lulfes 002 57 3 (IT(0) B2 A1 + IT2(0) Ba() A )

(4.21)

geCn
> Ti(9)||* + || T:
—u7|2;(”1 9)l +H2<w)
cc
> 5 ZII u w(990) 1%, (4.22)

where ¢; = 02;,(A) > 0, omin(M) denotes the minimum singular value

of a matrix M and we used Corollary 9.6.7 in [10] in the second step.
Theorem 3.37 and (4.22) imply the assertion. O
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Theorem 4.39. Suppose that d = 2+dz, E'(xgxo) = 0 and E" (xgxo) is
positive semidefinite. Then E" (xgxo) is bounded with respect to || - ||r.0.0-

Proof. Suppose that d =2 + da, E'(xgxo) = 0 and E"(xgxo) is positive
semidefinite. Since E”(xgzo) is positive semidefinite and by Lemma 4.24,
it suffices to show that there exists a constant C' > 0 such that

E" (xgzo)(u,u) < C||u||§370’0 for all u € Upe,. (4.23)

By Theorem 2.17 there exists some m € N such that My = mN. Let
{t1,...,td,} be a generating set of 7™. Without loss of generality we
assume that

Covm = U .ty 2Cp forallm €N,
n1,.5ndy €{0,...,n—1}
see Remark 2.51(ii). For all g € G there exist ny1,...,n/c,,|.d, € Z such
that
[Com|

Crg = ) 11ty s,
i=1

where h1, ..., hjc,. | are the elements of C,,,. Thus and since 7™ is abelian,
for all g € G we have

n— o0 |Cnm|

=1 (4.24)

Let u € Uper and N € My such that u is TN-periodic. For all n € N we
define a T™N-periodic function Vu,n € Uper by the condition

L(g)vu,n(g) = Su(g)(g “Zo — -TO) for all g€ CnN~
Since 7(G) C {04, } x R%, we have

Su(g)(h-xo) = Syu(g)L(h)xg forallg,h € g (4.25)
and
Su(g)((hlhg) . iL'()) = Su(g)L(hl)(hg . .’Eo) for all g, hl, h2 S g (426)

By (4.25) the sequence (vy n)nen is bounded in (Uper, || - [loo). Since the
bilinear form E”(xgzo) is positive semidefinite, for all n € N we have

E//(ngo)(uv ’LL) < E//(ngO)(u7 u) + E”(ng())(u - 2vu,na U — 2Uu,n)
=2E" (xgz0) (U — Vyn,s U — Vyun) + 2E" (xgT0) (Vi s Vun)-  (4.27)
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In the following, C' > 0 denotes a sufficiently large constant, which is
independent of u and may vary from line to line. We have

lim sup E"(ngo)(u — Uy U — Uy ) < limsup CHV'R(U — vu,n)H;

n—00 n—00

:hmsup Z ZHL u(gh) —u(g)

o gec RER

~ L(g >Ts (9h)((gh) - w0 — o) + L(9) T Sul9)(g - 70 — o)

< 1imsup Z Z (HL u(gh) — u(g)
nee gean heR
- L(gfsu(g)L(g)(h 20— 20)[* + 18u(gh) = Su(9)?)
< Cllull%,0,0- (4.28)

where in the first step we used Proposition 4.25, in the second step
we used (4.25), (4.26) and (4.24), and in the last step we used (4.24),
Lemma 4.38 and Theorem 3.37. Using (4.24) we have

lim sup E” (xg20) (Vu,n, Vu,n)
n— oo

= limsup ——

Z VH(Z/O) ((L(h)vu,n(gh) - vu,n(g))heg\{id}a

geCnnN

(L(h)vu,n (gh) - Uu,n(g))heg\{id})

> V(o) ((a(!h h) +b(g, 7)) hegfidy»

9gE€CnN

(alg, h) + b9, P negy iay )
= limsup(s1,n + S2.n), (4.29)

n— oo

= limsup ——
n—>oop |CnN‘

where

a(g, h) == L(9)"(Su(gh) — Su(9))((gh) - 20 — @0),
b(g, h) == L(9)" Su(9)L(g)(h - x0 — x0),

(o) ((a(g, W) neg{iay: (a9, h))neg\fia})

»
3
|
o
S| =
=
2\
2
<
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for all g,h € G and n € N. Let Ry C G\ {id} be a finite interaction
range of V. We have

lim sup s1,, < limsup
n— o0 n— 00 ‘ nN |

> D lalg.ml?

g€CnpN heERYy
< limsup Z Z [|Swu(gh) — u(g)H2
oo gEC N heRv
< cuunn,o,o, (4.30)

where we used (4.25) in the second and Lemma 4.38 in the last step. By
Corollary 4.16, (4.24) and the boundedness of Sy, we have

Z V( yO Su(g)SU(g)(L(g)IO - IO))heg\{id}

QECnN

lim sup

Z V yO )L(g )TSu(g)Su(g)(L(g)xO

geCnnN

= limsu
n—>oop ‘CnN|

xo))heg\{id}

= limsup —— \C | Z V' (10) (L(9) " Su(gh)Su(gh)(L(gh)zo
n— 00 nN 9€Cnn (431)

xo))heg\{id}'

Since d — ds = 2, we have

Su(g)Su(h) = Sy, (h)Syu(g) for all g,h € G. (4.32)
We have
lim sup s2 ,,
n—o0
=limsup —— > V'(y0)(~L(9)"Sul9)L(9)(2a(g, h)

n—00 ‘CnN| 9E€CnnN

+ b(g, h)))heg\{id}
Z V' (o ( (9)"Su(9)Su(gh)L(gh)xo

= limsu
n—>oop ‘CnN|

+2L(g)" S, (g)Su(gh)wo + L(9)"Su(9)Su(g)L(gh)mo

—2L(9)" Su(9)Sulg)zo + L(g)TSu(g)Su(g)L(g)xo) hea\{id}
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= limsup —— ‘ CnN| > V(o) (L(9) T (Sulg) — Sulgh))*(L(gh)zo

n— 00 gECnn

z ))heg\{id}

Stmswp s 37 3 18u(9) — Sulom)l®

oo gec N h€Ry

< C”“”R,O,Ov (4.33)

where in the first step we used Lemma 4.26, in the second step we used
(4.25), in the third step we used (4.31) and (4.32), and in the last step
we used Lemma 4.38. Equations (4.27), (4.28), (4.29), (4.30) and (4.33)
imply the assertion (4.23). O

4.4.7. Examples for \, = —o0

In this subsection we present examples such that Ay, = Xy 0,0 = —oc. In
particular E”(xgzo) need not be bounded with respect to || - |=,0,0.

Example 4.40. We present an example such that E”(xgzo)(u,u) < 0
for some u € Uiso,0,0 N Uper- In particular we have A\, = Aa 0,0 = —00,
E"(xgxo) is not bounded with respect to |- |/r,0,0, and in Proposi-
tion 4.29 and Theorem 4.31 the condition E’(xgzo) = 0 is necessary.
Let d =dy =2, p = (—12,0) € E(2), G = {id,p} < E(2), 29 = e1 € R?
and

V:R2 SR, z+— —|z|?

