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Chapter 1

Introduction

The idea underlying this thesis is based on a problem which is, for Banach function
spaces, fully developed and may at the beginning be called the “optimal domain
problem”. To describe this term more precisely let us start with a simpler version of
this problem. Suppose that X (u) is a Banach function space over a positive, finite
measure space (2,3, 1), X is a Banach space and T is a continuous linear operator
defined on X () and assuming its values in X. Is it then possible to find a larger
Banach function space Y (u) over (€,3, 1) including X (u) continuously and such
that T extended to Y (u) is still continuous?

The answer is “yes” as the following example shows. Consider the Volterra operator
Vi 2 LY([0,1]) — L*([0, 1]) mapping f + Vi(f) where

Vi(f)(w) = /Ow f)dA(t), forw € [0,1].

Hence, V; is defined on the Banach function space L!([0,1]) over the positive, finite
measure space ([0,1], B([0,1]), ) where X denotes Lebesgue measure and B([0, 1])

the Lebesgue measurable subsets of [0, 1]. Obviously we can choose
fO) =0 —-t)7t, fortel01),

to obtain a function which is certainly not in L'([0,1]) but nevertheless suggests a

candidate for an element of an extended domain of V) since
/ (1— ) dA(t) = —(In(1 — w)), for all w e [0,1),
0

and, moreover, —In(1 — -) € L'([0,1]) as direct calculation shows. Indeed, the

investigations in [28] revealed that the original domain of V; can be extended to the
larger space L'((1 —t) dA(t)).



This result inevitably leads to the question whether there exists a sort of “largest
domain” of T'. More precisely: Let X (1) be a Banach function space over a positive,
finite measure space (2,3, 1), X be a Banach space and T : X(u) — X be a
continuous linear operator again. Does there exist a largest Banach function space
Z () over (Q, %, u) satisfying X (u) C Z(p) continuously (in the sense that Y (u) C
Z () for all Banach function spaces Y (u) into which X (p) is included continuously)
and such there is a continuous linear operator T : Z(u) — X which coincides with 7
on X (u)? This question was first successfully and systematically treated for various

kernel operators T' by Curbera and Ricker; see, for example, the papers [3], [4].

One can show that under certain assumptions on the space X (u) the existence of
such a “largest” Banach function space follows immediately. But the amazing point
is that under these assumptions on X () there is a remarkable connection between
the search of the optimal domain of T" and the theory of vector measures. So, let
X (p) be a Banach function space over a positive, finite measure space (£, %, i)
again, this time, however, containing the X-simple functions sim(3) and such that
its norm || - || x(,) is o-order continuous. Then, sim(X) is necessarily dense in X (y).
Moreover, let X be a Banach space and T : X(u) — X be a continuous linear
operator. The finitely additive set function my : ¥ — X defined by

mr(A) :=T(xa), for Aed,

is then a Banach-space-valued vector measure and, for each s € sim(X), the equation

/Qs dmy =T(s)

holds. Whenever additionally the mp-null sets and the p-null sets coincide, one
obtains the following result: The optimal domain space of T exists and coincides
with the space L'(mz) of all mp-integrable functions. Furthermore, the optimal

extension of T is the integration operator I,,, : L*(mr) — X given by

Ly (f) = /Q fdmz, for f € Li(mn).

The so-called “optimal extension process” of continuous linear operators defined on
Banach function spaces as discussed in the previous paragraph has been studied
thoroughly by various mathematicians. Moreover, the search for and characteriza-
tion of the optimal domain resp. the optimal extension of T" has found a variety
of applications, for example, the study of kernel and differential operators, to name

but a few. A large part of the current research on this topic is summarized in [26];



the results established therein will form the foundations of this thesis.

Since not all of the important spaces in analysis are normable it is only natural to
ask whether this “optimal extension process” can also be applied to other spaces
than only Banach function spaces. So, the aim of this thesis will be to translate
the theory to a special class of function spaces, namely the Fréchet function spaces,
whose topology is not generated by a single function norm but by a sequence of
function semi-norms. Starting-point will then be a Fréchet function space X (u)
over a positive, o-finite measure space (€2, %, 1) and a continuous linear operator
T : X(u) — X with values in a Fréchet space X. Hence, we are looking for a
“largest” Fréchet function space Z(u) including X (u) continuously (in the sense as
stated above) and such that the extension T : Z(u) — X is still continuous and
coincides with 7" on X (u). The main goal will be to see whether the topology of the
Fréchet function space X (u) allows similar properties and concepts as in the case
of Banach function spaces and thus, gives way to a connection between the search
of the optimal domain and extension of T and the theory of Fréchet-space-valued
vector measures. Of course, the central question is whether in the case of Fréchet
function spaces the optimal domain of T is still L'(mr) and its optimal domain the

integration operator I,,.
The thesis is structured as follows.

Chapter [ provides all the necessary mathematical foundations of this work. Not
only notations will be fixed, but also all the lemmas and propositions that turn out
to be relevant for the theory will be formulated or, if necessary, be derived in this

chapter.

Chapter[3 forms the theoretical part of this thesis. At first we will take a closer look
at the Fréchet function space X (u) and its properties. Special attention will be paid
to the inclusion X () C Y (p) for any Fréchet function space Y'(u) containing X (u).
In a second step we will concentrate on the Fréchet-space-valued vector measure my
associated with 7" and the space of myp-integrable functions L' (mr). Finally, we will

decide whether the optimal domain of T exists and coincides with L'(mz).

Chapter [4 intends to apply the theory obtained in Chapter [3] to some well-known
operators T : X(u) — X defined on Fréchet function spaces X (u), namely the
multiplication operators MP~ : LP~([0,1]) — LP7([0,1]) and M} . : Ly (R) —
L7 (R), the Volterra operator V,_ : LP~([0,1]) — LP~([0,1]) and the convolution

operator CP~ : LP~(G) — LP~(G) (where G is a compact Abelian group).



Chapter[5 summarizes the results obtained in Chapter [3|and Chapter [4 and will give

a preview of possible further research.



Chapter 2
Preliminaries

Chapter [2| presents an overview over all the mathematical fields that are relevant
for this thesis. The aim is to introduce the definitions and notations that will be
used in the forthcoming chapters and to highlight some well-known (and some not
so well-known) results that will be relevant especially for the theoretical part of this
work. Section treats the theory of locally convex topological vector spaces and
the different topologies defined on such a space. Special attention will be paid to
the class of Fréchet spaces and their properties since they will play a major role in
the sequel. Section summarizes classical measure and integration theory with
regard to a finite, o-finite or complex measure p. Here we will concentrate mainly
on the connection between convergence p-a.e. and local convergence in measure as
well as on the topology of local convergence in measure. Section deals with a
special class of Riesz spaces, the Fréchet function spaces. The focus will be on the
properties of the Fréchet function spaces and their relevance for the forthcoming
studies. The section closes with two examples of Fréchet function spaces that will
play a significant role in Chapter : the spaces LP~([0,1]) and L? (R). Section
introduces the terminology concerning vector measures having values in Fréchet
spaces. Since it will turn out to be a useful tool for the applications in Chapter
we take a look at the Bochner p-integrability and the Pettis u-integrability as well.
Finally, Section outlines the theory of integration on topological groups. It will

become important when the convolution operator is investigated in Section

2.1 Fréchet spaces

Let X be a vector space over a scalar field K (where K = R or K = C) and denote
by P(X) the set of all subsets of X. Let 7 C P(X) be a system of subsets of X.
Recall that 7 is called a topology on X if it satisfies the following conditions:



i) Xer,ger.

(ii) HV,W er, thenalso VNW er.

(iti) If {Vj}jes C 7, then also [, V; € 7.
The elements of 7 are called the open sets of X whereas their complements are the
closed sets of X. Note, given two vector spaces X, Xs equipped with a topology
71 resp. Ty, that an operator T': X; — X, is called continuous if T=Y(V) := {x €
X, :T(x) € V} € m, for all V€ 1. A vector space X endowed with a topology
7 such that the vector space operations are continuous with respect to 7 is called a

topological vector space. 1t is denoted by the pair (X, 7).

Let V € P(X) be a subset of a topological vector space (X, 7). V is called balanced
if, for every x € V and for every A € K satisfying |\| < 1, the element Az is in V
again. V is said to be absorbing if X = |J,.ynV, where nV = {nz : x € V}. It is
called convex if, for any z,y € V, the line segment A\x + (1 — \)y, where 0 < A < 1,
is contained in V. The set V is said to be absolutely convex if it is balanced and
convex. Finally, V' is called compact if, for every collection {V;};c; C 7 (J being an
arbitrary index set) satisfying V' C | J._, V;, there exists a finite subset F' C J such
that V C U, Vj.

jeJ

Let (X, 7) be a topological vector space and let z € X. A subset U € P(X) is
called a neighbourhood of x if there is a set V' € 7 satisfying x € V and V C U. The
topological vector space X is called Hausdorff if, for each pair x,y € X of distinct
points, there are respective neighbourhoods U,, U, of z,y such that U, N U, = @.
The set of all neighbourhoods of x is denoted by U(z). A subset B C U(x) is called
a neighbourhood base if, for each U € U(x), there is a set B € B such that B C U.
The topological vector space X is called a locally convex topological vector space if
each element of X has a neighbourhood base of absolutely convex sets. A system V
of neighbourhoods of 0 is called fundamental if, for each neighbourhood U € U(0),
there exists U € V such that U C U.

Recall that a mapping p : X — [0,00) on a vector space X is called a semi-norm if

it satisfies the following conditions:
(i) If z =0, then p(x) = 0.
(i) p(Ax) = |A|p(x), for all A € K, for all z € X.
(iii) p(xz+y) < p(z) +ply), for all z,y € X.
A semi-norm p is called a norm if condition (i) is valid in both directions:
(i') 2 =0if and only if p(z) = 0.

Let X be a locally convex topological vector space and let U C X be an absolutely
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convex, absorbing set. The Minkowski functional ¢y : X — [0, 00) is defined by

ou(z) :=inf{A >0:2€ AU}, forzxe X. (2.1)

In the sequel, we will consider a family {p;};c;r (with I an arbitrary index set) of
continuous semi-norms on a topological vector space X. {p;}ics is said to be a fun-
damental system of semi-norms if the sets U; := {x € X : p;(x) < 1}, where i € I,
form a fundamental system of neighbourhoods of 0. Note that every locally convex
topological vector space has a fundamental system of semi-norms {p;};c; meaning
that {p;}:cs satisfies the following conditions, [22, p. 232]:

(i) For each x # 0, there is an i € I such that p;(z) > 0.
(i) For any ¢,j € I, there exist a € I and M > 0 such that max{p;, p;} < M p,.

A family of semi-norms which satisfies condition (i) is called separated. A locally
convex topological vector space is Hausdorffif and only if it has a separated family of
continuous semi-norms. Conversely, let X be a vector space and let {p;}c; be any
family of semi-norms satisfying conditions (i) and (ii) as stated before. Then there
is a unique locally convex topology on X such that the {p;};c; form a fundamental
system of semi-norms [22, p. 233|. A locally convex topological vector space X
whose topology is generated by a fundamental system of semi-norms {p; };c; will be
denoted by the pair (X, {p; }icr)-

Let (X, {pi}icr) be a locally convex Hausdorff space and let {z5}scp € X be a net
in X (here, (D, >) denotes a directed set). {zs}scp is said to converge to an element
re Xif

lignpi(x —1x5) =0, foralliel.

{s}sep is called Cauchy if, for every semi-norm p; and for every € > 0, there exists

an index v, . such that
pi(zs —x5) <e, forall 5,6 > Vie.

Accordingly, a sequence {z,}n,en C X is called Cauchy if, for every semi-norm p;

and for every € > 0, there exists an index N;. € N such that
pi(xy, —xm) <e, forall n,m > N,..

In a locally convex Hausdorft space X we therefore have the following notations: X
is said to be complete if every Cauchy net in X converges to some element in X, and

X is called sequentially complete if every Cauchy sequence converges to some element
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in X. A locally convex Hausdorff space is called a Fréchet space if the topology of
X is generated by a fundamental sequence of semi-norms {py}ren such that X is
complete. Note that in a Fréchet space completeness and sequential completeness
coincide, [22, p. 239|. In the sequel, we assume a Fréchet space is always generated

by an increasing fundamental system of semi-norms {py }ren, that is, pr < pg41, for
all £ € N.

Recall that a mapping d : X x X — [0, 00) on a topological vector space X is called
a pseudo-metric if the following conditions are satisfied:

(i) d(z,z)=0.

(i) d(x,y) =d(y,x), for all z,y € X.

(iii) d(x,z) <d(z,y)+d(y,z), for all z,y,z € X.
Note that points in a pseudo-metric space need not be distinguishable, that is, one
may have d(z,y) = 0 for distinct values * # y. Whenever condition (i) can be
replaced by

(i) d(z,y) =0if and only if z =y,

the mapping d is called a metric. Since a Fréchet space (X, {px }ren) has a countable
fundamental system of semi-norms, X is metrizable means that there exists a metric
d on X such that (X, d) is a metric space whose metric induces the topology on X
and such that (X, {px}ren) and (X, d) have the same Cauchy sequences, [22, pp.
276-277|. A metric which satisfies the required conditions is defined by means of

the semi-norms p;, as follows:

o0

pr(® —y)
d(x,y) := , forx,ye X.
(z,y) ;Qk(lepk(:E—y)) or x,y

Let (X, {pktren), (Y, {Pr}ren) be two Fréchet spaces and let T': X — Y be a linear
operator. Then T is continuous if, for every k € N, there exist [, € N and M > 0,
such that

pi(T(x)) < Mypy,(z), forallze X. (2.2)

A criterion for continuity by means of sequences is given by the following important
theorem; see [I8 p. 168] where it is stated for the more general case that XY are

complete metrizable topological vector spaces.

Proposition 2.1.1 (Closed Graph Theorem)
Let X,Y be two Fréchet spaces and let T : X — Y be a linear operator. Then the

following equivalence holds: T' is continuous if and only if whenever lim,,_,o, x,, = x in

12



X and lim,, oo T(z,) =y inY, then T(z) =y. O

Note that a linear operator T' from a Fréchet space X to a Fréchet space Y is
continuous if and only if T is continuous in 0, [22, pp. 233-234]. Hence, the Closed

Graph Theorem can be reduced to the following assertion.

Corollary 2.1.1

Let X,Y be two Fréchet spaces and let T : X — Y be a linear operator. Then the
following equivalence holds: T is continuous if and only if whenever lim,,_,, x, = 0 in
X and lim,, oo T(z,) =y inY, theny=0. O

In a Fréchet space (X, {pk}ren) a linear functional z* : X — C is continuous if and
only if there exist an index k£ € N and a constant M > 0 such that

[z, z")| < M p(x), forall z € X.

Here, (-,-) denotes the canonical bilinear form of the duality. The above definition
is equivalent to the assertion that there exists a neighbourhood U € U(0) in X such
that sup {|(z,2*)| : & € U} < oo, [22, p. 234]. Denote by X* the vector space of all

such continuous linear functionals. X* is called the dual space of X.

For each z* € X* define a semi-norm p,+ : X — [0, 00) by

The family of semi-norms {p,},cx+ induces the weak topology on X. It is the
topology on X with the fewest open sets such that each element of X* remains a
continuous function with respect to the original topology on X. It is denoted by
o(X, X*). Moreover, the weak topology is locally convex, [22, p. 245]. A sequence
{z,}neny C X is said to converge for the weak topology or weakly converges to z € X
if and only if

lim (z,,2") = (z,2"), forall z* € X"
n—00

A subset C C X is called bounded if
sup {pi(z) : v € C} < oo, forall keN.
A set C' C X is bounded in o(X, X*) if
sup {|(z,z")| 1z € C} < o0, forall z* € X"

13



A set C C X is bounded for the given locally convex Hausdorff topology in (X,
{pr}ren) if and only if it is bounded for the weak topology o(X, X*), [22, p. 249|.
For V' C X being any convex set the closure of V' formed in the original topology of
X coincides with its closure taken in the weak topology (X, X*), [32] p. 65].

Let (X, 7) be a locally convex Hausdorff space. It is possible to define a topology
on X* by means of a family of subsets of X. Let C denote the family of all bounded

sets in X. A topology on X* is generated by the semi-norms of the form
|z*|c = sup{[(z,2*)| : 2 € C}

as C varies over C. This topology is called the strong topology of X* and coincides
with the topology of uniform convergence on the bounded sets in X. The dual
space equipped with the strong topology is denoted by Xj. Note that X7 is locally
convex again. The space of all continuous linear functionals on X7 is denoted by
X**. Equipped with the strong topology, i.e., X*™* = (X})3, it is called the bidual of
X. The original space (X, 7) is called reflexive if the bidual X** is equal to X and
if the topology of (X}3); coincides with the original topology 7.

For the next proposition let (X, {pk}ren) be a Fréchet space. Denote, for each
k € N, by X}, the completion of the quotient normed space X/p;'({0}). Then each
X}, equipped with the quotient norm py, is a Banach space, a so-called local Banach
space. The following result, [22] pp. 282-283|, states a useful criterion concerning

the reflexivity of a Fréchet space.

Proposition 2.1.2
If the Fréchet space X has a fundamental system of semi-norms {py. }ren such that all

local Banach spaces X, for k € N, are reflexive, then X is reflexive. [

Concerning the convergence of a series of elements of a Fréchet space (X, {pk}ren)
we have the following notations. Let >~ x, be a formal series in X. The series
is said to converge in X, if there exists an element x € X such that the sequence of
partial sums {Z;;l xj}neN converges to x in the topology of X. The series is said to
be unconditionally convergent if, for every bijection 7 : N — N, the series Y " | @r ()
converges in X. The series is called subseries convergent if, for every increasing
sequence of natural numbers {n;};ey C N, the series » 7% x,,; is convergent in X.

And finally, the series is absolutely convergent if >~ >°  pi(x,) < oo, for every k € N.

The following powerful theorem will be important for the study of vector measures

(see |21], for instance).
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Proposition 2.1.3 (Orlicz-Pettis Theorem)

Let X be a Fréchet space and let )" " | x,, be a series in X . Then the following assertions
hold:

(i) >0, x, is unconditionally convergent in X if and only if Y ", x,, is subseries

convergent in X.

(i) Whenever each subseries _° | x,,, of the original series converges in X for the
weak topology o (X, X*), then > "  x, is subseries convergent in the topology
of X. O

In a topological vector space X an absolutely convex subset V' C X is called a

Banach disc if its linear hull
Xy =W
A>0
equipped with its Minkowski functional ¢y as defined in , is a Banach space.
Moreover, the natural injection Xy C X is then continuous, [32, p. 97|. Each
absolutely convex, bounded and closed subset V' of a locally convex space X is a
Banach disc, [22] p. 249].

Finally, a Hausdorff topological space X is called locally compact if each element
xr € X possesses a compact neighbourhood. Let X be a locally convex space, Y be
a Fréchet space and T : X — Y a continuous linear map. Then T is called compact
if there is a neighbourhood U € U(0) such that the closure of its range T'(U) is

compact in Y.

2.2 Measure and measure space

Let © be a non-empty set and let P(Q2) be the set of all subsets of 2. A family of
subsets ¥ C P(£2) is called a o-algebra if it satisfies the following conditions:
(i) Qe
(ii) If A €3, then also its complement A° € X.
(ili) If {A;}jen €%, then also (J;oy 45 € 5.
Property (iii) can be substituted by the following equivalent condition:

(ili’) If {A;}jen € X, then also ).y A4; € X.

jeN
In the case of {2 = X being a topological or metric space and O being the system of
open subsets of X, the o-algebra of Borel sets, or Borel o-algebra, is defined as the
smallest o-algebra over X containing O. It is denoted by B(X). The pair (2, ) is

called a measurable space.
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A set function p @ ¥ — [0, 00| defined on a o-algebra X is called a measure if it
satisfies u(@) = 0 and

I (U Aj) = ZN(AJ% (23)

for any sequence {A;};en € X of disjoint sets. Condition is called o-additivity
or countable additivity. It is characterized in the following way: Let u : ¥ — [0, o0
be a finitely additive set function and let {4;};en C X be any sequence of sets such
that p(A;) < oo and A; |; @. Then p is a measure, i.e., o-additive, if and only if
1(A;) 15 0, [11, p. 32|. Here, | and 1 indicate that the sets are monotone decreasing
resp. increasing in 2. A measure p is called finite if () < oo. It is called o-finite
if and only if there exists a sequence {4;};eny € 3 such that p(A4;) < oo, for each

jeN, and |, .y A; = Q. The triple (2, X, ) is called a measure space.

jeN
Given a measure g : 3 — [0,00], a set A C Q is called a p-null set if A € ¥ and
p(A) = 0. The family of g-null sets will be denoted by Ny(u). A measure space
(Q, %, 1) is called complete if each subset of a p-null set A € ¥ belongs to ¥ and,

hence, is a p-null set as well. As usual, properties that are valid everywhere on (2

except on a p-null set are said to be valid u-almost everywhere (briefly: p-a.e.).