We define the function u € Uiso,0,0 by

0 1
L(g)u(g) = (_1 0) (9-xo—x9) forallgeg.
We have yo = p - x9g — x9 = —2e; and
E" (xgxo)(u, u) = 1] ZV’ yo)(—u(gp) — u(g), —u(gp) — u(g))
9€g

= V" (yo)(u(id) + u(p), u(id) + u(p))
= —2||u(id) + u(p)||?
S

Since ||ullr = |lul|r.0,0 = 0, we have Ay = Xy 0,0 = —00 and E”(xgzo) is
not bounded with respect to | - || %,0,0-
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Example 4.41. We present an example so that E'(xgzo) =0 and A, =
Aa0,0 = —oo. In particular E”(xgxzo) is not bounded with respect to

I l=.0.0-

Letd=dy =1,d, =0, 1t = (Il,l) S E(l), g = {tnl’I’L S Z} < E(l) and
zo =0 € R. We have My = N. Let a > 1 and V': (R9)9\} — R be the
interaction potential such that V has the properties (H1), (H2) and (H3)
and

V" (yo) (21, 22) Z n" %% (t") 22 (t") for all 21, 20 € L2(G \ {id},R?).
neN

We have E’(xgzo) = 0 by Corollary 4.17. Let N € N be even. The
set {t%,...,tN "1} is a representation set of G/T™. We define the 7-
periodic function u € Uper by

u(t"):N for all n € {0,...,N/2 -1}
and

u(t")=1-—— forall n € {N/2,...,N —1}.

Let R = {id,t,t?} and R’ = {t}. The set R has Property 2 and R’
generates G. By Corollary 3.42 and Theorem 3.40, the seminorms || - |»
and ||[Vz - || are equivalent and thus there exists a constant C' > 0 such
that || - |g < C||Vg - ||. We have

1 N-1 5 C
lulle < IVl = (5 S ITra)P) =5 @3
n=0

We have
E"(x gwo)( u)

o) ((u(t"s) = ult") e\ iy (w(t"s) = u(t")) g )

Zm a|u tn+m _ t")’

=0m
1 N-1
< 5 2 (/) () — (e[
n=0
1 1
< = e

= 295N, (4.35)
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By (4.34) and (4.35) we have
E" (xgwo) (u, u)
lull%

where ¢ = C722%75, For all a € (1,2) we have A\, = —oco since N € 2N
was arbitrary. Since || ||r = || - |lr,0,0, for all a € (1,2) we also have
Aa,0,0 = —00.

)\a S S 7CN27Q7

4.5. The main theorem

In this section we characterize the stability constants A, and A, 0,0 in
the Fourier transform domain, see Theorem 4.51. We also state a similar
characterization which enables us to efficiently compute A, and A, g0, see
Theorem 4.54.

Recall Definition 2.61. Since E”(xgxo) is left-translation-invariant, see
Remark 4.15(i), we can represent E”(xgzo) as a convolution operator.

Lemma 4.42. For all u,v € Uper we have

E" (xgwo)(u,v) = (fv *vo,uo),
where ug = u( - =) and vo = v(- ~1).
Proof. Let u,v € Uper. Let N € My such that v and v are TN—periodic.
Let ug = u( - ~!) and v = v(- ~!). By Lemma 4.14 we have

E"(xgzo)(w,v) = > u(g) dgrn Oy E" (xgo)v(h)
(],hECN

Z Z ’LLO 1 1ht)1}0(h 1)

g heCn teTN

|C | Z uo(g™") " fv xvo(g™)

geCN

= <fV * ’U(),’LLO>,

where in the third step we used that vo((ht)~!) = vo(h™1) for all h € Cy
and t € TN, O

Let ¢: R — {0,...,|R| — 1} be a bijection. We define an isomorphism
between C(MRDxn and (Cm*m)R by

(ai,j)ie{l,“.,mlR\}%je{l,...,n} = ((ai-l-mgo(g),j)ie{l,.“,m};je{1,...,n})geR-
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Definition 4.43. We define the functions gz, gr,0,0 € LY(G, R(AR)xd)
by

gr(9) = P((sg,hld)hen forall g e G

and

gR,0,0(g) =5 (697}?'[61)}1673 for all g € G,
where P (resp. Fp) is the square matrix of order d|R| such that the map
RURI 5 RURI . 2 Py

is the orthogonal projection with respect to the norm || - || with kernel
Uiso(R) (resp. Uiso,O,O(R))-

Remark 4.44. The support of both gr and gr 0,0 is equal to R. We have

9r(9) = Py(g) forall g e R
and

9R.0,0(9) = Po,e(q) forall g e R,

where po, ..., P|R|—1,P0,05 - - - »P0,|R|-1 € RERD*d guch that P = (po, . . .,
Pr|-1) and Py = (po,o, - - -,Po,|r|—1) and both P and P, are as above.

Due to the left-translation-invariance, || - |z and || - ||z,0,0 can be repre-
sented by means of convolution operators.

Lemma 4.45. For all u € Uper we have that ||ullr = ||lgr * uoll2 and
llullr,0,0 = lgr,0,0 * uoll2, where ug = u( -~

Proof. Let u € Upey and N € My such that u is 7V-periodic. Let
up = u( - ). Let P € RURD*(ERD) guch that the map

RURI 5 RURI 4 s Py

is the orthogonal projection with kernel Uss,(R). We have

s = ﬁw S | PCalgh)nexlf- (4.36)

geCN

For all g € G we define the function

0g: G —{0,1},h = O 4.
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For all g € G we have

P(u(gh))her = P(uo(h™'g™"))ner
P((6r14) * uo(g™"))ner
= (P(nla)ner) * uo(g™")
=gr *ug(g™t). (4.37)

By (4.36) and (4.37) we have

[[ull% = C > llgr = uolg™ I = lgr * uoll3-
[Cn] ot
Analogously we have ||ul|z,0,0 = |lgr,0,0 * Uol|2- O

Proposition 4.29 implies the following corollary.

Corollary 4.46. Suppose that E'(xgxo) = 0. Then for all periodic
representations p of G and a € C4% such that ||gr(p)al| = 0 we have

(Fv(p)a,a) = 0.

Proof. Suppose that E'(xgzo) = 0. Let p be a periodic representation of
G and a € C% such that ||gr(p)a| = 0. Without loss of generality we
assume that p € £. We define u € Uper,c by

sy - [ Q) 0=
Odd,d, else

for all p’ € £&. We denote ug = u( - ~!). We have

0= d,|lgr(p)all? = dpllgr(p)a(p)|I* = dollgr *a(p)|I* = llgr * ull3
= llgr * Re(w)l[3 + [lgr * Im(u)[|3 = [|Re(uo) % + [Mm(uo)ll7, (4.38)
where we used Proposition 2.56 in the third step and Lemma 4.45 in
the last step. Thus we have |[Re(ug)||r = 0 and ||Im(ug)|[x = 0 which
is equivalent to Re(ug),Im(ug) € Uiso,0,0 by Theorem 3.34. We have
E"(xgxo)(Re(uo), Re(up)) = 0 and E”(xgxo)(Im(uo), Im(ug)) = 0 by
Proposition 4.29 and Remark 4.30(ii). Thus we have

dy(Fv(p)a. a) = B"(xgwo)(Re(uo), Re(uo)) + E” (xgwo) (Im(uo), Im (up))
=0,

where the first step follows analogously to (4.38) with Lemma 4.42 instead
of Lemma 4.45. O
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The following lemma shows that we can consider complex-valued instead
of real-valued functions.

Lemma 4.47. We have
Ao = sup{c € R |Vu € Uperc : ¢llgr * ull3 < (fv *u,u)}
and
)\aOO—sup{ceR|quUperC CHg'ROO*uH2 <fV*u U>}

Proof. By Lemma 4.42, Lemma 4.45 and since Upe, = {u(- ') |u €
Uper}, we have

Ao =sup{c € R|Vu € Uper : lgr * ull3 < (fv *u,u)}
and hence,
Aa > sup{c € R|Vu € Uperc : c|lgr * ull3 < (fv *u,u)} =: RHS.
Now we show that A\, < RHS. For all u € Uper c we have
(fv *u,u) = (fv * Re(u),Re(u)) —i(fv * Re(u),1 (U)>
+i{fv * Im(u), Re(w)) + (fv * Im(u), Im(u))
= (fv * Re(u), Re(u)) —1E" (xgwo) (Im(u ) Re(u))
+iE" (xgwo) (Re(u), Im(w)) + (fy * Im(u), Im(u))
= (fv * Re(u), Re(w)) + (fv * Im(u), Im(u))
> Xallgr * Re()|3 + Aallgr + Im(u)]l3
= Xallgr * ul3,

where in the second step we used Lemma 4.42.
The proof of the characterization of A, o is analogous. O

Recall that by Definition 2.19 all representations are unitary. Schwarz’s
theorem implies the following lemma.

Lemma 4.48. For all g € G we have fy (g~ ') = fv(g)" and for all
representations p of G the matriz fy (p) is Hermitian.

Proof. For all g € G we have

o= X (0, B2 0000V () 0)

h1,h2€G\{id}
=8, et D) 000,V (40) — 8yt O,V (y0) L)

+0g-1,ia0ny,hy V(fUO))
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= > (5g,h;1h2L(h2)T(3h13h2V(y0))TL(h1)
h1,h2€G\{id}

— g,y L(h2) T (O, 0n,V (y0)) T
— 3,1 (Ona DhaV (90)) TL () + 6g,id<ahlah2wyo>f)
= fv(g)" (4.39)

For all representations p of G we have

)= fvlg) ®plg)

geg

=Y fvlg e

geg

=> fv(g" @p(g"

geg

- (T atoe p(g))H

g€g
= fV(p)H’
where in the third step we used (4.39) and that p is unitary. O

Definition 4.49. The Loewner order is the partial order on the set of
all Hermitian matrices of C"*" defined by A > B if A — B is positive
semidefinite. We define

Amin(4, B) :=sup{c € R| ¢B"B < A} e RU {00}
for all Hermitian matrices A € C™"*™ and matrices B € C™*",

Remark 4.50. (i) By means of the dual problem we have

Amin (4, B) = inf{xHAaj |z € C",||Bz|| = 1}
and
00 if A is positive semidefinite
—o0 else

Amin(Aaom,n) = {

for all Hermitian matrices A € C"*™ and matrices B € C™*™\ {0}.
The proof is analogous to the proof of Proposition 4.10.
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(ii) Suppose that B has in addition rank n and consider the generalized
eigenvalue problem Av = ABYBu, i.e. the problem of finding the
eigenvalues of the matriz pencil A—XBYB. Then the eigenvalues of
the generalized eigenvalue problem are real and Anin (A, B) is equal
to the smallest eigenvalue of the generalized eigenvalue problem,
see [34, Chapter X, Theorem 11]. The eigenvalues of the gener-
alized eigenvalue problem are equal to the eigenvalues of the ma-
trix A(B"'B)_l7 see [58, Proposition 6.1.1], but the eigenvalues of
A(BYB)~! are ill-conditioned. There exist many numerically stable
algorithms, see, e.g., [8, Chapter 5], and thus many programming
languages have a function for this problem; e.g. for Python the
subpackage linalg of the package SciPy has the function eigvalsh.

Due to the left-translation-invariance, E” (xgzo), || - ||z and || - ||r,0,0 can
be represented by means of multiplier operators. Thus we have the fol-
lowing representation of A\, and X, 0,0. Recall that £ is a representation

set of {p € G| p is periodic}.
Theorem 4.51. We have

No = inf{ uia (7 (). 57(0)) | p € £}
and

Moo = inf { M (70 (0). FR0(0)) | € €.

Proof. By Lemma 4.48 for all p € £ the matrix f;(p) is Hermitian and
thus the term A\pin(fv(p), gr(p)) is well-defined. We have to show that

Aa = inf{)\min (?;(p),ﬁﬁ(p)) ‘p € 5} =: RHS.
By Lemma 4.47 we have
Ao =sup{c € R|Vu € Uperc : cllgr *ull3 < (fv * u,u)}.

First we show that A\, < RHS. Let p € £ and a € Cddr . We define
u € Uper,c by

up') = (@ Odq,da,—1) ifp' =p
Oddp’ ydpr else

for all p’ € £. By Lemma 2.62 and Proposition 2.56 we have

(Fpasa) = (Fo()ilp). i) ) = (Fv ulp). (o)) = dlp<fv <, )
>

Q.‘y <

HgR xull3 = Xallgr = u(p)* = AallgrR(p)i(p)[I* = AallgR (P)ar]|*.
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Since a € C%» was arbitrary, we have Amin (f;(p), IrR(p)) = Aa-
Now we prove that A\, > RHS. Let w € Uper,c. For a matrix A we denote
its ith column by A;. We have

(fv *u,u) = Zd <fv*u ()>

peE

=" dp (R ()ilp). p) )

peE
-%4, Z<fv Jap)i, (o). )
peE i=1
- RS Y d, S IGRON
peE i=1
= RHS ) _d,|[gr(p)ulp)?
peE
= RHS||gr * ull5.
The proof of the characterization of A, o is analogous. O

For the remainder of this section, we fix a complete set of representa-
tives of the cosets of TF in G such that Indp is well-defined for all p
by Definition 2.23. In the following we write Ind p for Indg—}- p for all
representations p of TF.

Lemma 4.52. For all representations p of TF the functions
R% — Cldo)x(ddo) oy T (Ind(xpp)),
R% — C('R'dp)x(dd”), k = R (Ind(xkp))

and
R — CURI)*(ddy) -k G255 (Ind (Y p))

are continuous and the functions

R% 5 RU {200}, k= Awin (70 (Ind(xip). 77 (Ind(xi0)) )

and
R% = RU {200}, k = Ain (v (Ind(xip)), r50(Ind (xp)))

are upper semicontinuous.
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Proof. Let p be a representation of 7F and f; denote the ith function of
the lemma for every ¢ € {1,...,5}. By Theorem D.7 the functions f1, f2
and f3 are continuous.

Let (kn)nen be a sequence in R%2 and k € R% be such that lim,, o0 k, =
k. Without loss of generality we assume that limsup,,_, . fa(k,) > —o0
and limsup,,_, o fa(kn) = limy,_ oo fa(ky). Let A € R be such that A <
limsup,,_, .. f1(kn). We have Afa(k, )" fa(k,) < fi(k,) for all n € N
large enough. Since the Loewner order is closed, i.e. the set {(4, B) €
X?| A < B} is closed, where X = {A € C(@d»)x(dd,) | A is Hermitian},
we have \fa (k)M f2(k) < fi(k). Thus we have A < f4(k).

Analogously the function f5 is upper semicontinuous. O

Recall Definition 2.38, Proposition 2.39 and Definition 2.32.

Definition 4.53. For all p € TF and representations p’ € p we define
the space group

gp’ = gp-

The following theorem generalizes Theorem 3.6(b) of [40] from lattices to
general configurations.

Theorem 4.54. Let R be a representation set of a representation set of
TF/~. Forall p € R let K, be a representation set of R%/G,. Then we
have

Ao = inf {Amin (v (Ind(vep)). GR(Ind(xip) ) | p € Bok € K, |
and
N0 = 0t { A (T (nd(xip). G0 (nd(xip) ) [ o € Bok € K ).