Let (2, %, ;) be a measure space. A function f : Q — C is said to be p-measurable
if f[7YA) :={w € Q: f(w) € A} € X, for every A € B(C). Measurability of
a function can also be characterized by means of Y-simple functions. A function
s : 0 — C is called a X-simple function if its range consists of finitely many points
a,...,qp € Cand if

Aji=s{ay}) ={weQ:s(w)=q;} €3,

for each j = 1,...,[. Hence, a Y-simple function s can also be written in the form
! l
s = Zaj X4,;, Wwhere U A; =L (2.4)
j=1 j=1

If the points a,...,q; are distinct, then the sets s™'({e;}), for j = 1,...,l, are
pairwise disjoint. It is clear that each Y-simple function is measurable. The space
of all Y-simple functions will be denoted by sim(X). A function f : Q — [0, 00)
is p-measurable if and only if there exists a sequence {s,},en of X-simple func-
tions satisfying 0 < s, 1T, f. Applying this to f* := max{f,0} and f~ =
max{—f,0} one obtains that, for each pu-measurable function f : Q@ — R, there

exists a sequence {s,}nen of 2-simple functions with |s,| < |f], for n € N, con-
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verging to f pointwise on ). Thus, a C-valued function f is p-measurable if
(Re(f)", (Re(f))~, Im(f))*, (Im(f))” are p-measurable. Here, Re(f) denotes the
real part and Im(f) the imaginary part of the function f. The space of all C-valued
p-measurable functions on €2 is denoted by M (u). Note that functions in M (u)
differing only on a p-null set are identified. Whenever we consider the set of all
individual pg-measurable functions f : Q — C we will write M(u). By M(u)"

denote the subset of all functions f € M(u) that are R-valued and non-negative

p-a.e., i.e., functions satisfying f > 0 p-a.e. on €.

Let (2,%, 1) be a measure space. For any >-simple function s : 2 — [0, 00) given
by (2.4) its p-integral is defined by

/Qsd,u = Zaj 1(A;). (2.5)

Note that [, sdu = oo whenever u(A;) = oo and «; # 0 for some j. Accordingly,
the p-integral of a measurable function f : 2 — [0, 00), which is approximated by a
sequence of non-negative X-simple functions {s, }nen, that is, 0 < s, 1, f, is defined
by

/ fdu:= hm sn dp.

Note that this definition is independent of the choice of the sequence {s,}nen C
sim(X), [I1, p. 122|. A p-measurable function f : Q — [0, 00) is called u-integrable
if and only if its p-integral over € takes a finite value. Accordingly, a y-measurable
function f : Q — R is defined to be u-integrable, if the p-integrals of both f* and
f~ take finite values. The p-integral of f over 2 is then defined by

/Qfduz/gﬁdu—/gfdu-

A p-measurable C-valued function f : 2 — C is called p-integrable if and only if
the p-integrals of both Re(f) and Im(f) take finite values. The integral of f is then

defined by
/fdu / f)duH/QIm(f)du-

Note that in the case of a C-valued function we have, [11, p. 129],

Re ( / fdu> - [ Re(Pdp. tm ( / fdu) = [mnde 2o
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Denote by £!(u) the space of all g-measurable functions f : Q — C satisfying

1l :Z/Q\f!du < 0.

Since £'(u1) is not Hausdorff as soon as there is a non-empty p-null set, define by
N (1) the set of all y-measurable functions that are p-null, that is, f = 0 p-a.e. on
Q. The quotient L'(u) := LY(p)/N (1) becomes a Hausdorff space and || - [|; is a
norm on L'(x). Similarly, define for a fixed p € (1,00) the space £P(u) consisting
of all p-integrable functions, i.e., y-measurable functions f : {2 — C that satisfy

1/p
1l = ( [ du) < 0.

Forming the quotient LP(u) := L£P(u)/N(u) we again obtain a Hausdorff space
and || - ||, becomes a norm on LP(x). Finally, denote by £(u) the space of all
p-measurable functions f : ) — C satisfying

| flloo == esssup{\f(w)| cw € Q} < o0,

the so-called space of all p-essentially bounded functions in M(u), i.e., functions that
are bounded except on a p-null set. Again, L>(u) := £°°(u)/N (1) is Hausdorff and
| - |loc @ norm on L*°(u). For 1 < p < oo, each space LP(u) is a complete normed
space, i.e., a Banach space, |11, p. 232|. Furthermore, in finite measure spaces the
inclusions

L¥(u) © L (n) € LP(p) € L' () (2.7)

hold, for 1 < p < p’ < co. Concerning the norms we have

£ 1l < (@)D= £, (2.8)

for all f € L¥ (u), [IT, p. 233]. The inequality (2.8) results from Hélder's inequality,

ie.,
1/p 1/q
/Qlfg\du< (/Qlﬂpdu) (/Q |9|qdu) (2.9)

which is valid for all p-measurable functions f,g : € — C and 1 < p,q¢ < ©
satisfying %+% = 1 where é =0, [II, p. 223]. For p € (1,00) fixed, let g be
the conjugate exponent of p meaning that Ilj + % = 1. Then, for each g € L9(u), the
mapping ¢4 : LP(p) — C defined by

Mﬁ:émw7Mfamm (2.10)
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is a continuous linear functional on LP(u). And, since the mapping ¢ : L(u) —
(Lp(,u))* defined by ¢(g) := ¢g, with @4(f) given by 1) for each f € LP(u),
turns out to be a norm isomorphism, [I1, pp. 290-292|, the dual space of LP(u) can

be written explicitly:
(L ()" = L p).

Note, for y being a o-finite measure, that the dual space of L'(1) can be specified

as well. Namely,
(L'(w)" = L=(n),

with each g € L>(u) acting in L'(n) via f — [, fgdpu, for f € L'(u). Moreover,
LP(p) is reflexive for 1 < p < oo, [35], p. 105].

Let us return to the space of all u-measurable functions M (u) over an arbitrary
measure space (€, %, ). Concerning convergence in M (u) there are two major
concepts. A sequence {f,}nen € M(u) is said to converge p-a.e. to f € M(u)
if there exists a p-null set A such that {f,},en converges pointwise to f on its
complement A°. This definition leads to an equivalent formulation of convergence
p-a.e., [11, p. 250]: As the “diverging set” A is a p-null set it is clear that, for every
g > 0, the set

{fweQ:VneNIkeN: |for(w) — f(w)| =e} (2.11)

is p-null, meaning that

p (ﬂ U{w € Q| fork(w) — f(w)] > 8}) =0, foralle>D0. (2.12)

n=1k=1

The second important type of convergence of sequences { f,, }nen € M (1) which will
play a major role in the forthcoming theory is the so-called local convergence in
measure. A sequence {f,}nen € M(p) is said to locally converge in measure to a
function f € M(u) if, for every € > 0 and for all A € ¥ satisfying pu(A) < oo, we

have
Jgrgou({w €Q:|fa(w)— f(w)| =e}NA)=0. (2.13)

The interesting aspect is that there exists a “topology of local convergence” on M (1)
generated by a family of pseudo-metrics. For each A € ¥ satisfying u(A) < oo, define
a mapping pa : M(p) x M(p) — [0, 00) by

- [/ =g
pa(f,9) -—/Amdﬂ-
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The integral exists since u(A) < oo and lf‘;f‘m is majorized by yqo. Each of the p,

is a pseudo-metric (and not a metric as pa(f, g) = 0 may be true for f # g) and the
family
{pa: A€, p(Ad) < oo}

defines a topology on M (u), the so-called topology of local convergence. Note that
the topology can also be generated by an equivalent family of pseudo-metrics, [12]
pp. 178-179]. Whenever p is a o-finite measure the topology on M (1) is metrizable.
This may be achieved by a mapping d : M () x M(u) — [0, 00) defined by

dh8) = Zwuw 5= 5 A >>/A].1+1f—g\d“’ (214)

Jj=1

where {4;},en C ¥ is any sequence of non-null measurable sets satisfying UjeN
Q and p(A;) < oo, for all j € N. Then d is a pseudo-metric, as each of the py, is a
pseudo-metric. Furthermore, d(f,g) = 0 if and only if pa,(f,g) = 0, for all j € N, if
and only if f = g p-a.e. on Ay, for all j € N. But, as (U,

to the assertion that f = g p-a.e. on Q, i.e., f = ¢ in M(u). Thus, d is a metric

A; =, this is equivalent

on M(p) and it defines the same topology on M (u) as the family of pseudo-metrics
{pa: A€ X, u(A) < oo}

The next remark gives a description of the convergence in the topology of M (u).

Remark 2.2.1

Let (2,%, 1) be a o-finite measure space and {f,}nen € M(u) be a sequence of
measurable functions. Then the following assertion holds: { f,, }.en locally converges
in measure to a function f € M(u) if and only if TLILH; d(fn, f) =0, with d given by
(@.14).

Proof of Remark[2.2.1:

First of all, let us derive some useful inequalities concerning the pseudo-metrics
pa. Fix € > 0 and define, for each n € N, the set

Bepi={weQ:|f,(w) - f(w)| = e} (2.15)

Here, {fn}neny € M(u) and f € M(u) are arbitrary. Then B.,, € ¥ and, for each
A € ¥ satisfying pu(A) < oo, we obtain B.,, N A € ¥ with u(B.,, N A) < co. Note

that on B, , we have
|fn - f| > €

> > , 2.16
L+ |fn—f] 14¢ (2.16)
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whereas on B¢, the inequality becomes

‘fn - f’ €
< . 2.17
L+ fu—fl 1+e¢ (2.17)
Hence, for each n € N, the following inequalities hold, for every A € >
BenNA
D[ s,
Bs,nﬂA1+|fn_f|
/ ~—du
B..na L+
= = W(B..nA. (2.18)

1+¢

Now, assume that {f,}n,en € M(p) is a sequence locally converging in measure
to a function f € M(u), meaning that, for each £ > 0 and for each A € ¥ satisfying
p(A) < oo, we have

nlggo”({w €Q:|fu(w) — f(w)] =} NA) =0.

Fix any sequence {A;}jen C X of measurable sets satisfying (J;.yA4; = 2 and
0 < u(A;) < oo, for all j € N. Then we obtain, for each € > 0 and each j € N, that

nlg&u({w €Q:|fu(w) — f(w)] =} NA;) =0.

Fix ¢ > 0. For each j € N this means (see (2.15))) that there exists an index
no(e,j) € N such that

(B NA;) <e, forall n > ng(e,j). (2.19)

Then, for all n > ng(e, j), we have

—————d = ———d ————d
/Aj1+|fn—f\ a /Bgﬁmjmfn—f\ “*/Bg,nmjlﬂfn—f\ :

228 (B nA )+/ ’fn_.ﬂ
1Bz M A,; —
h : ’ B¢ ,NA; 1+|fn_f|
€
< u(B}nﬂA»)—i-/ du
© j BgynmAj 1 +€

£
= B.,NA, — (B¢, NA,;
(B, )+ 1 +8N< en i)

< , - .
X M(Be,nmAJ)"' 1+€M(AJ)
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Accordingly,

1 / fu — f] .
du <e, foralln >ng(e,j).
T u(A) Jy T4 - 7 o)

As € > 0 was chosen arbitrarily, we obtain that

. 1 |fn B f‘ ;
lim / dp =0, forall 7 € N. 2.20
P T Lo, T T (220

To show that lim, ., d(f,, f) = 0 fix an arbitrary ¢ > 0. Since Z] 1 2% is an

absolutely convergent series, we can find an index j; € N such that

=1
PR

wlm

Due to the inequality

1 fa— /] 1
A dpy < —m——— d
201+ ul(4y)) /Aj1+|fn—f| fes 2ﬂ<1+u<Aj>>/A.X” g

J

1 pu(4)) 1
= — —— < —, forall ,
% 1+M(Aj) 5 orallneN
——
<1
also
- 1 / |fn_f| €
. dp < = 221
2 ST A L TR A (221)

is true. On the other hand, (2.20) implies that for the given ¢ > 0 there exists an
index n. € N such that

jo ! fu = /] .
;2j(1+u(Aj)) /Aj 1+ |fu— \d <3 (2.22)

for all n > n.. Taking the estimates (2.21)) and (2.22)) together we obtain that

>0 1 [fu — 1]
| d
Zza(1+u(Aj)) /Aj L+ 1f =11

J=1

=

J 1 \fu— ) 1 \fu — £l
= d d
2J<1+M<A>>/Aj1+|fn %t Z 2J<1+M<A>>/Aj1+|fn T

=1

<

+—- = ¢, foralln>n..

l\DI(‘ﬂQ
DO ™
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As € > 0 was chosen arbitrarily we can conclude that

. 1 - 1 ‘fn_f| _
e )= i 3 iy J, v %

Conversely, let {f,}nen € M(p) be any sequence of p-measurable functions
satisfying lim d(f,, f) = 0 for some function f € M (u). Then, by (2.14]), we have
n—oo

. 1 |fn_f|
lim / du =0,
novoe 1+ pu(Ay) Jo, T+ o — 11

and hence,

o [ ]

noo J4, L+ | fo = fl
for all j € N. Here, {A;};en € ¥ is any sequence of measurable sets such that
UjGN A; = Qand p(A;) < oo, for all j € N. Now, let A € ¥ be any set satisfying
p(A) < co. Choose {A;},en such that A = A; for some j, € N. Define, for e > 0
fixed, the sets B., as done in (2.15). Hence, B., N A € ¥ and p(B., N A) < <.
Considering the inequalities we finally obtain (for A = A;,) that

dp = 0,

i |[fn — 1 . €
0= lim — = —dp > lim —— u(B.,NA) >0,
n—oo Bg,nﬂA1+|fn—f’ u n—>ool—|—gljj( , )

meaning that {f,},en locally converges in measure to f. [

The following remark states how convergence p-a.e. and local convergence in mea-

sure are linked together as soon as (€2, %, 1) is a o-finite measure space.

Remark 2.2.2

Let (Q,%, 1) be a o-finite measure space. Then the following assertions hold:

(i) Let {fn}nen € M (i) be a sequence of y-measurable functions locally converg-
ing in measure to f € M(u) as well as to g € M(u). Then f = g locally p-a.e.,
meaning that, for each A € ¥ satisfying u(A) < oo, the equality fxa = gxa
holds p-a.e., [11, p. 254]. Since the measure space is o-finite it follows that

f =g pae.

(i) Let {fn}nen € M(u) be a sequence of pu-measurable functions converging -
a.e. to f € M(pu). Then {f,}nen locally converges in measure to f, [12] p.
174].

(iii) A sequence {f,}neny € M(u) of p-measurable functions locally converges in
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measure to f if and only if each subsequence of {f, },en admits a subsequence

which converges p-a.e. to f, [I1) p. 258].

(iv) M (u) is complete for the topology of local convergence, [33, p. 268-269]. O

Note that the Y-simple functions sim(X) are dense in M (p), |11}, p. 242].

Further important theorems concerning convergence of a sequence of y-measurable
functions are the following, [11, p. 125 & p. 145].

Proposition 2.2.1 (Monotone Convergence Theorem)
Let {fn}nen € M ()" be any increasing sequence of functions. Then,

/(hm fn> dy = lim /fndu. O
Q n—oo n—oo Q

Proposition 2.2.2 (Lebesgue’s Dominated Convergence Theorem)

Let {fu}nen € M(u) be a sequence of functions converging ji-a.e. to a function
f € M(u). Whenever there exists a ji-integrable function g € M (1) satisfying |f.| < g
p-a.e. on ), for alln € N, then also the functions f, f, are u-integrable, for alln € N,

and

lim fndﬂ:/fd,u. 0J
Q Q

n—o0

Another important theorem in measure theory is Fubini’s Theorem. For the theory

of integration with respect to product measures see, for example, [11, pp. 164-191].

Proposition 2.2.3 (Fubini’s Theorem)
Let (X, YXx, ), (Y, Xy, v) be o-finite measure spaces and denote by X XY the product
space of the topological spaces X and Y, by X x ® Xy the product c-algebra and by

it ® v the product measure of ;1 and v. Then the following assertions hold.

(i) For each non-negative Y.x ® Yy -measurable function f : X xY — [0,00) the
functions defined on X resp. Y by

e /Y f(r.y)dvly) and y e /X f(x.y) dp(x)

are Y x-measurable resp. Yy -measurable and

[ty = [ ([ fenow) d)
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_ /Y</Xf(x,y)du(:c)) dv(y).

(ii) Let f: X XY — C be p® v-integrable. Then f(x,-) is v-integrable for p-almost
every x € X and

= {z € X : f(z,") is not v-integrable} € Yx;
respectively, f(-,y) is p-integrable for v-almost every y € Y and
B = {y €Y : f(-,y) is not u—integrab/e} € Xy.

Moreover, the functions

7 /Y [(e,y)duly) and s /X f(@,y) du(z)

are u-integrable over A° resp. v-integrable over B¢, and

nyfd/“gW = /A (/Y f(z,y) dl/(y)) dp(z)

_ /BC (/X fz,y) du(ﬂ?)) dv(y). O

A set function p : ¥ — C is called a complex measure if (@) = 0 and if it is
o-additive, that is,

1 (D Aj) = iM(Aj),

for any sequence {A;};en C X of disjoint sets. Associated with the complex measure

p define a set function |u| : ¥ — [0, 00) by
!
1 (A) = sup Y [p(A4y)]
s =1

where the supremum is taken over all finite partitions 7 = {A;},_, of A € X.
Then |p| is called the variation measure of ;1 and the finite number ||u|| := |u|(Q) is
called the total variation of u. Concerning the variation of a measure, the following

proposition turns out to be a useful tool, [31], p. 152].

Proposition 2.2.4
Let 1 be a positive measure on %, g € L'(11) and define \(A) = [, gdu, forall A € X.
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Then the following equality holds:

|)\](A)_/|g|du, forAcs. O
A

Moreover, some further properties of the variation of a complex measure are brought
together in the following lemma; see [31, Chapter 6] or [10, Chapter I1I|, for instance.

Lemma 2.2.1

Let i : 3 — C be a complex measure. Then the following assertions hold:
(i) [1(A)] < [pl(A), forall A €S
(ii) |u|(B) < |u|(A), for all A, B € ¥ with B C A.

(ii) sup{|u(B)] : B € T, B C A} < |ul(4) < 4 sup{|u(B)| : B € %, B C A},
forallAeY. O

Finally, a measure p : ¥ — [0,00] is said to be non-atomic if, for each A € X
satisfying p(A) > 0, there exists a set B € ANY := {ANS:S € X} such that
u(B) # 0 and p(A\B) # 0. The range of a finite, positive non-atomic measure
po: X — [0,00) is the closed interval [0, 1(2)]; see [16] and the references therein.
Moreover, we say that p has the Darboux property on X if, for each A € ¥ and
0 <t < p(A), there exists a set B € AN X such that u(B) = t. Note that a
non-atomic measure always has the Darboux property, [16]. Non-atomic measures

are in some ways advantageous as the following lemma shows.

Lemma 2.2.2
Let ju: ¥ — [0,00) be a finite, positive non-atomic measure. Let A € ¥ be such that
1(A) > 0 and let | € N be fixed. Then there exists a partition {A;}._, € % of A such
that

n(A;) = @, forallj=1,....1.