Proof. Let R be a representation set of a representation set of ﬁ/ ~. For
all p € R let K, be a representation set of R /G,. Let m € N such that
My = mN. By Lemma 2.36(i) there exists a representation set R’ of a
representation set of ﬁ/ ~ such that p is T™-periodic for all p € R’. Due
to the existence of fundamental domains, see, e. g., [49, Theorem 6.6.13],
for all p € R’ there exists a representation set K7, of R* /G, such that L/,
is a dense subset of K, where L), = {k € K,|dN € My : k € L5/N}.
By Theorem 2.43 applied to R and R’, there exist a bijection

v || K= | Koo (kp) = (01(ks p), 02(k, ) (4.40)
pER’ PER
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and for all p € R and k € K, some Ty , € U(dnd(y,)) such that

Ind(ti1(k,p)902(ka ,0)) = Tl:l,p Ind(XkP)Tk,p (441)

By (4.40) and (4.41) we have

o~

RHS i= inf { Ao (Fv (Ind(xip)), R (Ind (k) ) ‘p ERkEK,)
= inf{)\min (?;(Ind(xw(k,p)soz(h ),
7 (1nd (X, (5. py 02k, p)))) ’p ER. ke K;}
- inf{/\min ((Id @ TH Vo (nd(xip)) (14 ® T ),
(e @ T8, ) gR (Ind(xep)) (L © Thp) ) | p € Rk € K |

= inf{Amin (fAv(Ind(xkp)%ﬁ(Ind(ka))) ‘p €R.ke K;}
(4.42)

For all p € R’ we define the function
fo: K, = RU {#o0}

B Amin (77 (Ind (xe0), 57 (Ind (k) )

By Lemma 4.52 for all p € R the function f, is upper semicontinuous
and thus we have
inf fp = inf fp‘L;)' (443)

By (4.42) and (4.43) we have

RHS = inf{f,(k) |p€ R,k € L}.

By Theorem 4.51 we have

N = inf{ Ain (F (), 57(0)) | o € £}, (4.44)

By Lemma D.3(ii) there exists a permutation matrix P, ,, .. p, € O(n(p1
+ -+ pg)) for all n,p1,...,pr € N such that

AQ(B1@---®By) =P, (ARB) @ ® (AR By))Pp,....pn

m,p1,...,

for all A € C™*™ and B; € CPi*Pi e {l,...,k}.
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Now we show that A\, < RHS. Let p € R', k € L, and p’ = Ind(xxp). Let
N € My such that by Lemma 2.31 and the construction of L; we have

Xk|7~ = 1. The map p’ is TV -periodic. There exist some py,...,p, € €
and T' € U(d,) such that

0(9) =T (p1(9) @ - @ pn(9)T forall g € G.

We have
’):va(g)® '
9g€eG
=> fvl9) @ (T (p1(g) &+ @ pu(9))T)
geg
=(I3®T) (va )@"'@Pn(g)))(fd@)T)
9€G
- H 1 1
P ((;fv 9) ® p( ) (gezgfv 9) @ pa( ))P
= P (o) @+ 0 (o)) P, (4.45)

where P is the unitary matrix Py a, .4, (2 ®T). Analogously to (4.45)
we have

g7 (0) = Q" (FR(p) @ -+ @GR (pa) ) P (4.46)

where () is the unitary matrix Py g q,
and (4.44) we have

Loeeordpn, (Igr)®T). By (4.45), (4.46)

Fok) = Awin (F(p1) @ -+ & Fo (), G (p1) © -+ & G pn)

- Inin{)\min<?\7(pi),§7§(pi)> ‘z eql,... ,n}}
> Ao

Now we show that A\, > RHS. Let p; € £. By Corollary 2.44(i) the set

{Ind(xxp)|p € R',k € L}} is a representation set of Ind({p € TF|pis
periodic}). By [28, p. 1248] there exist some p € R’ and k € L, such that
p1 is isomorphic to a subrepresentation of Ind(ygp). Let p' = Ind(xkp).
There exist some ps,...,p, € £ and T € U(d,) such that

p(9)=T"(pi(g) & @ pulg))T  forallgeg.
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Analogously to (4.45) and (4.46) we have

o) =P (o) @ o) P
and
gr () = Q" (FR(p) & -+ © TR (pa) ) P

where P is the unitary matrix Py, . .4 (I;®T) and Q is the unitary

Pn

matrix Pd\R|,d d (Id|R\ ® T) We have

P11 %pn

Awin (Fo (1), G (p1)) = min{ i (72 (00), 57 (00)) [ € {1, 1}
= f,(k) > RHS.

The proof of the characterization of A, o is analogous. O

Remark 4.55. (i) By Lemma 4.52 the above theorem is also true if
for all p € R we weaken the assumption on K, and only assume
that the closure of K, contains a representation set of Rd2 /G,. In
particular the theorem is also true if for all p € R the set K, is a
fundamental domain of R% /K.

(ii) An algorithm for the determination of a representation set of ﬁ/ ~
with the aid of the finite group (7F), is given by Lemma 2.36,
where m € N such that My = mN.

4.6. An algorithm to check stability

Due to the main results of the thesis, we can now give an algorithm which
checks if (G, zo, V) is stable with respect to || - ||z, see Definition 4.8. The
algorithm for the stability with respect to || - ||z,0,0 is analogous.

Algorithm 4.56. Given is a discrete group G < E(d) and its associated
groups F, S and set T, see Definition 2.6, some point 25 € R? such that
the map G — R?, g — ¢ - x¢ is injective, and an interaction potential V/,
see Definition 4.1. Since the algorithm is numeric and by (H3), we may
assume that V' has finite support.

(i) Check if xgzo is a critical point of the configurational energy E,
e.g. by computing the derivative 0,V (yo) for all g € suppV, see
Definition 4.1, the vector ey, see Definition 4.11 and checking if
ey = 0, see Corollary 4.16.
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(i)

(iii)

(vi)

4. Stability of objective structures

Determine the derivative 0,0,V (yo) for all g, h € supp V', see Defi-
nition 4.1. Then compute the function fyr by computing fy (g) for
all g € ({id} Usupp V)1 ({id} Usupp V), see Definition 4.11 and
Remark 4.12(ii).

Determine a set R with Property 2, see Definition 3.5. Fix a bijec-
tion ¢: R — {0,...,|R| — 1}. Thus the map

"/}: UiSO(R) — Rd\'m, u = (U(QO_I(O)% s 7u(90_1(|R| - 1)))T7

which maps a function to a column vector, is an embedding, where
Uiso(R) is defined in Definition 3.1. By Proposition 3.28 and the
Gram-Schmidt process, we can determine an orthonormal basis {b;,
ooy b} of Y(Uiso(R)), where n = dim(Uiso(R)). Let B be the d|R|-
by-n matrix (b, ..., b,). The matrix Igr| — BBT is the orthogonal
projection matrix with kernel 1(Uiso(R)). Now we can determine
the function gg, i.e. the matrix gr(g) for all g € R, see Defini-
tion 4.43 and Remark 4.44.

Determine a representation set R of ﬁ/w, e.g. with Lemma 2.36,
where ~ is the equivalence relation defined in Definition 2.32. For
all p € R determine the space group G,, see Definition 2.38 and
Definition 4.53, with, e.g., Proposition 2.39, and determine a rep-
resentation set (or a fundamental domain, see Remark 4.55(i)) K,
of R4z Gp.

Fix a complete set of representatives of the cosets of TF in G.
Thus the induced representation Ind(yp) is well-defined for all
p € Rand k € K,, see Definition 2.29 and Definition 2.23. For all
p € R and k € K, the matrices E(Ind(x;gp)) and gr(Ind(xxp))
can be computed with Definition 2.59. For all p € R and all but
finitely many k € K,, the matrix gr(Ind(xxp)) has full rank and
thus the real number )\min(?\;(Ind(xkp)),ﬁ(Ind(ka)) can easily
be computed, see Definition 4.49 and Remark 4.50(ii). Due to the
upper semicontinuity, see Lemma 4.52, by Theorem 4.54 we can
compute the extended real number A,.

The triple (G, zo, V) is stable with respect to || - ||z if and only if
XgZo is a critical point of E and A\, > 0, see Definition 4.8.

In the following two examples, we investigate the stability of a triple
(Gi,x;, V;) for all i € I, where I is a suitable index set. The figures are
generated with the programming language Python, see https://github.
com/Toymodel-Nanotube/ for the source code.


https://github.com/Toymodel-Nanotube/
https://github.com/Toymodel-Nanotube/
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Example 4.57. A suitable toy model for the investigation of stability is
an atom chain.

Let a > 0 be the scale factor, t = ¢, = (I3,ae3) € E(2) and G = G, =
(t) < E(2) analogously to Definition 2.63 and Definition 2.63.

We define the interaction potential V' = V,, see Definition 4.1 and Re-
mark 4.2(iv), by

Va(y) = vi(llyta)ll) + v2(lly (21D,

where

vy: (0,00) = R, 72— p6

is the Lennard-Jones potential and
vy: (0,00) = R, 7+ 875,

Let g = 02. By Lemma 4.6 for all a > 0 we have

- T
E(xgzo) =V(yo) =a 2 ga ‘,

where E = E, is the configurational energy and yo = yo,, = (g - o —

%0)geg,- We define

1
a* := argmin E(xgzo) = 1/ 16 ~ 1.1477.
a€(0,00) 7

Thus the structure G - xo is stretched (resp. compressed) if a > a*
(resp. a < a*). Now we investigate its stability numerically with Al-
gorithm 4.56.

(i) By Corollary 4.17 the function ygxg is a critical point of E for all
a> 0.

(ii) We have

—2a7 % +1
6a8( e "+ 0 ) ifg=h=t
0 26a=% -7
040nV (yo) = 9—43,-8 <1 O) ifg=h=1t>
0o 7

02,2 else.
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(iii)

4. Stability of objective structures

We have ({id} Usupp V)~ !({id} Usupp V) = {t~2,...,#?} and

—24a=5 4 93/8 0
a8< o > if g = id
0 31246 — 651/8
206 — 1 0
6a—8< “ T ) if g€ {t~1, ¢}
fv(g) = 0 —26a6 47
1 0
243a8( ) if g € {t72,12
0 7 g€ }
02,2 else.

Since the set {id,t} has Property 1 and {t} generates G, the set
R = {id, t,t?} has Property 2. We define the functions

bi: R—=R? gre for all ¢ € {1,2}
and

by: R - R?, g~ (? _01)(9-960 —Zp).

By Proposition 3.28 the sets {b1,bs, b3} and {b1,bs} are bases of
Uiso(R) and Uigo,0,0(R), respectively. We define the bijection ¢: R
— {0,1,2} by ¢t" — n for all n € {0,1,2}. Let ¢ be the embedding

Uiso(R) = R, ur (u(9™(0)),-.., ule™(2)))-

A computation shows that the orthogonal projection matrices of RS
with kernels ¢(Uiso(R)) and ¢(Uiso,0,0(R)) are

1 0 -2 0 1 0
0 4 0 -2 0 =2

11-2 0 4 0 -2 0

6l 0 -2 0 4 0 -2
1 0 -2 0 1 0
0 -2 0 -2 0 4

and

[y
\
—_
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respectively. Thus the functions ggr and gr 0,0 of Definition 4.43
are given by

10
0 4
12 0
suppgr = . il =gl Sl
1 0
0 -2
_1 4 0 oy 1 [=2 0
=5l 4| =@ =5| o 5
0 -2 0 4
and
2 0
0 2
1= 0
PP 900 = R, groolid) =3 |0 |-
-1 0
0 -1
-1 0 -1 0
2 -1 0
gr00(t) = 0 2 , and gro0(t°) = 5 o 1
respectively.

(iv) We have G = TF = (t), My = N and {id} is a representation
set of ﬁ/w by Lemma 2.36(i). Recall Definition 2.28. We have
S = ((I1,a)), Ls = {a) and L% = (a~'). By Proposition 2.39 we
have {k € R|(I1,k) € Gia} = (a™') and thus Gy = (([1,a7')).
The interval K;q = [0,a™1) is a representation set of R/G;q.

(v) For all k € K;q we have Indg—}- Xk = Xk We have

{k € K;q|9r(xk) has full rank} = K;4 \ {0}
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and
{k € K;a|9r 00(xk) has full rank} = K;4 \ {0}.

For all k € K;q \ {0} we can compute )\min(?\;(xk)7§7§(xk)) and

Amin (?;(Xk), gr.00(x%)). In particular we can compute A, = Aa(a)
and Xa 00 = Aa,0,0(a) numerically, see Figure 4.1.

(vi) In the compressed case a € (0,a*) we have A\, = —oo and \a g €
(—00,0) and thus (G, zo, V) is not stable with respect to both | - ||z
and || - |r,0,0. Now we investigate the stretched case, i.e. a > a™.
Let a** = {/26/7 ~ 1.244455. For all a € (a*,a**) we have Ay > 0
and X\, 0,0 > 0 and thus (G, zo, V) is stable with respect to both
|-l and || - |lz,0,0- For all @ > a** we have E"(xgzo)(u,u) < 0,
where u = eaX (¢ |ne2zy- In particular we have A\, < 0 and Ay, <
0 and thus (G, xo, V) is not stable with respect to both | - ||z and
Il - =00 for all a > a**.

Notice that in the stretched case a € (a*,a**), the appropriate seminorm

for the stability is || - ||z,0,0. For the equilibrium case a ~ a*, the weaker
seminorm | - || is appropriate since lim, 4+ As = 0 and limg~ 4+ Aa 0,0 >
0.

Example 4.58. There exists a huge literature on the stability of (n,m)
nanotubes as zigzag or armchair nanotubes, see, e.g., [30]. Each (n,m)
nanotube is the orbit of some point in R? under the action of a discrete
subgroup of E(3). Thus its stability can be checked with Algorithm 4.56.
In this example we investigate the stability of a (5, 1) nanotube, see Fig-
ure 4.2.

For all scale factors @ > 0 and angles a € (0,7) we define: Let R(«) €
O(2) be the rotation matrix as in (2.1), t = 44 = (R(a) & I1,ae3) €
EB3), p = (I1 & (—12),03) € E(3) and G = G, o be the discrete group
(t,p) < E(3),i.e. G = {t™p?|m € Z,q € {0,1}}. For all z € R® we have
G-z C Cy, where C, is the cylinder {y € R3 |y} + y3 = 23 + 23}.

Let N = N, = {tp,t%p,t"p}. Let U, C R3 be the set of all points
x € R3 for which the map G — R3, g — g - z is injective and the three
nearest neighbors of z in G - x are the points N -z, i.e.

su{llg-z— ol |g e N} <int{llg- =~ 2] [g € G\ (WU {idh }.