Proof:

Choose an arbitrary A € ¥ satisfying p(A) > 0 and fix [ € N. Let u(A) =: .
Since p is a finite, positive non-atomic measure, p has the Darboux property on X..
Thus, there exists a set A; € ANXY C X such that u(A;) = ¢. The additivity of p
gives

a=p(A) = p(A U (A\A)) = p(Ar) + p(B1) = § + p(Br)

——
=:B1

26



or, equivalently,
wB)=a—-$=(1-1)-%.

Since B; € AN Y and p restricted to A N X still has the Darboux property we can
find a set A, € B1NY C ¥ such that p(A;) = . Thereby we obtain that
a=p(A) = p(AUAU(Bi\A2)) = u(Ar) + p(As) + p(Bz) =2 - ¢ + p(Ba)
=B

or, equivalently,
wBy) =a—-2-9=(1-2)-%.

Continue inductively and suppose that we have already found sets A;,..., 4,1 € &
satisfying A; € B;_1 N'Y C ¥ where By := A and B; := B;_1\A;, for all j =
L,...,l =1, and pu(A;) = ¢, forall j = 1,...,1 — 1. Then,

-1 -1

a=pu(A) = #(U AU (Bl—Q\Al—1)> = Z,U(Aj) +u(Bi-1) = (1—1)- % + u(Bi-1)

or, equivalently,
W(Br)=a—(1-1)-9=5

Let A; := Bj_;. Then 4; € Bj_;NY C ¥ and p(A;) = § and we have found a

partition {A;},_, C ¥ of A satisfying pu(A;) = ¢, forall j=1,...,01. O

2.3 Fréchet function spaces

A vector space X over the scalar field R is called a Riesz space or vector lattice if
it is endowed with a partial order < such that, for any z,y € X and XA € R, the
following conditions are satisfied:

(i) Ifx<y, thenx+z<y+z forall z € X.

(ii) If0< A and z <y, then Az < \y.

(iii) For any pair of vectors z,y € X there exists a supremum (denoted by z V y)

in X with respect to the partial order of the lattice structure <.

The element |z| := z V (—x) is called the modulus of x. The set XT := {z € X :
0 < z} is called the positive cone of X. Since x < x V (—z) it follows from (i) that
0=—x+z < —z+|z|. Similarly, —z < 2V (—x) implies 0 < z+ |z|. But, from (i) if
w < yand u < v, then w+u < y+wv. It follows that 0+0 < (—x + |z|) + (z+|z|) =
2|z|. Then (ii) yields 0 < |z|, which is valid for every z € X.

A vector lattice is said to be Archimedean if z,y € X and nx < y, for all n € N,
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imply that x < 0. A vector subspace I of a Riesz space X is called an ideal if it is
solid, meaning that if x € I and y € X satisfy |y| < |z|, then y € I. A locally solid
Riesz space is a Riesz space X equipped with a locally solid topology 7, meaning

that 7 has a neighbourhood base at zero consisting of solid sets.

Let (Q, 3, 1) be a measure space. A mapping ¢ defined on M (p)" is called a function
semi-norm whenever it satisfies the following conditions:

(i) 0<¢g< oo

(i) If u=0 p-a.e., then g(u) = 0.

(iii) g(Au) = Aq(u), for every constant 0 < A < oo.

(iv) q(u+v) < q(u) + q(v), for all u,v € M(u)*.

(v) Tfu,ve M(u)" and u < v, then g(u) < ¢(v).
By setting ¢(f) := q(|f|), a function semi-norm can be extended to the whole of
M (). Recall that M (u) consists of C-valued p-measurable functions. In particular,
(iii) then implies that

g(Af) = q(IMf1) = a(MIF1) = [ATa(1F1) = M a(F),

for every A € C and f € M(p).

In the sequel, we will consider a sequence {g}ren of function semi-norms instead
of a single function semi-norm q. A sequence of function semi-norms {qx}ren is
called fundamental if, whenever f € M (u)\{0}, there exists an index m € N such
that ¢, (f) # 0, i.e., gn(f) € (0,00]. We assume {qi}ren to be increasing and
fundamental. Define

Ligy = {f € M(p) : qu(f) < 00, for all k € N} = ﬂ Ly,

keN
where Lg, = {f € M(n) : qu(f) < oo}, for k € N. Then Ly, is a locally solid,
metrizable, locally convex Hausdorff space for the topology induced by {gx}ren-
Hence, whenever f € M(u) and g € Ly, satisfy |f| < |g|, then f € L,y and
@ (f) < qi(g), for all k € N. The space Ly, is called a (locally solid) metrizable
function space and, if it is complete, a Fréchet function space. The positive cone of a
Fréchet function space Ly} is defined by

L{+qk} ={f €Ly : f=0}

consisting of all those functions in Ly, that are [0, c0)-valued p-a.e. on €.
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Let {qx}ren be an increasing, fundamental sequence of function semi-norms and let
Liq be defined as above. The metrizable function space Ly, is said to have
the joint Riesz-Fischer property (briefly: (JRF)-property) if, given any sequence
{fa}nen C Lyg,y satisfying

qu(fn) < oo, for all k € N, it follows that g (Z |fn|> < oo, for all k € N,
n=1 n=1

(2.23)
[6, Definition 3.5|. In the definition of the (JRF)-property it is not assumed that

Liq,y is complete.

Remark 2.3.1
The above definition of the (JRF)-property can be replaced by an equivalent for-
mulation: Lg,; has the (JRF)-property if, given any sequence {u,}nen C L{Zk}

satisfying

Z qr(u,) < oo, for all k € N, it follows that g <Z un> < 0o, for all £ € N.

n=1 n=1

(2.24)

To prove Remark we first need to consider another collection of pu-measurable
functions. Denote by M(u) the set of all measurable functions f : Q@ — R U
{—00,400}. (For the properties of M(u) see, for instance, [II, pp. 104-108].)
As usual M (p)* will denote the non-negative functions in M (1), with oo allowed as

a possible value. Now we can draw the following conclusion.

Lemma 2.3.1

Let {qi}wen be an increasing sequence of function semi-norms in M (1) (which is fun-
damental in M (1)) and let f € M(u)*t satisfy q,(f) < oo, for all k € N. Then f is
[0, 00)-valued p-a.e..

Proof:

Let f € M(u)* satisfy qu(f) < oo, for all k € N, and define Ap i ={w e Q:
f(w) = oo}. Then, for each w € Q, the inequality f(w) > nxa,(w) holds, for all

n € N. Each g, being a function semi-norm we obtain
0 < qr(nxa,) =naqr(xa;) < q(f) <oo, forall k €N, foralln € N.

But, since R is Archimedean, this shows that gx(xa,) = 0, for all k € N. Hence, we
can conclude that x4, = 0 p-a.e.. Therefore, Ay is a p-null set and f(w) < oo, for
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p-almost every w € Q2. [

Proof of Remark[2.3.1):

It is clear that (2.23) implies (2.24]).

Let now ({2.24) be valid and let {f,}nen € L4} be any sequence satisfying
> aqe(fn) < 00, for all k € N. Fix an arbitrary n € N. Since f, is C-valued, we
can write f,, = g, + ¢ h,, where g, is the real part and h,, the imaginary part of f,.

Since |g,| < |f.] holds and each g is a function semi-norm, we obtain

@(gn) < qe(fn), forall ke N.

On the other hand, g, is an R-valued function, and so we can write g, = g — g,

Hence, we have |g;"| < |g,| and therefore

a(9,) < aelgn) < ai(fy), forall ke N.

As n was chosen arbitrarily, this is true for all n € N, meaning that g(f,) is a

majorant of gx(g;"). Thus,

ZC]k(Q:{) < qu(fn) < oo, forall keN.
n=1 n=1

The condition (2.24)) implies that

P (Zgz) < oo, forall keN,
n=1

and Lemma, yields that Y7 g < oo p-a.e. on €. By repeating the arguments

we obtain the corresponding results for g, , h' and h, . But, as
1fol = |gn + i hnl <|gn| + |hal = g + 9, + bl +h,,

for all n € N, it follows that

STEISY Jgr+> g +> b +> hy,
n=1 n=1 n=1 n=1 n=1

by which we can finally conclude, by the triangle inequality for each gy, that
o (Z\M) < (Z%) + <Zg;> + (Zhi) + (Zh;) < o0,
n=1 n=1 n=1 n=1 n=1
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for all k£ € N. Hence, also (2.23) holds, that is, Ly, has the (JRF)-property. 0O

In the following remark and lemma, we will denote Fréchet function spaces Ly, } over
a measure space (2,3, 1) by X(u) and their positive cone by X (u)™. An element
f € X(n) is said to be o-order continuous (briefly, o-o0.c.) if it has the property that
a sequence {u,}neny C X (p)* converges to 0 in the topology of X (i) whenever it
satisfies |f| = u, |n O pointwise p-a.e. on §2. The collection of all o-o.c. elements of
X () is called the o-order continuous part of X () and is denoted by X (u),.

The next remark occurs in [6, Lemma 3.11]. Since the manuscript is unpublished

we give the proof of the statement here again.

Remark 2.3.2

Let f € X(u). Then f € X(u), if and only if for every sequence {f,}nen € X (1)
with |f,| < |f| and for which lim,, ., f,, = fo exists pointwise u-a.e., it follows that
{fn}nen converges to fo in the topology of X (u).

Proof of Remark[2.3.2:

Let f € X(u),. Choose any sequence {f, }nen in X (u) with |f,| < |f| for which
lim,, o fn = fo pointwise. Since |fo| < |f], we have fy in X (i). Then the sequence
{tn }nen defined by u, = sup{|f; — fo| : 7 = n}, for all n € N, satisfies both
un, < 2|f|, for all n € N (in particular, {u,}nen € X(p)*), and u, |, 0. Hence,
{ty }nen converges to 0 in the topology of X (u). Since |f, — fo| < uy, for all n € N,
and the topology of X (u) is locally solid, it follows that { f,, },en converges to fy in
the topology of X ().

The converse statement is obvious. [

A Fréchet function space X (u) is said to have a o-Lebesgue topology if it has the
property that a sequence {u, }nen € X (u)™ converges to 0 in the topology of X ()
whenever it satisfies u,, |, 0 pointwise u-a.e. on §2. It is clear that, for every Fréchet
function space having a o-Lebesgue topology, the o-order continuous part and the

space itself coincide, i.e., X(u) = X (t)q-

The next result emphasizes the importance of the o-Lebesgue topology for the theory

in the forthcoming chapters.

Lemma 2.3.2
Let X (u) be a Fréchet function space containing the Y.-simple functions sim(X) and

having a o-Lebesgue topology. Given f € X(u), there exists a sequence {r,},en C
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sim(X) such that |r,| < |f|, forn € N, with {r,},en converging to f both pointwise
on Q and in the topology of X (u). In particular, sim(3) is dense in X ().

Proof:

Let u € X(u)™. Choose a sequence of functions {s,}n,en C sim(X) satisfying
0 < s, T, u pointwise on . Then (u — s,) |, 0. As X(p) has a o-Lebesgue
topology, it follows that
lim gx(u—s,) =0, forall keN,

n—oo

meaning that {s,},en converges to w in the topology of X (u). For an arbitrary
f € X(u), note that f = (gt —g~) +i(ht — h™) where g = g© — g~ denotes the
real part and h = ™ — h~ the imaginary part of f. As g*,¢7,h",h™ € X ()™,
there exist sequences {s,}nen, {tn}nen of R-valued ¥-simple functions such that
0<s1tgr,0<s, g and 0<tf tht,0<1¢, Th pointwise on Q as well as in
the topology of X (u). Define

rni= (st —s)+i(th —t,), forneN,

n

then {7, }neny C sim(X) with |r,| < [f], for n € N, and, by the triangle inequality,
we have
[f=ral <lg™ = syl + 197 = syl +[h" = t7| + [ = 1,1,

for all n € N. Each ¢, being a function semi-norm we finally obtain, by the triangle

inequality for each ¢, that
a(f —1a) S a9 —sy) +a(g” —s,) Fax(h™ = t5) +a(h™ = t,),
for all £ € N. Taking the limit on both sides we derive
nh—>noloCIk(f —r,) =0, forall keN.

Hence, there exists a sequence of Y-simple functions {7, }neny C sim(X) with |r,| <
|f|, for n € N, converging pointwise to f and in the topology of X (u). O

Let us give two examples of Fréchet function spaces that we will extensively make
use of in Chapter

Example 2.3.1
The Fréchet function space L~ (][0, 1])
Let  := [0,1] and let X be Lebesgue measure. In that case ([0, 1], B([0,1]), ) is
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a finite measure space. Denote by L°([0, 1]) the Lebesgue measurable functions f :
[0,1] — C. Fix p € (1,00) and let {ry}ren be any sequence of real numbers in [1, p)
satisfying 1 < r 15 p. Define, for each k € N, a mapping ¢ : L°([0,1]) — [0, oc] by

lr) o= [ 117 02) "

Then each gy, is a function semi-norm, even a function norm on L°([0,1]). (Observe
that L, is the usual Banach space L™ ([0, 1]), for £ € N.) This follows from [L1 p.
224] and the monotonicity of the Lebesgue integral, [I1, p. 132]: Let f,g € L°([0,1])
satisfy |f| < |g|, then |f|™ < |g|"™* and consequently

1 1/ry 1 1/ry
qk<f>=(/0 |f\m) <(/ \gwdx) _ (o),

for all £ € N. On the other hand, Holder’s inequality implies that the sequence
of function norms {q; }xen is increasing. To see this, fix ¥ € N and let f € L°([0, 1]).
Then [f|"™ € L°([0,1]) and by setting r := o and s 1= (1- %)_1 we obtain
% + % = 1. Applying Hoélder’s inequality gives

1 1 1/r 1 1/s
[uran € ( / !fl"’”’dA> ( / \x[o,mm)
0 0 0

1 Tk /Th+1
- (/ rfr’"wdx) A0, 1)

meaning that g,(f) < gey1(f); see also (2.8). Moreover, it is clear that for each
0 # f € L°([0,1]) there exists an index m € N such that ¢, (f) € (0,00]. Thus,
we obtain an increasing fundamental sequence of function norms in the metrizable
function space L~ ([0, 1]) defined by

= ((0,1) = ({7 € L0.1)  au(f) < o0} = () F*(0,1]).

keN keN

Note that LP~([0, 1]) is also complete. Indeed, for each k € N, the space L, is the

usual Banach space L™([0,1]), and so we have a system of Banach spaces satisfying
L™(]0,1]) © L™([0,1]) 2 ... 2 L ([0, 1]).

Because LP~ ([0, 1]) coincides with the countable intersection of the Banach spaces
L™ ([0,1]), where k € N, we can conclude by [13| pp. 17-18] that LP~([0,1]) is
complete. Hence, LP~([0,1]) becomes a Fréchet function space whose topology is

generated by {qx}ren. Let us state some properties of the space LP~ ([0, 1]):
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(i)

(iii)

(iv)

(£7=([0,1]))" = U L*([0,1]), where £ + L =1, for k € N.

keN

Proof:

Since each L™([0,1]) is a Banach space, L~ ([0, 1]) is by definition a so-called
countably normed space. According to [13, p. 36] the dual space of LP~(]0, 1])

can be specified as

(L7=([0,1]))" = (ﬂ L™([0, 1])) = J@(o, )= {J£+(o.1)). O

keN keN keN

Note that the duality of LP~([0,1]) and its dual space is expressed by the

bilinear form

raye= [ sgan
for f € LP=([0,1]), g € (LP=([0,1]))".

LP=([0,1]) is reflexive.
Proof:

Since each of the local Banach spaces L™([0,1]) = LP~([0,1])/q; " ({0}), for
1 < r, < p, is reflexive, Proposition implies that also LP~([0,1]) is
reflexive. [J

L>=([0,1]) € LP([0,1]). In particular, sim(B([0, 1])) € LP=([0,1]).

Proof:

Let f € L*>([0,1]). Then |f(w)| < M, for A-almost every w € [0, 1], for some
real number M > 0. Thereby, for each £ € N, we obtain

Mﬁ=<[uwwwxmym g(ljmwwowk

= MA([0,1)Y"™* < oo.

Hence, L*>([0,1]) € L~ ([0, 1]). Since each B([0, 1])-simple function is bounded
on [0,1], it follows that sim(B([0,1])) € L*([0,1]) and consequently, also
sim(B([0,1])) € LF=([0,1]). O

LP~([0, 1]) has a o-Lebesgue topology.

Proof:

This follows from Lebesgue’s Dominated Convergence Theorem [2.2.2] Let

{tn }nen € LP([0,1])" be a sequence of functions satistying u,, J., 0 pointwise
on [0,1]. Then we have 0 < u, < uq, for all n € N. Fix £ € N. Then also
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0 < ul* < uf* with u/* |, 0 pointwise. Since u; € L™([0,1]), we have that
ut* € L'([0,1]). Thus,

1 1
lim ¢*(u,) = lim [un|™ dX\ = / <lim |un|r’“) d\ =0,
and hence, also lim, . qx(u,) = 0. Since k € N is arbitrary, the sequence

{tn }nen converges to 0 in the topology of LP~([0,1]) . O

(v) sim(B([O, 1])) is dense in L~ ([0, 1]).
Proof:

This follows immediately from (iii) and (iv) in combination with Lemma[2.3.2]
U

Further properties of the space LP~ ([0, 1]) may be found in [2]. <

Example 2.3.2

The Fréchet function space Lj (R)

Let Q := R and let A be Lebesgue measure. Note that in this case (R, B(R),\) is
a o-finite measure space. By L°(R) we denote the Lebesgue measurable functions

f:R — C. Fix p € [1,00). Define, for each k € N, a mapping q;, : L°(R) — [0, o0]

by k 1/p
a(f) = (/k |f|”dA) .

Then each gy, is a function semi-norm as for f, g € LY(R) satisfying | f]| < |g| we have
|f|P < |g|" and, hence,

a(f) = (/_Z /1 dA) ” < </_Z 91" dA) " = a(9),

for k € N. As [k, k] C [—(k+ 1),k + 1], for all k € N, it is clear that the sequence
of function semi-norms {qy }ren is increasing, i.e., ¢r(f) < qur1(f), for all f € LO(R).
Again, the sequence is fundamental since for each 0 # f € L°(R) there exists at
least one m € N such that ¢,,(f) € (0,00]. Thus,

LY (R) == ({f € L°(R) : qi(f) < oo}

keN

is a metrizable function space whose topology is generated by {qx }ren. Since L} (R)

is complete, [23, p. 40], it is a Fréchet function space. Some important properties

p
loc

of the space L} (R) are the following ones.
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(i) (Lﬁ)C ) = {f € LL .(R) : f is compactly supported}

Proof:

Let ¢ : Lj.(R) — C be a continuous linear functional. Then there exist k € N
and M > 0 such that

[(f, )| < M qi(f (/ |f|pd>\> , (2.25)

for all f € L (R). In particular,

loc

k 1/p
M(/_k\f!pcu) ,

for all f € LP([—Fk,k]) C L} .(R)|—kr where, for each k € N, the space

loc

LP([—k, k]) is a Banach space. It is known that there then exists g € L([—k, k])

(where ¢ is the conjugate exponent of p) such that

k
(f, o) :/ fgdX\, forall fe LP([—k, k]). (2.26)
—k
Define g : R — C by

g(w), w € [k, k],
0, w e R\[~k, k],

in which case g € LL_(R). Then it follows from (2.26)) that, for each f €
Ly (R),

loc

(fLo) = <fX[—k,k] + [XR\[<kK)» 90>
= (fXri @) + FXR\ bk @)

k
= /kfg A XR\ k], )

because fx[_kx € LP([—Fk, k]). But, by (2.25) we have

1/p
[{FXR\-k1: )] (/ | x| dA) —0.