Let
W = {(a;aaw) ‘ a > O7a G (0,7T)7$ e Ua,a}'
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1.2 1

1.0 4

0.8 1

0.6

0.4 4

0.2 4

0.0

0.8

0.6

0.4 4

0.2 4

0.0 1

-0.2

Figure 4.1.:

T T T T T T T
1.12 1.14 1.16 1.18 1.20 1.22 1.24

For the toy model as described in Examplg 4.57, the graphs
of )\min(fV (Xk:)a g/:7\Z<Xk>) (blue) and Amin(fV (Xk)) @(Xk))
(orange) dependent on k € K;4 \ {0} are plotted on the top
plot for the choice a = 1.22. The points (a*,0) and (a**,0)
and the graphs of A, (blue) and A, o0 (orange) dependent on
the scale factor a are plotted on the bottom plot.
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Figure 4.2.: As described in Example 4.57, the orbit of the point z,,
under the action of the group G, o, is & (5, 1) nanotube. We
have a natural bijection between the group elements and the
atoms.
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Analogously to [30] we define the interaction potential V' = V, ,, see
Definition 4.1 and Remark 4.2(iv), by

Vi) =5 Y allv@l)+5 X wlo).yh)
geEN g,heN

where
vy: (0,00) = R, 7+ (r —1)?

is a two-body potential and

(z,y) +1>2

Iyl 2

is a three-body potential. Thus the bonded points of G - = tend to have
distance 1 and the bond angles tend to form 27 /3 angles. By Lemma 4.6
for all (a,a,z) € W we have E(xgz) = V(yo), where E = E, ,, is the
configurational energy and yo = ¥0,a,0,c = (9 — Z)geg, .-

First we consider the (5,1) nanotube. We define

vy«awmﬂeW\wnemwmoe(

ap = 117/31 ~ 1.115
and
zq = a(rcos(B),rsin(B),7/3) € R3 for all a > 0,

where r = 31/(7v/3) and 3 = 57/31. With the formulas in [22] it follows
that for all (a,a,z) € W the set G - x is a so called (5,1) nanotube if
and only if @« = ag and 2 = z,. The bond length of the unrolled (5, 1)
nanotube G, o, Tq, i. €. the distance of two neighbored points of G o, - 4
with respect to the induced metric of the manifold C,, is equal to 1 if
and only if a = ag, where

ao == 3/(2V/31) ~ 0.269.

Now we investigate numerically with Algorithm 4.56 the stability of the
(5,1) nanotube, more precisely of (Gy.a0s Tas Va,ag)-

(i) For all @ >0 we have ey, , # 0, see Figure 4.3, and thus xg, . Za
is not a critical point of E, o,. Thus we can proceed with (vi).

(vi) By (i) for all a > 0 the triple (Gg,00; Tas Va,ae) i not stable with
respect to both || - ||z and || - ||&.0,0-
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2.0 4
1.5 1
1.0
0.5 4
0.0 4
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Figure 4.3.: For the (5,1) nanotube as described in Example 4.58, the

graphs of the energy E(xg, ,,%a) and the norm of ey, , ~de-
pendent on the scale factor a are plotted in blue and orange,
respectively. For all a, we have ey, , 7 0 and thus the (5,1)

nanotube is not stable.
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We define
(a*,a",2") ;= argmin E,.(Xg, .T)
(a,a,z)eW
~ (0.263,1.117, (1.388, 0.776, 0.626))
and
xh := arg min E(xgx) for all @ ~ a*.

€U o*

In particular we have «* = x%.. We have (a*,a*,2*) = (ag, a0, Za,) and
thus the nanotube G~ o~ -z* is approximately equal to the (5, 1) nanotube

*

Gao. 00 * Tao- Now for all a = a* we check the stability of (Gy ax, 2k, Va,ar)
numerically with Algorithm 4.56.

(i) For all a = a* the function ygz is a critical point of F by Re-
mark 4.15(ii) and Corollary 4.16.

(ii) We have

supp V = {tp, °p, ¢'p}
and
supp fv = {t7°,t7°, 7" id, ¢, £°,1%, tp, t°p, t"p}
by Remark 4.15(ii). The first and second derivative of V' can be

computed, e.g., with the Python library SymPy and fy can be
computed numerically by Definition 4.11.

(iii) Since {t~!,id,t,p} has Property 1 and {t,p} generates G, by Defi-
nition 3.5 the set

R =R, :={t 1 id,t,t*,t 'p,p,tp}

has Property 2. We define the bijection ¢ between R and {0,...,6}
by (™) =m+1 for all m € {—1,0,1,2} and p(t™p) =m + 5 for
all m € {—1,0,1}. For all a ~ a* we define the functions

bi=bia: R =R g L(g)Te; for all i € {1,2,3}
and

bi=bia: R =R g L(g)TAi(g -2} — %) forallic {4,5,6},

where

e

»—-
coco
N————
b
o
Il
7N

o=Oo

0
0
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By Proposition 3.28 the sets {b1,...,bs} and {b1,...,bs} are bases
of Uiso(R) and Uise,0,0(R), respectively. With, e.g., the Gram-
Schmidt process we can determine functions b,...,b5: R — R3
such that {b],...,b5} and {b},...,b,} are orthonormal bases of
Uiso(R) and Uiso.0,0(R), respectively. A bijection between {u: R —
C3} and C?! is given by u + (u(p=1(0)),...,u(p=1(6))). Let
B = (b,....b) € R®%6 and By = (b,...,t},) € R2'**, The
matrices P = Iy — BB and Py = I — BOBJ are orthogonal pro-
jection matrices with kernels Usso(R) and Uiso,0,0(R), respectively.
Let po, . .. »P6,P0,05 - - ->P0,6 € R21%3 such that P = (po, R 7276) and
Py = (po,o,---,po). For the functions gz and ggr oo of Defini-
tion 4.43 we have

Supp gr = Supp gr,0,0 = R,
IrR(9) = Py(g) forallg e R

and

97,0,0(9) = Po,e(q) for all g € R.

We have TF =T = (t), My = N and {id} is a representation set of
ﬁ/w by Lemma 2.36(i). Recall Definition 2.28. We have Ls = (a)
and L% = (a~'). By Proposition 2.39 we have {k € R|([,k) €
Gia} = (a71) and thus Gy = {((=11)?,ma"')|m € Z,q € {0,1}}.
The interval K;q = [0,1/(2a)) is a representation set of R/G;4.

The set {id, p} is a complete set of representatives of the cosets of
TFin G. For all k € K;3 and g € G we have

xx(9) 0 ) )
ifgeTF
< 0 xulp'gp g

<xk<;1g> Xkégp)) clse:

Now for all k € K4, it is easy to compute the complex 6-by-6
matrices fy (Ind xx), gr (Ind x) and gr 00(Ind xx). We have

ndd 7 xk(g) =

{k € K;q|9r(Ind x1) has full rank} = K;4 \ {0,a"/(27a)}
and

{k € K;q|9r.00(Ind xx) has full rank} = K;4 \ {0,a"/(27a)}.
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For all k € K4\ {0,a*/(2ma)} we can compute /\min(f;(lnd X&),

gr(Ind x1)) and Apin (?;(Ind X&), 9r,0.0(Ind x1)). In particular we
can compute A\, (a, a*) and A, 0,0(a, @*) numerically, see Figure 4.4.

(vi) In the stretched case a > a*, we have both A\,(a,a*) > 0 and
Xa0,0(a,a*) > 0 and thus (Gg o+, Ta,ars Va,ar) is stable with re-

spect to both |- ||z and || |lr,0,0- In the compressed case a €
(0,a*) we have \y(a,a*) = —oo and A, go(a, @) < 0 and thus
(Ga,0%» Ta,a*s Va,ax) is not stable with respect to both || - ||z and
I lI%.0.0-

Notice that in the stretched case a > a*, the appropriate seminorm
for the stability is |- ||r,0,0. For the equilibrium case a ~ a*, the
weaker seminorm || - ||z is appropriate since limg q+ Aa,0,0(a,a®) = 0
and limg~ o+ Aa(a, ) > 0.
For all a = a* and o = a* we can compute A,(a,a) and A, 0(a, @)
analogously. For a =~ o* the graphs of A\y(-,a) and A,00(-,®) are
similar to the graphs of A,(-,a*) and Ay 00(-,@"). As an example, we
consider
Qg = argmin E(xg%a,qa) for all a ~ o,
ae(0,m)

see Figure 4.5. In Figure 4.5 the graphs of the functions

a + Relative difference (X, (a, @), Aa(a, o))
and

a — Relative difference(Xa 0,0 (a, @*), Aa0,0(a, )
are plotted, where

Relative difference(z, y) := |z — y|/ max{|z|, |y|} for all z,y € R.
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0.4 1
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0.1+
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0.01 1

0.00
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Figure 4.4.: For the nanotube as described in Example 4.58, the point
(a*/(2mwa*),0) and the graphs of Amin (fv (X&), 9= (x&)) (blue)

—

and Amin(fv (X&), 9R.00(xx)) (orange) dependent on k €
K;4\{0,a*/(2ma*)} are plotted on the top plot for the choice
a = a*. The point (a*,0) and and the graphs of A\, (blue)
and A, 0,0 (orange) dependent on the scale factor are plotted
on the bottom plot.
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+1.116
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Figure 4.5.: For the nanotube as described in Example 4.57, the point
(a*,a(a*)) and the graph of the angle «(a) dependent on the
scale factor a are plotted on the top plot. The point (a*,0)
and the graphs of Relative difference(a(a, a*), Xa(a, o))
(blue) and Relative difference(Xa,0,0(a, a*), Xa,0,0(a, aq)) (or-
ange) dependent on the scale factor a are plotted on the
bottom plot.






A. The configurational energy
restricted to Uiy 00 N Uper

In the following we prove Remark 4.30(iii), see Proposition A.3. Propo-
sition A.3 is similar to Proposition 4.29.

Lemma A.1. Suppose that V is weakly* sequentially continuous. Then
for all functions y: G\ {id} — R? and constants C,c > 0 there exists a
finite set A C G\ {id} such that

V(y+2)=V(y)l <c
for all z € L=(G \ {id},R?) with ||z||cc < C and 2(g) =0 for all g € A.

Proof. This is clear since V is weakly* sequentially continuous and by
Exercise 2.51b) in [37]. O

Remark A.2. A sequence (y,)nen in L®(G \ {id}, R?) converges to y €
L>(G \ {id},RY) with respect to the weak* topology if and only if the
sequence (Yn)nen is bounded and (y,)nen converges componentwise to
y, i.e. limy, 00 Yn(g) = y(g) for all g € G\ {id}, see Exercise 2.51 in [37].

Proposition A.3. Suppose that V is weakly* sequentially continuous,
E'(xgzo) =0 and let u € Uiso,0,0 NUper. Then it holds E" (xgxo)(u,u) =
0 and %E(ngo + Tu)|T=0 =0.

Proof. Suppose that V is weakly* sequentially continuous and E’(xgxo) =
0. Thus for the monotonically increasing function

r: [0,00) — [0,00)
t — sup{|E(xgwo + u) — E(xgzo)| |u € B:(0)}
it holds
r(t)

}i\rr(l) = sup{E" (xgxo)(u,u) |u € Uper} < 00, (A.1)

where By (0) = {u € Uper | [|u|loo < t} for all ¢ > 0.
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Let u € Uiso,0,0 N Uper- There exist some a € R? and S € @(Skew(d;) x
{04,.,4, }) such that

L(g)u(g) =a+ S(g-xo —x0) forallgeg.

Since differentiability implies locally boundedness, there exist some § > 0
and C7 > 0 such that

[V (yo +w)| < Cy for all w € Bs(0),
where Bs(0) = {w € L=(G \ {id},R?) | [|w|~ < §}. Let
Csy = 2|zo|| sup{He_TS —Ig+ TSe_TSH/7'2 |7 e(-1,1)} >0.

By Taylor’s theorem we have C < oo. Let tg = min{1,+/6/(2C3)} > 0,
where a/0 := oo for all a > 0.
Now we show that

|E(xgzo +tu) — E(xgwo)| < r(Cat?) +t* for all t € (—to,1t0). (A.2)
Let t € (—to,t9) \ {0}. We define the function v: G — R? by
g-v(g) =x0+e Iy +1tS)(g- o — T0) for all g € G,
see also Figure A.1. We have
[l = Xg@ollse = sup{[lv(g) — woll |g € G}
= sup{|lg - v(g) — g zoll|g € G}
= sup{” (e*ts —Is+ tSe*tS)(g - xg — xo)H | g€g}
= Sup{H (e_ts — I+ tSe_tS) (L(g)xo — mo)H ’g €g}
<2|e™" — Iy + tSe "5 |||z ||
< Cot?, (A.3)
where in the forth step we used that St(g) = 0 for all g € G. In particular,
we have v € L*°(G,RY) and

)
lo = xgolle < 3- (A.4)
For all g € G we define the map
@1 Uper — {w: G\ {id} — R}
w = (G\ {id} = R h— (gh) - w(gh) — g - w(g)).
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g (zo +tu(g)) — ta

g-v(g) g -

I:()

Figure A.1.: In this figure for u, v, a, S and t as in the proof of Lemma A.3
and g € G, the points zg, ¢ - g, g - (zo + u(g)) — a and
g - v(g) and the sets Sy = {zo + A(g - zo — z0)| A € O(d)},
So =A{xo+Tg+95)(g-x0—0) | S € B(Skew(dy) X {04y.4,})}
and S3 = {zo + A(Iqg +tS)(g - x0 — z0)| A € O(d)} are
displaced.

For all g € G we have

#g(xgwo + tu) = ((gh) - wo + tL(gh)u(gh)
— (9~ w0+ tL(9)u(9)) g iy
= ((gh) - z0 + ta + tS((gh) - z0 — z0)
— (9 2o +ta+1tS(g-xo — $0)))heg\{id}
= ((La+S)((gh) - 20 = 9 70)) g iy
= (e"5((gh) - v(gh) = g -v(9)) eo\ iay
_ (o). (A.5)

For all A C G\ {id} we denote
By = {we L*(G\ {id},RY) | |wllso < R and w(g) =0 for all g € A},

where R = 2(||zo|| + to||lul|s). Let N € My such that u is T -periodic.
Since V is weakly* sequentially continuous, by Lemma A.1 for all g € Cn
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there exists a finite set A, C G \ {id} such that

4
|V(g0g(xgxo +tu)+w) —V((pg(xgxo+tu))’ < ) for all w € Ba,. (A.6)

Let A = UgECN
g € G we have

sup [V(gg(v) +w) = V(pg(v))|

wWEB 4

Ag. Equation (A.5), (H1) and (A.6) imply that for all

= sup [V (e ™oy (xgmo + tu) + w) — V(e " pg4(xgao + tu))|
weB A

= sup [V (pg(xgo + tu) +w) — V(pg(xgzo + tu))|
weB A

= sué) |V(gog(xgxo +tu) + w) — V(pz(xgzo + tu))|
weB A

t4

< a0

-2
where in the third line § € G is defined by the condition {g} = g7V NCyx.
Let m € N such that My = mN. Since 7™ is isomorphic to Z%,
there exist t1,...,tq, € T™ such that {t1,...,tq,} generates 7™. With-
out loss of generality we assume that C, = {¢]* ...t;ljzg |n1,...,ng, €
{0,...,n/m —1},¢9 € Cp,} for all n € My, see Remark 2.51(ii). There
exists some n’ € N such that

CnAC{tf ..ty |1, .. ,ng, €{—n,... .0/} }Crn.
Thus there exists some N’ € My such that N divides N’ and
Cn\D| _ t*
Clew ] T ACy

where D = {g € Cn+|gA C Cxn/}. We define the TV -periodic function
¥ € Uper by

(A7)

(A.8)

o(g) :=v(g) for all g € Cn-.
It holds

|B(3) = E(xg0)| < r(|lo—xgollso) < r(|lv—xgzollc) < r(Cat?), (A.9)

where we used (A.3) in the last step. Moreover, we have

Bxgmo + 1) = B0)| < g 3 IViey(xgmo-+ 1) = V(g (0)
geCpr
1

= o 2 V() = Vo)

gECN/
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Z [Vipg(v)) = Vigg(9))|
‘CN/| geCpr
sup |V( 1% v) +w
‘CN,| ZwegAl (94 (0)) = V(ipg(v) + )|

2
+ [Cn| Z sup |V (pg(xgzo) + w)|
Nl e\ pwEBs(0)
# o,
—+—=t Al
5 T =t (A.10)
where we used (A.5) in the second step, (H1) in the third step, (A.4) in
the forth step and (A.7) and (A.8) in the fifth step. Equation (A.9) and
(A.10) imply (A.2).
By (A.2) and (A.1) we have

E tu) — F Cot?
lim sup (xgo + ug (xgo) < lim sup r( 3 )
t—0 t t—0 t

+t=0

and thus, E” (xgzo)(u,u) = 0 and %E(ngo + T’u)‘_’_zo =0. O






B. Representation theory

We need the following propositions in Chapter 2.