Accordingly,
(f, ) /fgd)\ for all f € Li (R),

where g € L _(R) is compactly supported.
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(i)

Conversely, if h € L

loc

(R) satisfies h(w) = 0 for all w ¢ K with K C R
being compact, then for every f € Lj (R) we have (via Holder’s inequality)

/fhd)\:/ JhdX < || flleew) 1P Loy < Pl Loy @ (f),
R K

where k£ € N is chosen to satisfy K C [—k,k]. This shows that the linear

functional

ﬁ%/ﬂMA for f € I” (R),

is continuous on L} (R). O

LP

loc

(R) is reflexive for 1 < p < 0.

Proof:

For 1 < p < oo, each local Banach space Lp([ k. k]) = L (R)/q; ' ({0}) is
reflexive. Hence, by Proposition [2.1.2 u he(R) is reflexive as well. [

(R). In particular, sim(B(R)) C Lf,

L= (R) C L loc (R>

loc

Proof:

Let f € L>®(R). Then |f(w)| < M, for A-almost every w € R, for some real
number M > 0. Thereby, for each £ € N, we obtain

)= ([ 1p e ) ( / MW ) ’

= [—k, k)P < oo0.

Hence, L>°(R) C L} (R). Since each B(R)-simple function is bounded on R, it
follows that sim (B(RR)) € L*°(R) and consequently, also sim(B(R)) C L} (R).
U

LP

loc

(R) has a o-Lebesgue topology.
Proof:

Let {uy nen € LT (R)* be any sequence of functions satisfying u,, J,, 0 point-
wise on R. Then 0 < u,, < uq, foralln € N. Fix k € N. Then also 0 < v? < uf
with u? |, 0 pointwise. Since u; € LP([—k, k]) we have u} € L'([—k, k]). Tt
follows from Lebesgue’s Dominated Convergence Theorem that

lim ¢} (u,) = hm / [un|P dX = / (lim |un|p) d\ =0,

37



and hence, also lim,, o qx(u,) = 0. Since k € N is arbitrary, the sequence
{ty }nen converges to 0 in the topology of L (R). O

loc
(v) sim(B(R)) is dense in L
Proof:

This follows from (iii), (iv) and Lemma 2.3.2l 0O <

(R).

2.4 \Vector measures

Let (€2, %) be a measurable space and let (X, {py}ren) be a Fréchet space with dual

space X*. A mapping m : ¥ — X is called a vector measure if it is o-additive, i.e., if

o (04) -5

for any sequence {A,},;eny C X of disjoint sets. Equivalently, if m is finitely additive,
then m is o-additive if and only if the sequence {m(A4;)}jen € X converges to 0 in
the topology of X whenever {A,};cn C X satisfies A; |; @ pointwise on €.

For each z* € X*, define a C-valued measure (m,z*) : ¥ — C by
(m,z")(A) := (m(A),z"), for AeX.

It was already noted that the variation measure |(m,x*)| of each complex measure
(m,z*), for x* € X*, is finite, [31] p. 144].

Remark 2.4.1
A finitely additive map m : ¥ — X is o-additive if and only if the C-valued map
(m,x*) : A (m(A),z*), for A € ¥, is o-additive for every z* € X*.

Proof of Remark[2.4.1)

Suppose that m : ¥ — X is o-additive. Let {A,};ex € X be any sequence of
pairwise disjoint sets. Since each x* € X* is continuous it follows that

morfUs) - (e (00) )
- <Zm(AJ)= I*>
= D _(m(4;)2")
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= > ma)(A))

for all z* € X*. Hence, (m,z*) is o-additive.

Conversely, suppose now that (m,z*) is o-additive, for each z* € X*. Again,
let {A;};en € X be any sequence of pairwise disjoint sets. Consider any increasing
sequence of natural numbers {ji ey € N. Fix 2* € X*. Due to the o-additivity of

(m, z*) we have

<m,x*> (U AJ) = Z<m7x*>(‘4j)

j=1

and therefore obtain that
<m (U Ajk) 7I*> = <m7x*> <U Ajk)
k=1 k=1
= > (m,a")(4;,)
= ().

k

bl
—_

1
— <Z m(Ajk),x*> :

k=1

Since z* € X* is arbitrary, this means that the subseries Y727 m/(A;,) of Y22, m(A;)
is weakly convergent to m(UZo:1 Ajk). The Orlicz-Pettis Theorem implies then
that the series > 22 | m(A;) converges unconditionally to m(U;’il A;) in the topology
of X. Thus, m is o-additive in X. [

Let m : ¥ — X be a vector measure. A measurable function f : 2 — C is called
scalarly m-integrable if it is integrable with respect to each scalar measure (m,z*),
for x* € X*, that is,

/ Fldlm, )] < oo,
Q

A function f: Q) — C is said to be m-integrable if it is scalarly m-integrable and if,
for each A € 3, there exists an element fA fdm € X such that

</fdm,x*>—/fd(m,x*>, for all z* € X™.
A A
3
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The set function my : ¥ — X defined by

:/fdm, for A € X,
A

is called the indefinite integral of f with respect to m. By the Orlicz-Pettis Theorem
2.1.3[ it is also a vector measure, [I9, p. 160]. Note that each -simple function
s: Q — C of the form (2.4]) is m-integrable; its m-integral is defined by

/sdm —Zaj (ANA)) (2.27)

The following alternative description of m-integrability of a function f : Q2 — C is
given in [19, pp. 161-162].

Proposition 2.4.1
Let X be a Fréchet space, m : ¥ — X be a vector measure and f : ) — C be a
function. Then the following assertions are equivalent:

(i) [ is m-integrable.

(ii) There exists a sequence {s,}nen C sim(3) of Y-simple functions which con-
verges pointwise to f on €) and such that, for each A € Y, the sequence

{[ysndm} _ C X converges in the topology of X.

In this case, [, fdm = lim [, s,dm, foreach Ae¥. O
n—oo

Let, for each k € N, X/p; ' ({0}) be the quotient space determined by the semi-norm
pr and denote by Xj, its local Banach space with || - || being the norm in Xj. Denote

by Il the canonical quotient map
My : X — X/py ' ({0});

the same notation is used when II; is interpreted as being X-valued. It is clear

that II, is continuous. Define, for each k € N, the set function
my, = om : ¥ — X/p. 1 ({0}). (2.28)

The continuity of II; ensures that my is a vector measure on X again, with values
in X/p;'({0}) = Xj. The variation measure |my| : ¥ — [0,00] of the Banach
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space-valued vector measure my is then defined in the usual way:
) (A) = supZ lmi(4;)]l,,, for A€,

where the supremum is taken over all finite partitions 7 = {A;}._; of A. The
variation measure |my|, which is always o-additive with values in [0, o], is called
finite if |my|(2) < co. Moreover, m : ¥ — X is said to have finite variation if |my| is
finite, for each k € N.

The space of all m-integrable functions is denoted by £'(m). Note that, whenever
(X, {pr}ren) is a Fréchet space generated by a fundamental sequence of increasing

semi-norms {py }ren, the sets
Bk—{xeX pr(x 1} for k € N,
form a fundamental sequence of zero neighbourhoods for X and their polars
By :={a" € X*:|(x,2")| <1, forall z € B}, forkeN,

are absolutely convex, [22] p. 245]. Moreover, { B} }ren is a fundamental sequence
of bounded sets in the strong dual X7, i.e., each bounded set in X3 is contained in
a multiple of B} for some k& € N. In addition, each set B}, for k£ € N, is a Banach
disc, that is, the linear hull
Xpo = J AB}
A>0
generated by By in X* is a Banach space when equipped with its Minkowski func-
tional
¢po(x*) :==nf{A>0:2" € ABy}, forz* € Xpo,

[22, p. 278|. For k € N fixed, the py-semi-variation of m is the set function py(m) :
¥ — [0, 00) given by

pr(m)(A) = sup{|(m,z*)|(A) : 2* € By}, for A€ X.
The following inequalities concerning the p-semi-variation of m are fundamental in
the theory of vector measures. Respective results are found in [I7, Lemma I1.1.2],

where there is 2 in place of 4 because X is considered over R rather than C and in

[29, Proposition 1.2] for the case that X is a Banach space.
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Proposition 2.4.2
Let X be a Fréchet space and m : ¥ — X be a vector measure. Then, for each A € X,
the inequalities

sup{pr(m(B)) : B € 3,B C A} < pe(m)(A) < 4sup{pi(m(B)) : B € 3, B C A}

(2.29)
hold, for all k € N.
Proof-
Note that X* determines the topology of X in that
pr(z) = sup{|[{(z,z*)| : 2* € By}, forze X, (2.30)

for k € N, |22, §22]. Fix £ € N and choose an arbitrary A € ¥. Let B € ¥ such
that B C A. Then (2.30) and Lemma [2.2.1] (i) and (ii) imply that

pe(m(B)) =" sup{|(m(B),a")| : 2" € By}

< sup{|(m,2")|(B) : 2" € B}
< sup{|(m, z*)|(A) : 2" € By}
= pr(m)(A)

Thus, also sup{px(m(B)): B € X, B C A} < p(m)(A) holds.

On the other hand, for any z* € By, we have
[(m(B), z")| < sup{|(m(B),z")| : 2" € By} = pi(m(B)). (2.31)
Hence, by Lemma [2.2.1] (iii), we obtain that

Pr(m)(A)

sup{|(m,$*)|(A) cxt e B,’;’}
< 4 sup{|(m(B),z")| : BEX,BC A}

[
i

(2.31)

< 4sup{pe(m(B)): B€ £,B C A}.

A € ¥ and k € N were arbitrary. Thus, both inequalities as stated in the assertion
of Proposition hold, for all A € X, forall k e N. [J

Define then, for f € £'(m), its py-upper integral by

Pr(m)(f) = pr(my)(Q) = sup{|(my,27)[(Q) : 2" € By}
The sequence of semi-norms {py(m)}ren defines a topology on L£'(m) (see also p.
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. The inequality (2.29) implies that an equivalent topology on £!(m) is generated
by the semi-norms py(m) : L(m) — [0, 00) defined by

pr(m)(f) :== sup{pk(mf(A)) A€ Z}, for f € L'(m),

for k£ ¢ N.

An m-integrable function f € L£'(m) is called m-null if its indefinite integral m
is the zero vector measure, i.e., if mg(A) = 0, for all A € ¥. By definition of the
semi-norms pg(m) this is equivalent to py(m)(f) = 0, for all k£ € N. Equivalently,
a function f € £'(m) is m-null if and only if f is |mg|-null, for all k¥ € N, [24] pp.
212-214|. Two m-integrable functions f,g € £'(m) are equal m-almost everywhere
(briefly: m-a.e.) if |f — g| is m-null. Denote by N(m) the subspace of all m-null
functions and by L'(m) the quotient space L£'(m)/N(m). Finally, a set A € X is
said to be m-null if its characteristic function y4 is m-null. Equivalently, A € X
is m-null if pp(m)(A) = 0, for all k € N. In view of this is equivalent to
m(BNA) =0, for every B € X. The family of all m-null sets is denoted by Ny(m).
In the following remark, members of 3 are freely identified with their characteristic

functions.

Remark 2.4.2

A function f € £'(m) is m-null if and only if f~'(C\{0}) is an m-null set.
Proof of Remark[2.4.2:

Let f € £'(m) and define B := f~}(C\{0}) = {w € C: f(w) # 0}. Then f =0
on B¢ and consequently

/ Fdm = 0dm = 0, (2.32)
ANBe¢ ANBe¢

for all A € ¥. By making use of the linearity of the integral, [19, p. 160]|, we obtain,
for all A € X, that

/fdmz/fodm:/fxBuBcdm:/fdem/fchdm fdm.
A A A A A ANB
(2.33)

Let now f be an m-null function. Then f is also an |my|-null function, for all
k € N. For k € N fixed, this means that

/ Fldlml =0,
Q

[24) p. 213]. Accordingly, B := {w € Q : [f(w)] > 0} = {w € Q : |f(w)| # 0} =
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~1(C\{0}) is an |my|-null set. Due to the obvious inequality
0 < [|mi(A)||x < |mi|(A), forall Ae X,

(where || - || is the norm in X}) the set B is also an my-null set. But, my = Il om,

and it follows, for given A € ¥, that we obtain the equality
mr(AN B) =1I;(m(AN B)) = 0.
Consequently, m(A N B) € p;'({0}), meaning that
Im(AN B)|lx = pr(m(An B)) =0.

As A € ¥ and k € N were arbitrary, we obtain that m(A N B) = 0 € X, for all
A € X, Thus, B = f~!1(C\{0}) is indeed an m-null set.

Conversely, let B be an m-null set. Then m(AN B) = 0, for all A € 3. Thus, we

have
/ fdm fdm =0,
A ANB

for all A € ¥, implying that m;(A) = 0, for all A € X, and consequently that f is

an m-null function. O

Let X be a Fréchet space and m : ¥ — X be a vector measure. A finite, positive
measure v : ¥ — [0,00) is called a control measure for m if the v-null sets and the
m-null sets coincide, i.e., if Ny(v) = Ny(m).

Remark 2.4.3
Note that also a o-finite measure v : X — [0, oo] satisfying Ny(v) = Ny(m) may be
considered as a control measure for m since it is always possible to construct a finite

measure  out of ¥ which has the same null sets.

Proof of Remark[2.4.3:

Let m : 3 — X be a Fréchet-space-valued vector measure und let v : ¥ — [0, o0
be a o-finite measure satisfying ,/\fo(l/) = No(m). Choose any disjoint sequence
{A;}jen C X satistying | = Q and v(A4;) < oo, for all j € N, and define

JGN
v:Y —[0,00) by
= v(ANA))
for A € 3.
;WHVAmA))’ orac
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Since for all j € N we have v(Q2N A4;) < co and

(1 +v(QnAy)) ~ 2

it is clear that () < oo.

Furthermore, by definition of 7 it is obvious that any v-null set A € ¥ becomes

a v-null set, i.e., No(v) C Ny(D).

On the other hand, let A € ¥ be a p-null set meaning that 7(A) = 0. Then we

have

But this is equivalent to v(A N A;) =0, for all j € N. The o-additivity of v yields
then that

o0

V(A)_U(AmQ)_y(AmGAj> _i (AN A)) Z

Jj=1 =1

So, A is also a v-null set. It follows that Ny(7) € Np(v) and thus, the assertions of
Remark hold. O

Let (X, {pk }ren) be a Fréchet space and m : ¥ — X be a vector measure. Then the
space L'(m) becomes a Fréchet function space when equipped with the semi-norms
{Pr(m)}ren. To see this, fix £ € N and consider the Banach-space-valued vector
measure 1y : ¥ — X}, given by (2.28). Denote by IT; : X; — Lin(By) := .o ABy
the dual map of Il : X — Xj. Here, X; denotes the dual space of Xj;. Note that
IT; is an isometric bijection, [23, Remark 24.5(b)]. Rybakov’s Theorem, [8, p. 268],
ensures that there exists an element (; € X} such that |(my, ()| is a control measure
for my. Let xf := II;(¢}) and define a finite, positive measure v : ¥ — [0, 00) by

-\ [(m, z})|(A) .
v(A) ‘_sz(1+|<nf,x;>y(9))’ for A € X.

Then v is a control measure for m and M(v) = M(m), [5, Proof of Theorem 2.5|.
Define, for each k € N, a mapping py : M (v) — [0, 0] by

oe(f) = sup{/ﬂ|f|d]<m,:z:*>| cxt e Bz}, for f € M(v).

Then {p }ren is an increasing sequence of function semi-norms on M (v) and Ly, =
L'(m), [5, pp. 643-644]. Furthermore, py|p1(m) = Pr(m), for all k € N, and L'(m)
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is a complete metrizable topological vector space when equipped with the topology
generated by {px(m) }ren, [B, Proof of Theorem 2.5], hence, a Fréchet function space.
Moreover, L'(m) has a o-Lebesgue topology, [5, p. 644].

Note that if, for k& € N fixed, £!(m;) denotes the space of all my-integrable functions

and L(Jmy|) the space of all |my|-integrable functions, the inclusions

<ﬂ El(\mk\)> JN(m) € L*(m) C (ﬂ El(mk)> IN(m) (2.34)

keN keN

hold, [24, pp. 213-214], with both inclusions being continuous when (), £*(|m)

is equipped with the topology generated by the increasing sequence of semi-norms

ph) = [ Ufldiml, o 1 € () £

keN

and (V,ey L' (my,) is equipped with the topology generated by the increasing sequence

/Afdmk;

Denote by Ll (m) the space of all scalarly m-integrable functions f : Q@ — C. A

of semi-norms

I ) () = sup {\

:AGE}, for f € ﬂﬁl(mk).

k keEN

measurable function f: Q — C is an element of L. (m) if and only if

sup{/|f|d|<m,x*>|:x*€B,§}<oo, for all k € N, (2.35)
Q

[5, pp. 642-643]. By the definition of m-integrability it is clear that L'(m) C L} (m).
In some cases, however, these two spaces coincide. In [I7] and [20], for instance, it is
shown that in a weakly sequentially complete Fréchet space X scalar m-integrability
implies m-integrability, meaning that in this case also L} (m) C L'(m) is true. In
particular, this is the case if X is reflexive, [5, p. 643]. Further properties of the

space L} (m) have been investigated in [5], [7].
For the following definitions, let p : ¥ — [0, 00) be a finite measure. Note that the

definition of a ¥-simple function S is still along the lines of (2.4) when S takes its

values in a Fréchet space X instead of the complex numbers C, i.e., S is of the form

l
S = Z LiXA;
j=1
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where z1,...,2; € X and A; := S~'({x,}), for each j = 1,...,1, and U;Zl A; =
The Bochner p-integral of S is then defined in the obvious way by

B) = [ Sdui= 3 as(4))

A function H : Q — X is called strongly u-measurable if there exists a sequence of
Y-simple functions H,, : 0 — X, for n € N, such that for p-almost every w € 2

lim py(H,(w) — H(w)) =0, forall k € N.

n—o0

A strongly p-measurable function H : 2 — X is called Bochner u-integrable if for
each w € €,

/pk(H(w)) dp < oo, for all k€ N.
Q

The following equivalent formulation, which combines both properties, is given in
24, pp. 214-215|.

Lemma 2.4.1
A function H : Q) — X is Bochner u-integrable if and only if there exists a sequence of
Y-simple functions H,, :  — X, for n € N, such that

(i) lim py(H,(w) — H(w)) =0, for all k € N, for pi-almost every w € Q.
(i) lim [, pr(Hn(w) — H(w))dp =0, forallk e N. O

Note, for a Bochner p-integrable function H, that the Bochner p-integral of H over
A is then defined by

(B)—/AHdM: lim (B)—/AHndp.

n—oo

This definition is independent of the choice of the sequence { H,, },en. The indefinite
Bochner p-integral py : ¥ — X of a Bochner p-integrable function H is given by

pr(A) = (B) — /AHd,u, for Ae X, (2.36)
and satisfies
<(B) - /AHdu,x*> = /A<H('w),x*>du(w), for ¥ € X™.
It is a vector measure of finite variation, [24, p. 216|, where, for each k € N, the
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variation measure |(pg)x| @ 2 — [0, 00) is given by

(el (4) = / pe(H(w)) d, for A€,

A third definition concerning the Bochner p-integrability of a Fréchet-space-valued
function H : Q — X is stated in [34] p. 75]. Namely, a function H : Q — X is said
to be Bochner p-integrable if there exists a Banach space Xp < X and a set )y € X
with u(Q\Qo) = 0 such that H(w) € Xp, for w € Q, and such that H : Qy — Xp

is Bochner p-integrable as a Banach-space-valued function.

A function H : Q — X is called weakly p-measurable if the C-valued function
w— (H(w),z*), for w € Q,

is X-measurable, for each z* € X*. A weakly p-measurable function H is said to be

Pettis p-integrable if
/ [(H,z")| dp < oo, (2.37)
Q

for each z* € X*, and if, for each A € X, there exists an element fAHd/L e X

</AHdu,x*> :/A<H,x*>du.