In general, the dual space of a locally compact group contains infinite-
dimensional representations. In contrast to the rest of the thesis, in
the following when we use the term representation, we mean a finite- or
infinite-dimensional representation on a Hilbert space.

Proposition B.1 (Proposition 1.35 in [43]). Let p be a continuous uni-
tary representation of a locally compact group G on the Hilbert space
H(p). Then p is irreducible if and only if

commutant of p(G) :={T € B(H(p)) | Tp(g) = p(9)T for all g € G}
= ClI,

where B(H(p)) denotes the space of bounded linear operators from H(p)
to H(p) and I is the identity operator on H(p).

Proposition B.2 (Proposition 1.71 in [43]). Let N be a closed normal
subgroup of a locally compact group G and q: G — G/N be the quotient
homomorphism. The map p+— poq is a homeOmorphzsm of G/N with

the closed subset ofG consisting of those elements ofG which annihilate
N.






C. Seminorms

We need the following definitions and lemma in Chapter 3.

Definition C.1. Given a vector space V over a field K € {R,C}, a
seminorm is a function p: V' — [0, 00) such that

p(u+v) < p(u) + p(v) (subadditivty)
and

plav) = |alp(v) (absolute homogeneity)
for all u,v € V and o € K.

Definition C.2. We say that two seminorms p; and ps on a vector space
are equivalent if there exist two constants ¢, C' > 0 such that

ep1 < p2 < Cpy.

Remark C.3. It is clear that for a given vector space this definition induces
an equivalence relation on the set of all seminorms on that vector space.

The following lemma is well-known, see, e. g., [35, Exercise 36, p.206].

Lemma C.4. Let p; and ps two seminorms on a finite-dimensional vec-
tor space. Then py and ps are equivalent if and only if ker(py) = ker(ps).

Proof. If p1 and ps are equivalent then it is clear that ker(p;) = ker(p2).
Let ker(p;) = ker(p2) and call the domain of p; and py the vector space
V. Then p; and py are norms on the quotient space V/ker(py). Since all
norms on a finite-dimensional vector space are equivalent the norms p;
and py on V/ ker(py) are equivalent. This implies that also the seminorms
p1 and ps on V are equivalent. O






D. Miscellaneous results

In [10, p. 440] the Kronecker product is defined.

Definition D.1 (Kronecker product). Let A = (a;;) € C™*" and B =
(b;;) € CP*4. Then, the Kronecker product A® B € Cmp)x(n9) of A and
B is the partitioned matrix

allB alnB
AR B := :

am1B - QB

Remark D.2. If we say v € C", then v is a column vector, i.e. v € C?*1,
Thus, the Kronecker product A ® B is also defined if A € C™* or B € C™.
For the basic properties of the Kronecker product we refer to [10].

Lemma D.3. For all m,n € N let P, , € O(mn) be the Kronecker
permutation matriz such that

Pom(A® B)P,,=B®A  forall A€ C™ ™ and B € CP*9,

see [10, Fact 7.4.30]. For all natural numbers m,ny,...,ngy € N let
Qmonr,.n, € O(m(ng + -+ + ng)) be the permutation matric (P, n, &
<+ @ Ppyng ) Pry+otng.m- Then the following statements hold:

(i) For all A; € C™i*™i e {1,...,k}, and B € CP*? we have
(A1®--- 0A)®B=(A1®B)®-- @ (A ® B).
(ii) For all A € C™*™ and B; € CPi*% e {1,...k}, we have

A®(Bi1& - -®Bg) = Q), (A®B1)®- - @(AQBE))Qnqr,....an -

m,p1;---;Pk
(iii) For all A € C™*™ and By, ..., By € CP*7 we have

A®(B1®---©Bg) = (Pnx®1,)(ARB)®- - @ (ARB)) (P n®1,).

Proof. (i) This is easy to check.
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(ii) For all A € C™*™ and B; € CPi*% 4 {1,...,k}, we have

A® (B1® - & By)
=Popittp(B1® - @ Br) @ APy 4 hqum
= Prpittp (B1®A) @+ & (B ® A)) Poy -4 qun
= P prtotpr (Ppy,m(A® B1)Pryg,) @ -+
D (Ppk,m(A ® Bk)Pn,qk))Pq1+~~+qkm
= Qs (A®B1) @+ & (A® Br))Qnagy...an-

(iii) By Fact 7.4.30viéi) in [10] we have
Qn.g,....q = (Ix ® Pn,q)qu,n =P, ®I,. O

It is well-known that commuting orthogonal matrices are simultaneously
quasidiagonalisable:

Theorem D.4. Let S C O(n) be a nonempty commuting family of real
orthogonal matrices. Then there exist a real orthogonal matriz QQ and a
nonnegative integer q such that, for each A € S, QT AQ is a real quasidi-
agonal matriz of the form

AA)® R(O1(A)) ® -+ @ R(04(A))

in which each A(A) = diag(£1,...,+1) € R=20x(=20) " R(9) js the

rotation matriz (gfgg 232“99) and each 0;(A) € [0,2).

Proof. This follows immediately by [39, Corollary 2.5.11.(c), Theorem
2.5.15). 0

We now state Kronecker’s approximation theorem, see, e. g., Corollary 2
on page 20 in [38].

Theorem D.5 (Kronecker’s approximation theorem). For each irra-
tional number o the set of numbers {an reduced modulo 1|n € N} is
dense in the whole interval [0,1).

We also need Turan’s third theorem, see Theorem 11.1 on page 126 in
[57].
Theorem D.6 (Turdn’s third theorem). Let by,...,bn,21,...,2, € C.

If m is a nonnegative integer and the z; are restricted by

Wil — 2] 500 4 0

max; |Zj ‘
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then the inequality

DSRS0

holds.

We also need Theorem A.1 of [4].

Theorem D.7. Let (X, d) be a metric space, (Y, F, 1) be a measure space
and f: X XY — R be such that

(i) f(z, -) is p-integrable for all x € X,
(ii) f(-,y) is continuous in X for u-almost ally €Y,

(iii) there exists m € LY(Y, u) satisfying

su§|f(x,y)| < m(y) for p-a.e. y €Y.
TE

Then the map
XoR an [ S

is bounded and continuous.
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The main focus of this thesis is the discussion of stability of
an objective (atomic) structure consisting of single atoms
which interact via a potential. We define atomistic stability
using a second derivative test. More precisely, atomistic
stability is equivalent to a vanishing first derivative of the
configurational energy (at the corresponding point) and the
coerciveness of the second derivative of the configurational
energy with respect to an appropriate semi-norm. Atomistic
stability of a lattice is well understood, see, e.g., [40].

The aim of this thesis is to generalize the theory to objective
structures. In particular, we first investigate discrete sub-
groups of the Euclidean group, then define an appropriate
seminorm and the atomistic stability for a given objective
structure, and finally provide an efficient algorithm to check
its atomistic stability. The algorithm particularly checks the
validity of the Cauchy-Born rule for objective structures. To
illustrate our results, we prove numerically the stability of a
carbon nanotube by applying the algorithm.
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