If X is separable and reflexive, then a weakly p-measurable function H : Q2 — X is
Pettis p-integrable if and only if it satisfies (2.37) for every z* € X*, [34, Corollary
4.1].

satisfying

2.5 Integration on topological groups

A non-empty set G endowed with a function (also called “operation”)
*:GxG =G, (r,y)—>x*xy

is called a group and denoted by (G, *) if it satisfies the following conditions:

(i) (xxy)xz=ax*(yxz), forall z,y,z € G.
(ii) There is a unique element e € G such that z xe =x =ex*z, for all z € G.

(iii) For each x € G, there is a unique 2! € G such that rxz™ ' =e ="' xz.

A group is called Abelian or commutative if it additionally satisfies
(iv) zxy=yx*uz, forall z,y € G.

Let 7 be a topology on G. The triple (G, *, ) is called a topological group if (G, x)
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is a group and (G, T) is a topological space such that both the group operation *
and the inverse function
G =G, r—at

are continuous with respect to the product topology on G x G resp. the given
topology 7 on G. A topological group is called locally compact if (G, ) is a locally

compact topological space.

In the sequel, let G be a compact Abelian group and denote by C(G) the vector
space of all continuous, R-valued functions on G. As usual, C(G)" denotes the
non-negative functions in C'(G). The group operation * is written as + in this case,

i.e.,, z +y in place of x x y.

On G there exists an invariant integral, meaning that there exist a translation invari-
ant, positive linear functional I defined on C(G) and, associated with I, a translation

invariant, finite, positive measure p. Writing

_ /G Fdu— /G F (@) du(x)

this means, for all f,g € C(G) and X € R, that the following conditions hold:
(i) Jo(f+9)du= [, fdu+ [,gdu.
(i) Jo\Ndu=X [, fdpu
(i) [, fdu >0, if f € C(G)*.
Jo fdu>0,if fe C(G)Jr with f # 0.
v) J, fle+y)du(z) = [, f( ), for all y € G.  (translation invariance)
(vi) If f,g € C(G) satisfy f < g, then fodu < J,g9dp.
(vii) [ fo £ | < fg | f dp.

The integral is then gradually extended to all those complex-valued functions f :

(iv

)
)
)
)
)
)

G — C that are integrable with respect to the measure u, [27, p. 234 & p. 282].
The integral, which is unique up to a multiplicative positive constant, is called the
Haar integral and the associated measure is called Haar measure. It is possible to
choose p (which we do) such that u(G) = 1.

In accordance to the terminology used in classical measure theory, the space of all
functions integrable with respect to the Haar measure u will be denoted by L!(G)
and the space of all functions p-integrable with respect to u, 1 < p < 00, is denoted
by LP(G) respectively. Note that each space LP(G), for 1 < p < oo, is a Banach
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space when equipped with the norm

1/p
1l = (/Glfl”du) .

Define for functions f,g € L'(G) the convolution f * g : G — C by

(f % g)(x) = /G F(9) 9(x — ) du(z) = / f(x + 1) 9(—y) du(2).

Note that L'(G) endowed with the convolution as multiplication forms a Banach
algebra, [27, pp. 288289, i.e.,

1f gl < I fIlllglls,  forall f,g € LYG).

More generally, for f € L'(G) and g € LP(G), 1 < p < oo, we have f * g € LP(G)
and
1 * gllp < 1fllllglls, (2.38)

[27, p. 288]. Furthermore, L'(G) is commutative, i.e.,

fxg=gx*f, forallf,gELl(G),

as we are assuming that G is Abelian, [27, p. 289].

Let G be a compact Abelian group and consider the one-dimensional circle group
T:=S"={z€C:|z| =1},

where the group operation is multiplication in C. A continuous homomorphism
v:G—T,ie.,
V(& +y) =v(x)y(y), forzyed,

is called a character of G. Endowed with the multiplication

(71 : 72)(35) =y (z)y(x), forx e G,

the set of all characters on G becomes an Abelian group and is denoted by @, 27,
p. 300]. It is called the character group of G. Note that the neutral element of G is
the constant function 1, and for each ~ € G the inverse is the complex-conjugated
function

¥z y(x), forxed.

Equipped with the topology of compact convergence on G (that is, the topology of
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N

uniform convergence on G) the group (G, -) becomes an Abelian Hausdorff topolog-
ical group, |27, p. 302|, and is called the dual group of G. Since G is compact, G is
discrete, |27, p. 303].

Finally, still with (G,+) an (additive) compact Abelian group, let L'(G) be as
defined before. Define, for f € L'(G), the Fourier transform f:G—=Chby

f(y) = / f(@)(~x,7) dulz), for v € C. (2.39)

where (-, -) denotes the duality of the groups G and G, i.e.,

(z,7) == y(z), forzeG,~ed.

Further definitions will be given in the Chapters [3| and 4] whenever there is a need
for it.
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Chapter 3

The optimal domain and integral

extension of the operator T

The aim of Chapter [3|is to investigate the integration operator

Iy i LY(mp) = X

T

associated with a Fréchet-space-valued vector measure my : 3 — X defined by
mp(A) :=T(xa), for Aed,

where T : X (u) — X is a continuous linear operator defined on a Fréchet function
space X (u) over a o-finite measure space (2,3, u) and taking its values in the
Fréchet space X. The main goal is to prove that L'(mg) is the optimal domain of
I, (in a certain sense) when considered as continuous extension of the operator
T to the “larger” domain L'(mr). The respective investigations for X (i) being a
Banach function space and X being a Banach space have been exposed in [26]; see
also the references there. So, the interesting part will be to see how the results differ
when the problem is considered under these altered conditions. In Section we

prove the continuity of the inclusion maps
i X(p) = M(p) and  j:X(p) = Y(n)

where X (u) and Y (u) are two Fréchet function spaces over (€, i) satisfying
X(p) C Y(u) as complex vector lattices. The continuity of the inclusion maps
will be of importance when investigating the optimal domain of the operator 7" and
its optimal extension. In Section [3.2] we turn our attention to the vector measure mq
as defined above. It turns out that the o-Lebesgue topology of the Fréchet function
space X (u) and the u-determinedness of the operator 7" play a crucial role for the
theory. Section presents the main result of this chapter. It states that L'(mr)
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is the largest Fréchet function space having o-Lebesgue topology into which X (u)
is continuously embedded and to which 7" admits an X-valued continuous linear ex-
tension. Furthermore, it is shown that such an extension is unique and is precisely

the integration operator I,,,.

3.1 The natural inclusion map j: X(u) = Y ()

In this section let (2,3, 1) be a o-finite measure space. It will be the aim of this

section to prove on the one hand the continuity of the inclusion map
i X (p) = M(p)

and to investigate on the other hand the inclusion map
jiX () = Y(n)

whenever X (u) and Y (u) are two Fréchet function spaces satisfying X (u) C Y ()

as complex vector sublattices.

We begin with two Lemmas which present a condition, that is necessary and suffi-
cient for the completeness of the space Ly,,. The first Lemma is an unpublished
result due to R. del Campo and W.J. Ricker, [6, Lemma 3.6].

Lemma 3.1.1
Let {qr}ren be an increasing fundamental sequence of function semi-norms. If the

metrizable function space Ly, has the (JRF)-property, then

n (Z |fn\> < aw(fa), forallk €N, (3.1)
n=1 n=1

for every sequence { fn}nen C Lig,y which is absolutely summable in Ly, ;.

Proof:

Suppose that Ly, has the (JRF)-property. In order to establish (3.1]), assume
that there exists a sequence {f,}nen € Ly satisfying > 7 qu(fn) < oo, for all
k € N, but, for some m € N, we have

dm (Z |fn|> > ZQm(fn)'
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Choose € > 0 such that

Gm (i |fn|> > e+ iqm(fn)'

n=1

Observe, by the triangle inequality for ¢,,, that also

m <Z |fn|> >+ Y qul(fn), forall jeN (3.2)

n=j

Since by assumption » 7%, q1(f,) < oo, there exists ji; € N with 3° . ¢i(fa) <
173. Because of Zn>j1,1 q1(fn) < oo, we can find j1 5 > j1 1 such that Zn%’m a(fn) <
273, Proceed inductively to produce a strictly increasing sequence {j1;}en C N sat-
isfying

Z q(f.) <17, foralll €N.

nzji
Since Zn?a‘m q2(fn) < oo, there exists jo; > ji1 such that Z”>j2,1 ¢ (fn) < 173,
Because of Z@max{jzhﬁ,z} ¢(fn) < oo, we can choose joo > max{ja1,J12} such
that Zn2j2,2 ¢2(fn) < 273, Assume that jo; 1 is already constructed for an arbitrary
[ > 1. Since Zn>max{j2,l—17j1,l} ¢2(fn) < 00, there exists jo; € N satisfying ja; > joj-1
and jo; > ji; with Z@h’l q2(fn) < 173, Thus, {jo;}ien is a strictly increasing
sequence satisfying jo; > jiy, for all [ € N, and

S @(fu) <17?, forallle N,

n=ja

Continue inductively to produce for each £ € N a strictly increasing sequence

{Jk1hien € N satisfying jyi1, > ji, and

S alfa) <178, foralll€N.

nZjk,1

Therefore, the diagonal sequence {j; }ien defined by j; := j;,, for each [ € N, is also
strictly increasing. Moreover, for each £ € N we have j; = j;; > ji, for all [ > k,

and hence,

S an(fa) < ) ar(fa) <7, foralll > k. (3.3)

nzj nZjg.1
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Ji+1 00
Let g :=1> |fa] and g := > ¢g;. On the one hand, for each k € N we have
1

n=yj =

Ji+1

> (o) )OI an(f) <D ak(fa) € D 1T < 0.

1>k 1>k n=j >k n>j >k

Therefore, >, qx(g)) < oo, for all k € N, meaning that {g;};en is an absolutely
summable sequence in Ly, . Since Ly, has the (JRF)-property, we can conclude
that gx(g) < oo, for all k& € N. On the other hand, for each [ € N we also have
(pointwise on 2) that

Jp+1 Jp+1 Jp+1
DY Rl DY A=D1 1AIY 2D 1l =D gm<g (34
nzj p=l n=jp p=l  n=jp p=l  n=jp p=l

As ¢, is a function semi-norm for each k € N it follows that

Gm(9) = lagm <Z |fn\> ! (qum(fn)) >1le, forallleN.

nzj nzj

Letting [ — oo we conclude that ¢,,,(g) = oo which is a contradiction to our earlier
conclusion that gx(g) < oo, for all k € N. O

The next lemma is an extension of a result of Zaanen, who proved it for L, being
the space generated by a single function norm p, [36, p. 445|. For Ly, consisting
of only R-valued functions, see [6, Theorem 3.7]. We extend it to the setting of

C-valued functions.

Lemma 3.1.2
Let L,y be the metrizable function space generated by an increasing fundamental
sequence of function semi-norms {qy }ren. Then the following assertions are equivalent:
(i) Lig.y is complete.
(ii)  Lyg.y has the (JRF)-property.

Proof:

(ii) = (i) Assume that L,y has the (JRF)-property. Let {f,}nen C Lyg) be a
Cauchy sequence in Ly, meaning that for each k¥ € N and for each ¢ > 0 there
exists an index ng(e, k) € N such that qx(f, — fn) < ¢, for all m,n > ny(e, k).

Hence, there exists an index j;; € N such that ¢ (f,, — fu) < 27%, for all
m,n = ji1. As {fn}nzj, is still Cauchy, we can find an index ji 5 > ji,1 such that
q@1(fon — fu) < 272, for all m,n > jio. Continuing this way we obtain a strictly
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increasing sequence {ji,;}en € N satisfying
ol (fm — fn) <27t forall m,n > Ji-

Let My := {j1; : | € N}. Since {f,}nen is Cauchy, there exists an index jo; € M,
with jo; > ji 1 such that go(fr,— fr) < 271, for all m,n > joq with m,n € M;. Also,
Joq = Jip, for a certain pi > 1. As {fy}nem nzso, is still Cauchy, we can choose
an index jyo > max{ja1, j12} such that ¢o(fin — fr) < 272, for all m,n > jao with
m,n € M. Also, we can choose jo9 = J1,, for a certain p, > p;. Assume that jo;_;
is already constructed for an arbitrary [ € N. As {f,}ners n>j,,_, is still Cauchy,
we can find an index jp; > max{jo; 1,514} such that ¢:(f,, — fn) < 27!, for all
m,n = jo; with m,n € M;. Also, we can choose jy; = ji,, for a certain p; > p;_;.
Thereby we obtain a strictly increasing sequence My := {ja2;}hien € My = {j1,}ien
such that

@ (fm — fn) <27!, for all m,n > jo; with m,n € M,

holds for each [ € N. Continue inductively to produce for each k£ € N a strictly
increasing sequence My := {ji;}ieny € N such that My C M;_; and

i (fm — fn) <27t forall m,n > ju; with m,n € M;_, (3.5)

hold for each I € N. Observe, for each k € N, that {f;, }ien is a subsequence of
{fju.hien. For a fixed k € N consider the telescoping sum

r—1

fjk,T - fjk,p = Z(fjk,l+1 - fjk,l)7 for r > p = L.

l=p

Due to the triangle inequality for ¢, we derive, for all » > p > 1, that

r—1
gk (fj;m - f]kp) = gk <Z (fjk,l+1 - f]kl))

l=p
r—1
< Z qk (fjk,l+1 - fjk,l)
l=p
r—1 r—l-p

B

b
I

|~

1
2y
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<l,asr>p

Define for each | € N a new sequence {gi}ien by g1 = fj,. Then {g}ien is a
subsequence of {f,}nen. Fix & € N. For every [ > k and for certain r > p > [, the

previous inequality shows that

@ (91 — 91) = @ (fin, — fir,) < 1 < 51

holds. Accordingly,

N 00 00 00
1
Z @ (911 — 91) < Z G (g1 — 1) < Z 22—
I=k+1 I=k+1 l:k—l-l =k

Since k € N is arbitrary and Ly, has the (JRF)-property, Lemma implies
that

Qk (Z‘ng — gz|> < qu(gzﬂ — gl) < oo, forall keN. (3.6)

=1
Therefore the function defined by g := Y2, |gi+1 — | is an element of Ly, and,
by Lemma surely satisfies 0 < g(w) < oo for p-almost every w € Q.

Consider the set £ := {w € Q: g(w) = oo}. Then E is a p-null set and g is an
absolutely convergent series pointwise on E° it follows that also Y~ (g1 — g1) is
pointwise convergent on E°. Define on E¢ the function f := g + Yoo (g1 — @)
Then f—gp = Zzp(glﬂ —q1), for each p € N. Defining h; := g;11—¢g;, forall I € N,
the inequality

N
= Ry + By + - A < Byl [y 4o+ [y = Y Il

holds, for all N > p. For p € N fixed, by taking the limit of both sides for N — oo

(pointwise on E€), we obtain

Z(ng - gz) =
l=p

o

< Z |ha| = Z‘ng —gi| <00
l=p l=p

which implies that (pointwise on E°)

‘f_gp‘ < Z‘QZ-H —q 2%,

l=p
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Thus, f is the pointwise limit of {9 }1en on E°. Additionally, as each ¢ is a function
semi-norm it follows from (3.6 that

aw(f—9) = a (i (9141 — 91))

l=p

Ak (Z‘gl-i-l - 95‘)
l=p

< qu(ng - gl) p—)_o)o O, for all £ € N.

l=p

N

Accordingly, for fixed k € N, we have for all n,p € N that

aw(f—f.) = a(f—gp+9— 1)
< ael(|f =gl + g = ful)
< alf =) +an(gp— 1)
= a(f—gp) T a(f, = fo)-

Given € > 0 choose p such that g (f — gp) <
is an index N > jpp such that g (fn fm) , for all m,n > N. In particular,
q (fjpyp — fn) £, for all n > N. Hence, ¢ (f fn) < g, for all n > N. This shows
that lim,, . qx (f fn) = 0. Hence, f € Lyg,y is the limit of the Cauchy sequence

Since {f,}nen is Cauchy, there

£
5
5

{fa}nen in the topology of Ly, 3. This shows that L,y is complete and, thus, is a

Fréchet function space.

(i) = (ii) Let {up}nen C L } be a sequence satisfying Yoo qi(u,) < oo, for all
k € N. According to Remark 2.3.1 it suffices to show that >~ u, € L{qk}. Define
for each n € N the partial sum s, := u; +ug + ... + u,. The sequence {s,}nen is

Cauchy in Ly, as, for each k € N, we have whenever m > n that

Gk (Sm = 5n) = G ( Z Ul) < Z gi(w) "0,

l=n+1

As Ly is complete the sequence {s, },en converges to a function f € Ly, in the

topology of Ly, 3.

In a first step we show that f is R-valued p-a.e.. As f € Ly, we have f = g+ih,
where g, h are R-valued functions. Since all the s, take their values in [0, 00|, we
can write f — s, = (g — s,) + i h, where h is the imaginary part of f — s,, i.e.,
h =Im(f —s,), for all n € N. Hence, |h| < |f — s,|, for all n € N, and as each ¢ is
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a function semi-norm we obtain
ae(h) < e (f —s,) =30, forall ke N.

Accordingly, h = 0 p-a.e. meaning that f is R-valued p-a.e..

In a second step we show that f > 0 p-a.e.. As f is an R-valued function we
have f = ft — f~ where f* := max{f,0} and f~ := max{—f,0}. However, s, >0
by definition and therefore f — s, < f, for all n € N. Consider, for a fixed n, the
sets A ={weQ:(f—s,)(w) >0} and A, :={w e Q: (f —s,)(w) <0}. On
A the inequalities f > s, > 0 imply that f~ =0 and so

f=2f—s.20=f".

Therefore | f — s,| = f~ is true on Af. Note, that if b > 0 and a € R satisfy a < b,
then |a — b] > a~. Hence, on A, it follows that |f — s,| > f~ as well. So, the
inequality |f — s,| = f~ holds p-a.e. on Q and is valid for all n € N. Again, we use

the fact that each ¢, is a function semi-norm and derive

a(f7) < a(|f = su]) = au(f —s2) =30, forallkeN.

Accordingly, f~ = 0 p-a.e. meaning that f > 0 u-a.e.. Hence, f € L?qk}.

In a last step we show that f > s, for all n € N. It is clear, for a fixed [ € N, that
s1 < s, holds for all n > [. Define again two sets B;" := {w € Q : f(w) > s;(w)}
and B = {w € Q: f(w) < s(w)}. Hence, on B;", the function s; = min{s;, f}
and therefore s; — min{s;, f} = 0, implying that

’sl —min{sl,f}’ =0< ’Sn — f‘ on B;", for alln > [.
On B/, f = min{s;, f} and therefore 0 < s, — f < s, — f, implying that
|sl —min{sl,f}‘ = |sl — f‘ < ‘sn —f| on B, foralln > [

Hence, |s; — min{s;, f}| < |s, — f| holds p-a.e. on Q and is valid for all n > 1. As

each gy is a function semi-norm it follows that

n—oo

qk(sl — min{s;, f}) < qk(sn — f) — 0, forall ke N.

Accordingly, s; = min{s;, f} u-a.e. for each [ € N. As [ was chosen arbitrarily, we

can conclude that

!
Zun =5 < f, p-ae., foralll eN.
n=1
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Taking the pointwise limit for I — oo of the left side we obtain Y, u, < f. Again,

as each g, is a function semi-norm and f € Ly, we finally get

qr (Z un) < qr(f) < oo, forall k€N,
n=1

meaning that > >°  u, € L{t]k}. Thus, Ly, has the (JRF)-property. [
From now on we will focus on complete, metrizable function spaces, i.e., Fréchet
function spaces, over a o-finite measure space (€2, 2, 11). The next lemma formulates
a result which we obtained in the proof of Lemma Its assertion turns out to
be a useful tool for the forthcoming proofs and applications. For Banach function
spaces, this result is well-known; see |26, Proposition 2.2] and the references given
there.

Lemma 3.1.3

Let X (1) = Lyg, be a Fréchet function space whose topology is generated by a fun-
damental, increasing sequence of function semi-norms {qi}ren. Let {fn}nen € X ()
be a sequence which converges to f in the topology of X (u). Then there exists a
subsequence of { f,,}nen which converges to f j-a.e..

Proof:

Let {f.}nen € X (1) be a sequence that converges to an element f € X (i) in the
topology of X (u), that is,

lim qk(fn — f) =0, forall ke N.

n—oo

Hence, {f,}nen is a Cauchy sequence in X (p). In the proof of Lemma it was
shown that in this case there exists a subsequence {g; }ien of {f, }nen and a function
f € X(p) which is on the one hand the p-a.e. pointwise limit of the sequence {g; }en
and on the other hand the limit of { f,},en in the topology of X (x) meaning that

lim ¢,(f, — f) =0, forallkeN.
n—oo
Using the fact that each ¢ is a function semi-norm we obtain

q.’c(f_fn) +Qk(fn - f) n—>_0>00’

<
<

for all k € N, and can therefore conclude that f = f. Thus, there exists a subse-
quence of {f,}nen (namely {g;}ien) converging to f p-ae.. 0O
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Now we can show that X (u) is continuously included in M (p). For X (u) a Banach
function space, see [26, Proposition 2.2 (i)].

Proposition 3.1.1

Let X (1) = Lyq, be a Fréchet function space whose topology is generated by a fun-
damental, increasing sequence of function semi-norms {qy}ren. Furthermore, let the
complete, metrizable space M (1) be equipped with its topology of local convergence in

measure. Then the natural inclusion map i : X (u) — M (w) is continuous.
Proof:

We apply the Closed Graph Theorem as stated in [I8 p. 168|; see also the
paragraph before Proposition 2.1.1} So, let {f,}nen be a sequence in X () C M(p)
which converges to 0 € X(u) in the topology of X (u) and such that {i(f,)}nen
converges to a function f € M(y) in the topology of M (). We need to show that

f=o.

The fact that {f, }nen converges to 0 in the topology of X (1) ensures, by Lemma
, that there exists a subsequence {f,  }men of {fn}nen which converges to 0
p-a.e.. It follows from Remark (i) that {f,,, }men locally converges in measure
to 0 as well. On the other hand, being a subsequence of {i(f,)}nen the sequence
{i(fu) Ymen = {fn,, bmen converges already to the function f € M (y) in the topol-
ogy of M () meaning that {f,, }men locally converges in measure to f. But then
we can conclude by Remark (i) that f =0in M(p). O

The continuity of the inclusion map implies the following result; see |26, Proposition

2.2| for Banach function spaces.

Corollary 3.1.1
Let X (1) = Lyg, be a Fréchet function space whose topology is generated by a fun-
damental, increasing sequence of function semi-norms {qx}ren. Then every Cauchy

sequence in X (u) admits a subsequence converging ji-a.e..
Proof:

Let {f.}nen be an arbitrary Cauchy sequence in X (u). Then there exists a
function f € X (u) such that {f,},en converges to f in the topology of X (u). By
Proposition it follows that {i(f,)}nen converges to i(f) locally in measure
with 4 being the identity map. By Remark (iii) the sequence {f,}nen has a

subsequence which converges to f p-a.e.. [

Now we can prove the second main result of this section. For X (u), Y (u) Banach

function spaces, see [26, Lemma 2.7].
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Proposition 3.1.2

Let X () and Y (u) be two Fréchet function spaces in M (u) such that X (u) C Y (u)
as vector sublattices of M (u). Then the natural inclusion map j : X (u) — Y (u) is
continuous.

Proof:

We apply the Closed Graph Theorem [2.1.1] Let { f, },en be a sequence in X (u) C
Y (p) such that {f,}nen converges to 0 € X (u) in the topology of X (i) and such
that {j(fn)}nen converges to some function f € Y (1) in the topology of Y (1) where
j: X(u) — Y(p) is the natural inclusion map. We need to show that f = 0.

As {fn}nen converges to 0 in the topology of X (u), Lemma implies that
there exists a subsequence {f,, }men Of {fn}nen which converges to 0 p-a.e.. The
sequence {j(fn,.)Ymen in turn, being a subsequence of {j(f,) }nen, converges to f in
the topology of Y (u). Hence, Lemma implies that there exists a subsequence
{3 (fam,) Yien of {5(fn,) bmen which converges to f p-a.e.. Now, since {5 (fam,) Yien =
{fnm, }ien is a subsequence of {f,,, }men the p-a.e. limits have to be the same and
we can conclude that j(f) =0 = f. Thus, j: X(u) — Y (u) is continuous. O

3.2 The vector measure my associated with T

Throughout this section let (€2, %, 1) again be a o-finite measure space. As usual,
X (p) will denote a Fréchet function space whose topology is generated by a fun-
damental, increasing sequence of function semi-norms {q }reny whereas X will be
a Fréchet space equipped with a fundamental, increasing sequence of semi-norms
{pr}ren. We will write (X(u),{qk}keN) and (X, {pk}keN) whenever we want to
emphasize this. It will be assumed throughout this section that X (u) contains all
Y-simple functions. Then yqo € X () and it follows that also L>(u) C X (u). Fur-
thermore, let 7' : X () — X be a continuous linear operator. By means of the

operator T we define a finitely additive set function my : ¥ — X by
mr(A) =T (xa), for AeX, (3.7)

where x4 is the characteristic function of A.

Recall that in Lemma we have proven that sim(X) is dense in X (p) when-
ever the Fréchet function space X () contains the Y-simple functions and has a
o-Lebesgue topology. Let us show that under the same conditions on X (i) the

finitely additive set function my becomes o-additive.
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Proposition 3.2.1
Let X be a Fréchet space, X (1) be a Fréchet function space with o-Lebesgue topology
and T : X () — X be a continuous linear operator. Then my as defined in is a

vector measure.

Proof:

Let {A;}jen € X be any sequence of sets satisfying A; |; @, in which case
{X4, }jen is a sequence of functions satisfying x4, |; 0 pointwise on 2. Moreover,
the inequality |xa| > x4, {; 0 holds. The fact that X (1) has a o-Lebesgue topology
implies that {x, }jen converges to 0 in the topology of X (u); see Remark By
the continuity of 7" we obtain that mqp(A;) = T'(x,) converges to 0 in the topology

of X. Hence, my is o-additive, i.e., a vector measure. [

We will refer to mr as the vector measure associated with T'. Of interest is the space
of mp-integrable functions £'(mr). The next result shows that X(u) is always

contained in it. For T taking values in a Banach space X, see [26] Proposition 4.4

(D)]-

Proposition 3.2.2

Let (X (1), {qr}ren) be a Fréchet function space with a o-Lebesgue topology, X be a
Fréchet space and mr be the vector measure associated with a continuous linear operator
T :X(u) — X. Then each f € X(u) is mp-integrable and T(fxa) = [, fdmy, for
A € X, In particular, X () C L' (mr).

Proof:

Let f € X (u). According to Lemma[2.3.2]there is a sequence of ¥-simple functions
{$n}nen C sim(X) which converges pointwise to f on 2 and which converges to f
in the topology of X (u). Fix A € ¥ and consider the sequence {s,x4}nen C X (1)
as well as the function fx4 € X(u). It is clear that

‘SnXA_fXA| < |sn — f|, forallneN.

This and the fact that each ¢ is a function semi-norm imply that

n—oo

G (snxa — fxa) < @u(sn— ) =30, forall k€N,
meaning that {s,x}tnen converges to fxa in the topology of X (u). Since T is

continuous, the sequence {T(s,x4)} C X converges to T'(fxa) € X in the

neN
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topology of X. Each function s,, being Y-simple, is of the form
£(n)
Sy = Z oz](.n)XA(n), for all n € N,
J
j=1

and so we can use the classical notation

£(n)

/Asn dmyp = Z a§n)mT (Agn) NA)

j=1

as stated in (2.27)) and obtain, by the definition of ms and the linearity of T', that

£(n) (n)
/Asn dmr = 0T (xm00) = T | D0 xuexa | = T(suxa),
j=1 Jj=1

for all n € N. Hence, T'(fx4) is the limit of the sequence {fA Sn me}neN in the
topology of X, that is,

T(fxa)= lim [ s,dmr.

n—oo A

Thus, there exists a sequence of X-simple functions {s, }nen which converges point-
wise to f on ) and such that {fA Sn me}neN converges to the element T'(fx4) in
X. The set A was chosen arbitrarily and hence, this is true for all A € 3. Applying
Proposition we can conclude that f is my-integrable and T'(fxa) = [, f dmr,
forall AeX. O

Concerning the null functions we have the following fact. For 7" being Banach-space-
valued, see |26, Proposition 4.4 (ii)].

Lemma 3.2.1
Let f € L' () be a p-null function. Then f is also an mp-null function. In particular,

N(p) € N(mr).
Proof:

Let f € £L'(p) be an individual g-null function, ie., f € N (u). Hence, f =0
p-a.e. on €2 and therefore also fxa = 0 p-a.e., for all A € 3. Then, for a fixed set
Aex,

/Afme =T(fxa)=T(0)=0

and therefore also

Dk (/Afme> = pk(T(fXA)> =pp(0) =0, forall k € N.
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As A € ¥ was chosen arbitrarily this is true for all A € 3. We obtain that

pk(mT)(f)zsup{pk (/Afme) :AGZ}:(), for all k € N.

Thus, f is an myp-null function, ie., f € N(myp). O

Denote by L!(m7) the space of all classes of mp-integrable functions (i.e., differing

only on an mp-null set). Namely,
LY(myg) := LY (mr) /N (m7r).

To show that X (u) is included continuously into L'(mz), consider the linear map
g1 : X(n) — L'(mr) defined by jr(f) := f. Observe, that this map is well-defined
and not dependent on the representative f. To see this let f,g € M(u) be two
individual functions satisfying f, g € X (u) and differing only on a p-null set. Hence,

f—g € N(u) and, because of Lemma also jr(f —g) = f—g € N(myr). Thus,
f and g differ only on an mp-null set and therefore determine the same element in

L*(mr). According to Proposition we have

For X (1) a Banach function space and 7' a Banach-space-valued operator, the fol-

lowing fact occurs in |26, Proposition 4.4 (ii)].

Proposition 3.2.3

The linear map jr : X (p) — L'(m7) is continuous.

Proof:

Let f € X(u) and fix aset A € ¥. Then |fxa| < |f| and as each gy is a function
semi-norm, the inequality qx(fxa) < qr(f) holds, for all £ € N. Fix £ € N. The
continuity of 7" implies that there exists an index [ € N and a constant M; > 0
such that

pi(T(fxa)) < Myaq, (fxa) < Meq,(f), for AeX.

Keeping in mind that

/ jr(f) dmr = / Jr(f)xa dmr B T(fya),
A Q
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we obtain that
pu(r) (o)) = sup {pk ( [ me) Ac z} < Mya, ()

Since k € N is arbitrary, this shows that the linear map jr : X(u) — L'(mg) is

continuous. [

The next result shows that X (u) is continuously embedded in L'(mz) whenever the

myp-null functions and the p-null functions coincide.

Proposition 3.2.4
Whenever N'(m7) = N (i), the continuous linear map jr : X (u) — L*(mr) is injective.
That is, X (p) is continuously included in L'(mz).

Proof:

Let f € X(u) satisfy jr(f) = 0, that is, jr(f) € L'(mr) is an mp-null function.
But, as N (mz) € N (p), it is also a p-null function. Hence, jr(f) = f = 0 p-a.e..

Thus, jr is injective. [

We call a continuous linear operator T' : X (u) — X p-determined if the p-null
functions coincide with the mp-null functions, i.e., N'(u) = N (mr). In Proposition
we have seen that the p-determinedness of the operator T' causes the natural
inclusion map jr to be injective. For X (1) a Banach function space and X a Banach

space, see [20, Lemma 4.5].

Lemma 3.2.2
The following assertions for a continuous linear operator T': X (u) — X are equivalent:
(i) T is p-determined.
(i) N(p) = N(mr).
(iii) - No(p) = No(mr).
Proof:
(i) < (ii) is clear by definition.

(i) = (iii) Suppose that T is p-determined, meaning that the my-null functions
and the p-null functions coincide. Let A € Ny(u) be any p-null set. Then x4 € N (1)
and by Lemma X4 € N(mr) as well which means that the indefinite integral
mr,y, is the null vector measure. But this is equivalent to A € Ny(mr) since

0=mr,,(B) = / Xadmp =mp(BNA), forall BeX. (3.9)
B
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Thus, NQ(M) Q No(mT).

Conversely, let A € Ny(mr) be any mp-null set. By definition x4 is then an
mp-null function. But, by the p-determinedness of T, we have N (mz) C N (p)
implying that y. is also a p-null function. Hence, A € Ny(p) and consequently

No(mz) € No(p).

(iii) = (i) Since N (p) € N(m7) is always true (see Lemma it suffices to
show that N (mr) C N (1) whenever the mp-null sets and the p-null sets coincide.
Let f € N(mr) be any my-null function. By Remark fH(C\{0}) ={weq:
f(w) # 0} is then an mp-null set. But, as No(mr) = No(p) holds, f~1(C\{0}) is
also a p-null set. Thus, f is a p-null function and N (mz) C N (p). O

Recall that a o-finite measure v : ¥ — [0,00] is a control measure for my if the
v-null sets and the my-null sets coincide, i.e., if Ny(v) = No(m7z). Remark
shows that v can also be chosen as a finite measure. Lemma asserts that pu is

a control measure for my precisely when T is pu-determined.

Now we can show that the p-determinedness of T is equivalent to the p-determinedness

of jr; see also |26, Lemma 4.5 (ii)] for a special case.

Proposition 3.2.5
The operator T' : X () — X is u-determined if and only if the operator jr : X (u) —
LY(mr) is p-determined.

Proof:

Assume that T is p-determined, i.e., N(mgy) = N(u). Consider the vector
measure m;,. : ¥ — L'(mr) defined by m;,.(A) := jr(xa) = xa. Fix A € Ny(mj,.).
Then,

jr(xanB) = mj, (BN A)=0¢€ L'(myp), forall BeX.

Since T is u-determined, jr is by Proposition injective. Hence, xpna = 0 in
X (p) and therefore mp(B N A) = T(xpna) = T(0) =0, for all B € 3. Thus, A is
also an mp-null set and so No(m;,.) € No(mz) = No(p). It follows from Lemma
3.2.2| and Lemma applied to jr : X(u) — L'(mr), that No(mj.) = No(p)
meaning that jr is p-determined as well.

To show the converse direction assume that jr is py-determined and let A € 3 be
mp-null, i.e., A € Ny(mz). Then x4 = 0 in L'(mr) meaning that py.(mz)(xa) =0,
for all K € N. For each B C A, xp < x4 everywhere on 2 and thus,

pe(mr)(xB) < pr(mr)(xa) =0, forall k € N.
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Therefore, xp = 0 in L'(mr). But xp = m;,.(B), for all B C A, i.e., m;.(B) =
0 in L'(mg), for all B C A. By the p-determinedness of jr we obtain A €
No(my,) = No(p). Hence, the mp-null sets coincide with the g-null sets and so
T is p-determined. [

Another criterion for the y-determinedness of the operator 7' is given in the following

lemma. For a particular case see |26, Lemma 4.5 (iii)].

Proposition 3.2.6
Let T : X(u) — X be injective on the subset {x4 : A € X} C X(u). Then T is
p-determined.

Proof:

Suppose that T is injective on the subset {xa : A € ¥} and let B € Ny(mr).
Then xp € X(u) and T(xg) = mr(B) = 0. As T is injective on {x4 : A € ¥}, it
follows that xp = 0 in X (u) and so B € Ny(u). Thus, No(mr) € No(i). Lemma
and Lemma then imply that 7" is p-determined. [

As the Y-simple functions sim(X) are contained in X (u), by assumption, and there-

fore also {xa: A € £} C X(u) holds, we can conclude the following special case.

Corollary 3.2.1
Suppose that T is injective on X (u). Then T is p-determined. [

3.3 The optimal domain and integral extension of

the operator T’

In the following result let (€2, %, ) be a o-finite measure space, X (i) be a Fréchet
function space with a o-Lebesgue topology and containing the ¥-simple functions, X
be a Fréchet space, T : X (1) — X be a u-determined, continuous linear operator and
mr be the vector measure associated with it. Let furthermore jr : X (u) — L'(mz)
be the continuous injection embedding X (u) into L'(mz); see Propositions [3.2.2]
3.2.3] and [3.2.4l Recall that L'(m7) is a Fréchet function space over (Q,3, 1) and
has a o-Lebesgue topology; see Section

The following result shows that the integration operator I,,,,. : L'(m7) — X, defined
by

L (f) = /Qfme, for f € Ll(mT),
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is then a continuous, X-valued linear extension of T" to the larger domain space
L*(mr), which is in a certain sense optimal. For the Banach function space setting
we refer to Theorem 4.14 and Remark 4.15 of [26].

Theorem 3.3.1

The Fréchet function space L'(my) is the largest amongst all Fréchet function spaces
over (2, %, 1) having a o-Lebesgue topology into which X (1) is continuously embedded
and to which T admits an X-valued continuous linear extension. Moreover, such an

extension of T' is unique and is precisely the integration operator I,,,, : L*(mr) — X.

Proof:

Let Y (i) be any Fréchet function space over (€2, ¥, 1) having a o-Lebesgue topol-
ogy such that X (u) C Y(u) and such that 7" admits a continuous linear extension
T :Y(u) — X. According to Proposition m the natural embedding j : X (u) —
Y (1) is necessarily continuous. We show that necessarily Y (u) C L*(mr). As
sim(X) € X(u) CY(u), we have j(xa) = xa € Y(u), for each A € ¥. Therefore,

T(xa) =T(i(xa)) = Tlxqu(xa) = T(xa), forall A€ X.

By definition of the vector measures mp and m; associated with 1" respectively T

this means that

mi(A) =T (xa) =T(xa) =mp(A), foral AeX.

Hence, the X-valued vector measures my and my coincide. Since T is pi-determined
we obtain N'(mz) = N(mp) = N(u) meaning that T is p-determined as well. On
the other hand, Proposition applied to T implies that Y (u) C LY(mgz) =
L*(mr), meaning that L'(mr) is “larger” than Y (u). We still need to show that
L, : LY(mr) — X is a continuous linear extension of T from X (i) to L'(mr). Let

f € X(u) C LY(mg). Then Proposition yields
(Zng © 37) () = Iy (37(f)) = Iz (f) = /Qfdm:r =T(fxa) =T(f).

Hence, I,,, is indeed a continuous linear extension of T' to L*(mr).

The extension I,,, is also unique. To see this let A : L'(mr) — X be another

continuous linear extension of 7', meaning that

L (f) = T(f) = A(f), for all f € X(n). (3.10)

Since L'(mz) contains the Y-simple functions and has a o-Lebesgue topology, Lemma
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implies that sim(X) is dense in L'(mz). Now, let f € L'(mg) be arbitrarily
chosen. Also by Lemma there exists a sequence {s, }n,eny C sim(X) converging
to f in the topology of L'(mr). Then (3.10) yields that

Ly (f) = Ly (lim sn> = lim [,,(s,) = lim A(s,) = A ( lim sn> =A(f).

n—0o0 n—0o0 n—oo n—oo

Hence, I,,, = A. O
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Chapter 4

Applications

In Chapter [ we will apply the theory we have developed in Chapter [3| to take
a closer look at some well-known operators 7' : X () — X defined on a Fréchet
function space X (u) and to study the vector measures mr associated with them.
The main object of interest, of course, will be the space L!'(my) of mp-integrable
functions and one of the major problems will certainly be to decide whether or not
LY(mr7) is strictly larger than X (u).

The first operator we concentrate on in Section [4.I]will be the multiplication operator
M, X () = X (p) defined by

My(f) = fg, for [ e X(n),

where g € M = {g € L(u) : g- X(p) € X(p)} is fixed. The vector measure
myy, : 5 — X(p) associated with M, is then given by

ma, (A) == My(xa) = xag, for AcX.

In |26, Example 4.7] the respective investigations were made for the multiplication
operator M; : L"(u) — L"(u) (1 <7 < 00), for g € L>(u) fixed, defined on the Ba-
nach function space L" (), with p being a finite measure. There, the characterization
of L1 (m Mg) depended on whether g was “bounded away from 0” or not. It turned out
that L* (mM;;) = L"(u) (in the first case) respectively L' (mMgr) = {é-f cf el ()}
(in the second case). In Section we vary the situation by defining the multipli-
cation operator on the Fréchet function space LP~(]0,1]) (Subsection and
on the Fréchet function space LV (R) (Subsection and investigate if similar

loc

observations can be made. In a further step we will also study the variation of mjy, .
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Section [4.2| deals with the Volterra operator V,_ : LP~ ([0, 1]) — L~ ([0, 1]) given by

Voo i f = Vo (f)(w) = /wad)\7 for w € [0, 1],

where the resulting vector measure my,_ : B([0,1]) — LP~([0,1]) associated with
Vp— is given by

my,_ A = my,_(A) =V, (xa)(t) = /AX[OJ}(w) d\(w), fort € [0,1].

The classical Volterra operator V, : LP([0,1]) — LP([0,1]) defined on the Banach
function space LP([0,1]), for 1 < p < oo, was the object of investigation in [28] and
[26, Example 3.26 & Example 3.45]; the results again depended on p. For p = 1 the
inclusion L'([0,1]) € L'(my;) turned out to be proper with

L' (my,) = L'(Jmy]) = L' ((1 — ) dA(1)).
For 1 < p < oo, however, all the inclusions
Lr([0,1]) € Ll(|my,|) € L (my,)

were strict. In both cases the Bochner A-integrability, respectively the Pettis \-
integrability, of ¢ — fxp,1 (where f € L°([0,1]) and xp1; € LP([0,1])) played a
major role in the investigations. So it is understandable that in Section [4.2] we search

for similar results for V,_ being defined on the Fréchet function space LP~(]0, 1]).

In the final Section we will study the convolution operator C?~ : LP7(G) —
LP~(G) defined by
Cy (f) =[xy

where, for g € L'(G) fixed,

(f*g)( / Iy du(y), for p-almost every x € G,

is the convolution of f and g on the compact Abelian group G. The vector measure
Mep- B(G) — LP~(G) associated with the convolution operator CP~ is then given
by

mcgf(A) =CP (xa) =xaxg, forAeB(G).

9

The respective investigations for the convolution operator C(p ) LP(G) — LP(G),
for 1 < p < oo, were done in |26, Chapter 7| and [25]. The main results state that
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the inclusion
LP(G) g Ll (mc(p))

is proper, for all non-zero functions g € L'(G)\LP(G), whereas for g € LP(G) we
have the equalities
L (imegpl) = L (mggp) = £'(G).

There, the Bochner A-integrability, this time of the function F;p V.G Ip (G) given
by F;p) () = g(xz — -), played a central role in the course of the investigations. In
Section 4.3|it will therefore be of interest to see whether the results differ a lot when
CP~ is defined on LP~(G) rather than on LP(G).

4.1 Multiplication operators

4.1.1 Multiplication operators on LP~ ([0, 1])

Throughout this subsection we consider the finite measure space ([0, 1], B([0,1]), A),
where \ is Lebesgue measure and B([0, 1]) the o-algebra of Borel measurable subsets
of [0,1]. Let, for p € (1,00) fixed, LP~([0,1]) be the Fréchet function space as de-
fined in Example 2.3.1] Furthermore, denote by L°([0,1]) the Lebesgue measurable
functions f : [0,1] — C. Since [0,1] is fixed, we will simply write L° and LP~ in
place of L°([0,1]) and L?~([0, 1]); no confusion will occur.

Consider the subset of L given by

MP™ = M(LP, L)
= {geL’: gL’ C L},

where gLP~ := {gh : h € LP~} and g € MP~ is fixed. Associated with g define the
multiplication operator M}~ : LP~ — LP~ by

M;’*(f) = fg, for fe LP.

It is clear that M]™ is a linear operator. Moreover, as x(o,1) € LP~, it follows that

necessarily g € LP~.

Proposition 4.1.1
For each g € MP~ and p € (1,00), the multiplication operator M}~ : LP~ — LP~ is

continuous.
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Proof:

We apply the Closed Graph Theorem [2.1.1} Let {f,}nen € LP™ be any sequence
which converges to 0 in the topology of LP~ and such that { M2~ (f,)}nen converges
to a function fy € LP~ in the topology of LP~. We need to show that f, = 0.

Since { M~ (fn)}nen converges to fo in the topology of LP~, Lemma implies
that there exists a subsequence {M?~(fy,,)}men of {MP™(fn)}nen converging to fo
A-a.e. on [0,1]. On the other hand, {f,, }men is a subsequence of {f,},en and
therefore converges to 0 in the topology of LP~. Applying Lemma again we
find that there exists a subsequence {fnml }ZGN of {fn,, }men which converges to 0
A-a.e. on [0,1]. Multiplying the functions f,,, with g we obtain, for A-almost every
w € [0,1],
tim M (£, ) () = lim ., (w)g(w) =0~ g(w) = 0.

=00

However, { MP~(f,.) }men converges pointwise to fo A-a.e. and, being a subsequence
of {M?~(fn,.)}men, the same is true for {MP~ (fnml)
can conclude that MP~ is continuous. [

}ZGN. Hence, fo = 0 and we

In the following pages we are going to study the vector measure M- associated
with MJ™, i.e., the vector measure m - : B([0,1]) — LP~ defined by

M- (A) == My~ (xa) = xag, for A€ B([0,1]). (4.1)

Since LP~ contains the B([0, 1])-simple functions and has a o-Lebesgue topology,

M- is (by Proposition [3.2.1)) indeed a vector measure. Recall that each ¢ € (Lp_)*

induces the scalar measure <mM§7, ¢) : B([0,1]) — C given by

<m]V[§7’ 90>(A) = <mMg* (A)7 S0>7 fOI‘ A € B([Oa 1])7

where in our case this measure becomes (see (i) of Example [2.3.1)

1 1
<mM§’_(A)790>:/0 M;”(XA)wdA/O xAgsodAI/AgwdA, (4.2)

for all A € B([0,1]). We are mainly interested in the space of m,,--integrable
functions. Recall that a function f:[0,1] — Cis m ap--integrable if it is integrable
with respect to each scalar measure <mM57,<p>, for ¢ € (Lp*)*, and if, for each
A € B([0,1]), there exists an element [, f dmyp- € LP™ satisfying

</Afde};‘790> = /4fd<mﬂfg‘7¢>ﬂ
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for all ¢ € (LP7)". It follows, for each A € B([0,1]), that

1
[ st @ [ fgoar= [ pagedr=(fuag.e)
A A 0

Accordingly, since ¢ is arbitrary, the indefinite integral of f € Ll(mMgpf) over A €
B([0,1]) is given by

/Afdeg_ = fxag (4-3)

and, hence, the set function m,- . - B([0,1]) — LP~ associated with the indefinite
integral of f is defined by

mM;’*,f<A) = /Afdeg = fxag, for A e B([0,1]).

According to the Orlicz-Pettis Theorem M- ¢ 15 again a vector measure.

To apply the theory of Chapter 3| we need to know when M?™ is A-determined.

Proposition 4.1.2
Let 1 < p<ocoandge MP~. The operator MY~ : [P~ — LP~ is \-determined if and
only if g(w) # 0 for A-almost every w € [0, 1].

Proof:

Suppose that g # 0 A-a.e. on [0,1] fails to hold. Then A(g~*({0})) > 0 and so
B := g '({0}) ¢ No(\). On the other hand, for any Borel set A C B we have

M pp= (A) = M_g_(XA) =gxa=0¢€L".

Hence, B € No(mMgf). So, No(A) # No(mye-). The contrapositive statement

yields that Ny(A\) = -/Vo(mMg—), i.e., MP~ is A-determined, implies that g # 0, A\-a.e.
on [0, 1].

Let now g # 0 Aa.e. on [0,1]. Choose any set A € ./\fo(mMgf). Then, in
particular, m ;- (A) = xag = 0 in LP~. But, since g # 0 A-a.e. on [0, 1], this
means that x4 = 0 A-a.e. on [0,1], i.e., A(A) = 0. Thus, A € Ny(A). Keeping in
mind that No(A) € No(m,r-) is always true (by Lemma we can conclude
that Ny(\) = ./\/'O(mMgf). Therefore, M?~ is A-determined. [

From now on we will always assume MP~ to be A-determined. Since LF~ has a o-

Lebesgue topology and contains the B([0, 1])-simple functions we know from Propo-
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sition that each f € LP™ is m,p--integrable, i.e., that
L= c Ll(mMgf)v

and, for each f € LP~, that the equations

My (fa) = [ Famyg @ Frag, for A€ B(0.1)
hold. Moreover, it follows from the A-determinedness of M~ that
N = ./\/'(mMé,—) resp. No(\) = NO(mM};—)

and, from Theorem , that L! (mMg-) is the optimal domain of the operator M?~

and the optimal extension of MP~ is the integration operator ]mMP* : Ll(mMgf) —
g

LP~ given by

1
Im]\/Ig* (f) ::/0 fdeg;* = fg, for f e Ll(mMgpf),

Furthermore, since the space LP~ is reflexive we know from Section that
1
Ll(mef) = Lw(mMg*)-

But, we still do not know whether Ll(mMgf) is strictly larger than LP~ and whether
it is possible to characterize the space L'(m M§‘)~ This is what we intend to inves-

tigate in the following part.

First of all, let us give a characterization of L'(m Mg*)-

Proposition 4.1.3
Let g € MP~ satisfy g # 0 X-a.e. on [0,1]. Then,

Ll(mMgf) ={fel’: fge L’}

Proof:

Since ¢ € MP~ and sim(B([O, 1])) C LP~ we obtain that sg € LP~, for all
s € sim (B([O, 1])) In particular, choosing s = x(o,1] shows that necessarily g € LP~.

Now, let f € Ll(mMg,_). According to Proposition there exists a se-
quence {s,}nen C sim(B([0,1])) such that {s,}nen converges pointwise to f and

{fol 5p deg’}neN converges to an element fol fdmyp- € LP” in the topology of

78



LP~. Lemma |3.1.3] on the other hand, ensures that {fol Sn de?f’}neN admits a

subsequence {fol S, de;’*}m converging A-a.e. on [0,1] to fol fdmyp-. But,

eN
since {s, }nen converges to f pointwise on [0, 1], we have

m— 00 m—o0

1
lim (/ Sn,. dep—) (w) = lim (SnX0,1]9) (W)
0 g

= lim (5,,9)(w)

m—r 00

= (f9)(w),

for A-almost every w € [0, 1]. Hence, fg = fol fdegf € LP~. This establishes one

inclusion.

Conversely, let f € L satisfy fg € LP~. Since f € L°, we can choose a sequence
{Sn}nen C sim(B([0,1])) such that |s,| < |f], for all n € N, and {s, }nen converges
pointwise to f on [0,1]. Since g € MP~ and sim(B([0,1])) C L~ it follows that
Spg € LP~, for all n € N. On the other hand, fg € LP~ and consequently fxag €
LP—, for all A € B([0,1]). Moreover, |s,g| < |fg|, for all n € N, and the sequence
{$ng}nen converges to fg pointwise on [0,1]. The o-Lebesgue topology of LF~
guarantees that the sequence {s,g},en converges to fg also in the topology of LP~.
Each ¢ being a continuous function semi-norm (see Example [2.3.1)) we obtain, for
any A € B([0,1]) and n € N, that

0< g (/A Sn A1y — fXA9> ak (Snxa9 — fxa9) < ar(sng — f9),
for all £ € N. Since
T}i_)n;oqk(sng — fg) =0, forall keN,
it follows, for each A € B([0,1]), that the sequence { [, s, dmy - }nEN

fxag in the topology of LP~. Proposition now implies that f € Ll(mMgf) and
that, moreover, fAfdegf = fxag, for all A€ B([0,1]). O

converges to

Let us now investigate whether Ll(mMgf) is strictly larger than LP~ or, in other
words, whether there exists a function f € Ll(mMg—) that is not an element of LP~.
By using the characterization of Ll(mMgf) given in Proposition this would
mean that f ¢ L™ for at least one k € N, although fg € LP~.

Recall, for g € MP~, that MI™ is assumed to be A-determined and hence, g # 0
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A-a.e. on [0, 1]. Therefore it is possible to write
- fg, A-a.e. on [0,1].

It seems to be the case that the answer to our question depends on the properties
of g and, moreover, on the properties of é. Whenever é € L™ it is clear that

éfg = f € LP~. So, the question is: What happens if é ¢ L7

To continue our investigations we need the definition of a special type of operator-
valued measure. For a Fréchet space X let L(X) be the space of all continuous linear
operators of X into itself. Then Ly (X) is defined to be the space L(X) equipped
with the topology of pointwise convergence on X, that is, the topology of uniform
convergence on all finite subsets of X. A og-additive measure P : ¥ — Ly (X) is said
to be a spectral measure if it satisfies the following two conditions:

(i) P(ANB)=P(A)P(B), forall A,B € X.

(ii) P(Q2)=id.
Here, id is the identity operator in X.

For the following discussion we make use of a notable connection between the vector

measure m,- and the spectral measure P:B([0,1]) = L, (LP~) given by
P(A): f s fxa, for feLr.

The spectral measure P was investigated in [I]. There, the following notation was

used. Define, for v € LY fixed, the vector space
D,(MP7) :={he L’ :hve LF"} C L’

Then D, (Mff) is the maximal domain of the linear operator M?~ : D, (]\A//fff) —
LP~ defined by h — hv, for h € D, (Mf*). In [I, Proposition 18] it was established,
for v € L, that

D,(M}7) =L ifandonlyif veL'(P)= (] L (4.4)

1<s<o0
Note that D, (]\;[5_) = [P~ corresponds precisely to v € MP~ with Mg’_ = MP~,

that is,
M= (N L (4.5)

1<s<o0
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Since, for g € MP~ C LP, it is the case that

P(A)(g) = gxa = myp-(4), for A € B([0,1]),

we can use this result for identifying a set of functions g for which the spaces LP~

and Ll(mMg—) coincide. We point out that MP~ is actually independent of p.

Proposition 4.1.4
Let g € MP~ = ﬂ1<s<oo L5, Then,

L'(myp-) =17 ifandonly if 1eMP~= [ L.

1<s<o0

Proof:

Suppose that é € MP™ =, L° Fix f € Ll(mMgf). Since g € MP™,
it follows from Proposition that fg € LP~. Since % € MP~ it follows that
f = éfg = M7, (fg) € LP". So, the inclusion Ll(mMgf) C LP~ holds. On the
other hand, the inclusion LP~ C Ll(mMg—) follows from Proposition W Thus,

Ll<mM5—) = [P,

Conversely, suppose that Ll(mMg-) = LP~. Since g € MP~, we know by
and that Dp(Mé’*) = LP7. Choose an arbitrary function f € LP~. As MP~
is A-determined, g # 0 A-a.e. on [0,1] and we can write f = éfg where éf e L°
satisfies éfg € LP~. By the characterization of Ll(mMgf) in Proposition m
we can conclude that éf € Ll(mMg—) and hence, by assumption, also éf e Lr.
Therefore, f € {h € LP~ : éh € L’} =D, (Mf/;) But, f was chosen arbitrarily,
and so LP~ C D, (Mf/_g) On the other hand, D, (Mp_) C LP~ always holds. Thus,

~ 1/g
D, (Mf/_g) = LP~ which is, according to 1} equivalent to %7 € Micsens L*- O

For every 1 < p < oo, the function g(w) = w, for w € [0, 1], satisfies g € MP~ =
Mi<secoo L°, but é ¢ MP~. In particular, this together with Proposition shows

that the containment LP~ C L'(m,,-) is proper.

A function g € L° such that both g,é € (Micscos LF)\L> is exhibited in the

following example.

Example 4.1.1
Let {Fi}72, C B([0,1]),3) be the partition

I+1 4 l ]
o= [it] mam 13004300 ) e
j=1 j=1




i(%)j=%—1=%(%—3m) =1(1-%) (4.6)

Hence,

ME) = g3 — g3 = 3 307 = 307 (4.7)

m m—+1 )
B (1) o (14350744 3207 o
j=1 j=1

Then,

for all m € Ny. Define a function ¢ : [0,1] — C by

gw) = D (+Dxnw)+ Y Fgxs.(w)

= > xas, (W) + Y Exp, ().
=1 m=1

Then g is obviously measurable, bounded on [%, 1} but, unbounded on [O, %] More-
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over,

g(w) ZZXFl 1 Z MXEm- 1
1

1=

for all w € [0, 1]. Hence, for each 1 < s < 0o, we obtain that
1 0o . 1/s
g:(9) = (/ LD Exe. dA)
0 m=1
1 o . . 1/s
/ (Z lXFz_1 + Z mXEmA) d)‘>
0 =1 m=1
0 00 1/s
_ S EAF) + Y msA(Em_1)>
=1 =1

N

Accordingly, g € ();<,.o L. On the other hand, é :[0,1] — C is of the form

Lw) = Y dxnw)+ Y (m+ s, (w)

m=0

o0

S b, () + 3 mxs, (uw
=1 m=1
Note that é is bounded on [O, %], unbounded on (%, 1} and satisfies

ZZXFZ 1 Z MXE,,— 1

for all w € [0,1]. In analogy to g, for each 1 < s < 0o, we obtain that

L o o ) 1/s
a.(}) = ( /0 )lZ%xFl_ﬁZImXEm-l dA)
=1 m=
S 1/s
< 20 (Z%) < oo.

n=1

So, both g, ¢ € (., L and we can conclude by Proposition|4.1.4)that L (myp-) =
Lp ,foreach1<p<oo |
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Until now we have not thought about the variation of m,,-. Fix p € (1,00) and
g € MP~. For each k € N, let (mMg—)k : B([0,1]) — L™ be the local-Banach-space-
valued vector measure (2.28) given by

(map=)i(A) = xag, for A€ B([0,1]).

For k € N fixed, the variation of (mMg—)k is calculated via
I
(map el(A) = sup S [y ()],
s =1

l
— Sl;pZHXAJgHTk
7j=1

z ! 1
= supZ(/ IXAjgl”‘dA>
L 0
l 1/rg
_ supZ(/ |g|"kd)\> , (4.9)
=1 \Y4

for all A € B([0,1]), where m = {A;})_, is any finite partition of A.

Note that the variation of (mMgf)k needs not to be finite. To see this, let g := (o1

and choose, for [ € N fixed, the partition

of [0,1]. Then, for each j € {1,...,l}, we obtain
l 1/ ! l
Z (/A ’9’7’1@ d)\> = Z(}\(AJ))I/Tk _ Z(%)l/’/‘k —1. (%>1/7‘k _peym) l1/3k7

Jj=1 j=1 j=1

where s is the conjugate exponent of r; and, thus, satisfies i > 0. So, if | - o0 it
follows that [*/** — oco. Hence, for g = X[o,1] the variation of (mMgf)k and thus, the

variation of m,»- is infinite.
g

It seems that the variation of m ME could depend on the function g. Actually, the

next result shows that this is not so.

Proposition 4.1.5
Let g € MP~\{0}. Then the variation of M- i infinite.
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Proof:

Let g € MP\{0} = (Mcseno L°)\{0}. Then g € LP7\{0} (sce also page and
consequently |g| # 0 in LP~. On the other hand, |g| € L~ means that |g|™ € L',
for all £ € N. So we can find A € B([0, 1]) and k € N such that

0< / g™ d < oo,
A

Fix such an A € B([0,1]) and k£ € N and let

/ lg|™ dX =: a.
A

Define a set function v : B(AN[0,1]) — [0,00) by
W(B) = / gl d), for all B € B(AN [0, 1))
B

which is a finite, positive measure on B(ANI0, 1]). Since the Lebesgue measure is non-
atomic on the real line, [9, p. 26/, the measure v is non-atomic on B(AN|0,1]). Pick
an arbitrary [ € N. According to Lemma there exists a partition {Aj}fj:l -
B([0,1]) of A satisfying

V(Aj)Z/A|g|rkd/\=%, forall j=1,...,1L

Thus, we have

1/rk 1
Z( /A _\gwdx) = YA

J=1

where sy, is the conjugate exponent of rj,. Letting | — oo we obtain that [*/*.a'/" —

oo which shows that the variation of m ME~ is infinite. O

4.1.2 Multiplication operators on L! (R)

loc

In this subsection we will investigate the multiplication operator again, this time,
however, defined on L, (R). Consider the o-finite measure space (R, B(R), \), where

loc

A is Lebesgue measure and B(R) is the o-algebra of Lebesgue measurable subsets
of R. Let, for p € (1,00) fixed, L? (R) be the Fréchet function space as defined in

loc

Example 2.3.2] Furthermore, denote by L°(R) the Lebesgue measurable functions
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f:R—C.

Define by M} . the subset of measurable functions

e = M(Li(R), L, (R))

= {g c LO R) ngoc<R) C L{Uoc(R)}’

where g LP (R) := {gh : h € L} (R)}. Fix g € M¥

loc”
LY (R) — LY (R) defined by

Associate with ¢ the

P
multiplication operator My, :

Mgloc(f) = fg> for f S LIOC(R)

Clearly, M?

sloc 18 a linear operator. It is continuous as well. The proof of the

continuity of M?  follows the lines of the proof of Proposition as we now

g,loc

show. Observe that it follows from yg € L} .(R) that g € L} (R).

Proposition 4.1.6

For each p € (1,00), the multiplication operator M, : Lj,.(R) — L}, (R) is continu-
ous.

Proof:

We use the Closed Graph Theorem again. Let {f, }nen C LIOC(R) be any se-

quence which converges to 0 in the topology of L} (R) and such that {M? g10c(fn) }nGN

converges to a function fy € L¥ (R) in the topology of Lj (R). We need to show
that fo =0.

Since { 1o f")}neN converges to fp in the topology of L} (R) we know by

Lemma that there exists a subsequence { gloc(f"m)}meN of {M?,( )}neN
converging to fy A-a.e. on R. But, being a subsequence of {f, },en, it follows that

{fam }men converges to 0 in the topology of Lj (R). Applying Lemma again
we obtain a subsequence {fnml }leN of {fn, }men which converges to 0 A\-a.e. on R.

By multiplying the functions f,, with g we have, for A-almost every w € R,

Tim M. (frm, ) (w) = Jim f,,, (w)g(w) =0 g(w) = 0.

But { g.loc fnm>}m€N Converges already to fy A\-a.e. on R, so the same has to hold
Thus, fo = 0 and it follows that MP?

for the subsequence { g]oc

g,loc fnml ) }lEN'
continuous. U

The aim here is to study the vector measure mae, associated with the multipli-
g,loc

cation operator M., i.e., the vector measure my» —: B(R) — Lf (R) defined
g,loc

g,loc?
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by
myp  (A) = M] ) (xa) = xag, for A€ B(R). (4.10)

g,loc

Note that myp, s, by Proposition indeed a vector measure as L} (R) con-
tains the B(R)-simple functions and has a o-Lebesgue topology (see Example [2.3.2
(iv)). Observe, for each ¢ € (LP (R))", that the scalar measure <mMp L)
B(R) — C is given by

,loc

790>( <m]V[p (A)7 §0>7 for A € B(R)7

myp
< M g,loc

,loc

which can also be expressed as follows:

-/ gloc (X4 sodk-/x gpd = /Agsodk, (4.11)

for each A € B(R). Note, since g € LI (R), that go € L*(R) for each ¢ €
(LE.(R))"; see Example 2 (i). Again, a measurable function f : R — C is
map loc—lntegrable if it is mtegrable with respect to each scalar measure <m M ,g0>
for p € (L .(R))", and if, for each A € B(R), there exists an element [, fde;loc €

loc
L? (R) satisfying
</fdep1 790> /fd<m gloca(p>7

loc
for all ¢ € (L? (R))". Because of 1} we obtain for each A € B(R) that

<mMP

Jloc

[ tatmug, 00 = [ fopar= [ pageds for o€ (1h®)"

Accordingly, fg € L} .(R) and so the indefinite integral of f € Ll(m Mgloc) is given
by

/ fdmyr = fxag € L (R), for A e B(R). (4.12)
A grloe

Indeed, to see this observe (via (4.11))) that

g,loc

[ v%0>|(A)=/A|g<p\dA,

CcC P

loc

for A € B(R) and ¢ € (LF,

loc

(R))", with gy € L'(R) because g € M},

So, if f is myr -integrable, then
g,loc

(R).

loc

/R £ 19l ] dA = / F1d[(map@)| < 00, for g € (L ()"

g,lo
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Since L? (R) is reflexive, this implies that fg € Li,

B(R) — L?

loc

(R). The set function My g

loc

(R) associated with the indefinite integral is given by

s A= [ pdmyy, = Fras

mM(I]) loc?
By the Orlicz-Pettis Theorem it is again a vector measure. Repeating the
arguments in the proof of Proposition [4.1.2|one can show that M?

gloc 18 A-determined

if and only if ¢ # 0 A-a.e. on R — a property which from now on we will assume

that M?, always satisfies.

g,loc
Let us see, whether L* (mMp1 ) admits a similar characterization as for the multi-
g,loc

plication operator MP~.

Proposition 4.1.7
Let p € (1,00) and g € M7, _ satisfy g # 0 A-a.e. on R. Then,

L (map, ) ={f € L'(R) : fg € L}, (R)}.

g,loc

Proof:

The fact that g € Mj  C L¥

loc (R) ensures that sg €
(R), for all s € sim (B(R))

= ~loc

(R) and sim(B(R)) C Li,
LP

loc

Let f € L* (mMp1 ) Due to Proposition [2.4.1| there exists a sequence {s, }neny C
g,loc

sim(B(R)) such that {s,},en converges pointwise to f and { [ s, degloc}neN

verges to an element [, f de;loc in the topology of L} (R). According to Lemma

con-

converging to

3.1.3 {fR Sn deploc} admits a subsequence {fR Snm dm]\/[éj,loc}

meN
Ja fdeﬁloc A-a.e. on ]R. However, the sequence {s, }nen and thus, also {s,,, }men,

converges to f pointwise on R and so we obtain

i ( /R Snm degloc) (w) =" lim (s, xzg)(w) = lm (sn,,9)(w) = (fg)(w),

for A-almost every w € R. Hence, fg = fRfdep € L} .(R) which establishes

one inclusion.

Conversely, let f € L°(R) satisty fg € LI (R). The fact that f € L(R)
guarantees that we can find a sequence {s,}nen C sim(B(R)) such that |s,| < |f],
(®)

and sim(B(R)) C L, .(R) we obtain that s,g € L}, (R), for all n € N. Moreover,
fg € L (R) and as a consequence also fxag € L! (R), for all A € B(R). In
addition, |[s,g| < |fg|, for all n € N, and the sequence {s,g},en converges to fg

for all n € N, and {s,}nen converges pointwise to f on R. Since g € L

88



pointwise on R. Due to the o-Lebesgue topology of L} (R) the sequence {s,g}nen

loc

converges to fg in the topology of Li (R) as well. Since each ¢ is a continuous
(R) (see Example [2.3.2) we obtain, for A € B(R) and

function semi-norm in Lj
n € N, that

0< qx < /A Sndmyp, — fXAg) @k (Snxa9 — fx19) < ax(sng — f9),
for all £ € N. But,
lim gx(s,g — fg) =0, forall k €N,
n—oo

and so we can conclude, for each A € B(R), that the sequence { [, s, dmy 1 }neN
g,loc

re(R). It follows from Proposition [2.4.1] that
felLt (mMgloc) and, moreover, that fAfdef;loc = fxag, for all A € B(R). O

converges to fxag in the topology of L

Let us write down here the properties of mae, and L' (mM;lOC) that follow from
Chapter I First of all, since L} (R) has a o-Lebesgue topology and contains the
B(R)-simple functions, Proposition implies that each f € L?
integrable, i.e., that

(R) is mype -

loc g,loc

Lp

loc

(R) - L (mM;loc)

and, for each f € L} (R), that the equation

Mg (fXxa) = / fdmae fxag, for Ae B(R),
A :

holds. On the other hand, since we are assuming the A-determinedness of M} i
follows that

N()\):N(mM;m) resp. Np(A\) = NO(mMploc)'

Moreover, Theorem |3.3.1| guarantees that L! (mMp ) is the optimal domain of the

multiplication operator M?, —and the optimal extension of M? is the integration

g,loc g,loc

operator I, , L' (mMgploc) — LP (R), which is given by

loc
g,loc

m,,p /fdm . fg, for f € L! (mM;lOC).

g, loc

Before we continue our investigations on L! (m M?, ) let us take a closer look at the
g,loc

vector space M1 .

It is clear that Li° (R) € MP . Indeed, for any fixed g € LS. (R) there exists,
for every k € N, a constant M, > 0 satisfying |g(w)| < My, for A-almost every
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w € [—k,k]. Thus, for f € L} (R), we obtain that

loc

k 1/p k 1/p
a(fg) = (/_k!fg\PdA) < (/_kM,f\f\pd)\)
k 1/p
= M, PdX
k (/k |f] >

== Mka’(f) < 00,

for all £ € N, which shows that fg € L} (R). Hence, in the case that g € L (R),

loc loc

we can take up some results established in [I]. To do this, recall the definition of a

spectral measure as given on page This time we consider the spectral measure
P:BR)— L, (L} .(R)) where, for each A € B(R), the operator P(A) is given by

loc

P(A): f+ fxa, for fe Ll (R).

loc

~

In other words, P(A) = M?

Xa,loc
function x4. In accordance with the definition of integrability with respect to a

is the multiplication operator by the characteristic

spectral measure, [1, p. 101], a measurable function g € L°(R) is p—integrable if

there exists an operator
[ 9aP e (1)
R

such that ¢ is integrable with respect to each complex measure
(Pf,p): A (P(A)f,p), for A€ B(R),

where f € L (R) and ¢ € (L,

loc loc

<</Rgd15) f,sa> Z/Rgd@f,@,

for f € LF (R) and ¢ € (Lﬁ)c(]R))*. It turns out that each g € L (R) is P-

loc loc

integrable, even more: that L (R) = L! (]5), and that the operator

(R))*, and such that

loc

Tp(g) = /R gdP: frs fg, for f € L0 (R),

corresponds to the multiplication operator M;loc,

[, Proposition 17].

The question is whether the reverse inclusion M} . C L (R) also holds. It was

already noted prior to Proposition that M} . C L? (R). But, since L3 (R) C
L (R), for all p € (1,00), this does not mean that M} _is necessarily strictly larger

than L (R). To investigate this point further let g € Mj .. Then fg € L{ (R), for

loc loc
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all f € Lj (R), meaning that

k 1/p
a(fg) = < |fg]pd)\) < oo, forall keN.
—k

Fix an arbitrary k& € N. Denote by f, = f |~k the restriction of any function
f e L} .(R) to the interval [—k, k], by i = g|[—kx the restriction of g to [—k, k] and
by Ax the restriction of A to [—k, k]. Note that LP(|—k, k]), equipped with the norm

k 1/p
Whllpk = (/ |h|P d)\k) , for h € LP([—k,k]), (4.13)
—k

is a Banach space and that for g € M}, and f € L} (R) the equation

loc

k 1/p ko 1/p R
ax(fg) = </ | fal” d/\) = </ | fegrl” d)\k) = || fgrllpr, forkeN,
& &

holds. Since every h € LP([—k, k]) is of the form h = f; for some f € LP (R) it
follows that
|hgk|lpx < 0o, for all h € LP([—k, k]).

But, it is known that

M(LP([—k, k]), LP([—k,k])) = {h € LO([—k,k]): hL’([—k,k]) C LP([—k.k])}
= L>([~k,k]),

[26, p. 47|, and so gp € L>®([—k,k]). Thus, g has to be A-essentially bounded on
[—k,k]. As k was chosen arbitrarily we can conclude that g € L>®([—k, k]), for all
k € N, and consequently g € L2 (R).

Putting together the previous discussion we obtain the following proposition.

Proposition 4.1.8
P o= L2 (R) = LY(P), forevery p € (1,00). [0
We return to our investigation of the space L' (mMp _)- As noted before, Lj (R) C
Lt (mMp ) The question is whether, for g € M} = L (R), the space L' (me;loc) —
{f € LO :fge L (R } is strictly larger than L} (R) or, in other words, whether
there is a functlon [ € L°(R) satistying f ¢ Lt (R) but fg € LF (R).
It is not too difficult to find such a function when ¢ is given by g(w) := w, for all
w € R. Then g is certainly an element of L® (R), since |g| < k on [—k, k], for every
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k € N. Note that g # 0 M-a.e. on R as well. Choose f(w) := w~/?) for all w € R.
Then f ¢ L{ (R), since for any fixed k € N we have

e—0

P(f) = /k |w= /2|7 g\ =2 /kw—l d\ =2 lim (In(k) — In(e)) = oco0.  (4.14)

But, when considering fg we obtain, for £ € N fixed, the equation

k
a.(fg) = [ w P w]"dr

yielding that fg € LY (R).

Of course we can draw a line parallel to the results we obtained in Subsection [4.1.]]

when investigating the multiplication operator on LP~([0,1]). Since M}, . is -

determined, g # 0 M-a.e. on R and thus, any function f € L! (mM;IOC) ={f e
L°(R): fg € L (R)} can be written as

f=5 9f -
<X~
el (R)
If 1 € L. (R) = M} it is clear that -gf € L¥ (R). The example above shows

that this need not to be the case if 1 §é L (R). Indeed, for the function g we have
chosen there g(w) - is not bounded on any of the intervals [—k, k], for £ € N.

Finally, we wish to know whether m M is of finite variation or not. To investigate
this question let p € (1,00) and g € ./\/lIOC For each £ € N we define the local-

 B(R)|[—gny — LP([—k, k]) by

Banach-space-valued vector measure (myr ),
g,loc

(mMé’,loc)k = Xagk, for A€ B(R)|[—kux),

where g, is again the restriction of ¢ to the interval [—k, k]. Fix k € N. Then we

obtain the variation of (my»_ ), by
g,loc k

|(mare, ), (A) = SUPZH (mare,, ) (A,

= sup Z;HXAjngp,k
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l 1/p
= sup / GrlP dA 4.15
: z( [ o (@.15)

where A € B(R)|i_4 and m = {A;}}_, is any finite partition of A. Here, || - ||, is
the norm in LP([—Fk, k]) as defined in (4.13]).

As in the case of M?™ it is easy to see that the variation of (mMp

g,loc

) may not be
k
finite. Indeed, choose g := xg. Then g € MJ , since

fo=fxe=fe€ L] (R), forall fe Ll (R).

loc

Furthermore, gy := x|k, for all & € N. For k,[ € N fixed, consider the partition
{A;}5L, of [k, k] defined by

Aj = :#7 _k.(lj_l))7 fOI‘j = 17"'7l7
A = -k.(jfll—l)j k-(J;l))’ for j=1+1,...,21—1,
Ay = [ECD k}

Since

Me(A; N [—k, k) =% forallj=1,...,2,
we obtain that

21

L/p 21
2 (/A,ﬂ[—k 5 4 dAk) = 3 OwA N =k,

Jj=1 j=1
2l
= S (B = 2gMe O = gV

j=1

Here, ¢ is the conjugate exponent of p and therefore satisfies X > 0. Letting | — oo
yvields that [1/9 — oo and we can conclude that, for ¢ = g, the variation of (mMp1 )k
g,loc

as given by 1} and thus, also of my» s infinite. Actually, this result does not
g,loc
depend on the function g.

Proposition 4.1.9
Let g € M}, \{0}. Then the variation of my» is infinite.

g,loc
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Proof:
Let g € M?, \{0} = L°.(R)\{0}. Then also g € L? (R)\{0} and thus, there

g,loc loc loc

is an index m € N such that g,,(¢g) > 0. Since {gx }ren is increasing it follows that
a(9) > 0, for all k& > m. Furthermore, for each k € N, |g[?|_xy € L'([—F, k]).
Hence, we can find an index k € N and a set A € B(R)]|[_ such that

0< / lg|P d\ < 0.
AN~k k]

Fix such an k € N and A € B(R)|[_j and let

/ lg|P dX =: a.
AN[—k.K]

Define, by using again the notations g and A, for the restrictions of g and A to
[—k, k] (see page [01), a set function v : B(AN [—k, k]) = [0,00) by

v(B) :_/ ]g]pdA—/ GelP dhe, for B € B(AN [k, k).
B B

Since the Lebesgue measure is non-atomic on the real line, [9, p. 26|, it follows that
v is also non-atomic on B(A N [—k,k|). Fix [ € N. Lemma then implies that
there exists a partition {A;}._, C B(AN [~k k]) of A satisfying

v(A;) :/ Gel? d, :/ Gl e = 2, forallj=1,....1
A]' A]'I"I[fk,k}

We finally obtain that

! 1/p !

J=1

where g denotes the conjugate exponent of p and therefore satisfies % > (0. Letting

| — 0o we get a'/P 1Y/ — oo and it follows that the variation of (mMzo1 )k as given
g,loc

by 1} and thus, the variation of m M is infinite. [

4.2 The Volterra operator

Throughout this section we consider the finite measure space ([0, 1], B([0,1]), A),

where A\ is Lebesgue measure and B([0,1]) the o-algebra of Lebesgue measurable
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subsets of [0,1]. Let, for p € (1,00) fixed, L~ := LP7([0,1]) = Nen L™ ([0, 1])
with 1 < 7, 1% p be the Fréchet function space as discussed in Example [2.3.1
Furthermore, denote by L° := L°([0,1]) the Lebesgue measurable functions f :
[0,1] — C.

Define on LP~ the Volterra operator V,_ : LP~ — LP~ mapping f — V,_(f) where

Vo () (w) = /Ow F#) (D), for w e [0,1].

Remark 4.2.1
For each f € LP~, the function V,_(f) : [0,1] — C is continuous on [0, 1].

Proof of Remark [4.2_1:

Choose an arbitrary f € LP~. Fix wy € [0,1] and let {w,}neny € [0,1] be any

sequence converging to wy. Then it is clear that

nh_)rgo fX[O,wn} = fX[O,wo]

pointwise on [0, 1]. Since f € L~ C L', also |f| € L'. Furthermore, | fx[o,u.]| < |f];
for all n € N. By applying Lebegue’s Dominated Convergence Theorem we
obtain that

Wn

lim V,_(f)(wn) = lim f(t) dA(t)

n—r00 n—oo fq
1

— dim [ (o) () AN

n—0o0 0

_ / (/X0 (8) dA()
= [T Hman = vy (Hw)

0

which shows that V,_(f) is a continuous function. [

The linearity of the Volterra operator results from the linearity of the Lebesgue

integral. Let us state here two further properties of the Volterra operator.

Proposition 4.2.1

The Volterra operator V,,_ : LP~ — LP~ is continuous.

Proof:

Let f € LP~ be arbitrarily chosen. Then f € L™ C L' and so, for each w € [0, 1],
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we have, by Holder’s inequality, that

s
[ irwnae
[ 15000l 30

(/ O A )/(/ o ()] d <>)1/81

@ (f) A0, w)* < au(f),

Vo (Nw)] =

N

[
O

where s; is the conjugate exponent of r1. Hence, for each k£ € N, we obtain that

(Vo (f) = (/OIM(]CWW)W

< (/Ol(ql(ﬁ)” dA) -

= a(f) A0, )™,

which implies that V,,_ is continuous. [

Proposition 4.2.2
The Volterra operator V,,_ : LP~ — LP~ is injective.

Proof:

Let f € LP~ satisfy V,,_(f) = 0 meaning that
/ f(&)d\(t) =0, forall we [0,1].
0
The Fundamental Theorem of Calculus, [I1, p. 304], then yields that
w /
= (/ f(t) dA(t)) =0"=0, for Aalmost every w € [0, 1].
0
Thus, V,_ is injective. [

In the following pages we are going to study the vector measure my,

_associated

with the operator V,_; more explicitly, the vector measure my,_ : B([0,1]) —

defined by
my, (A) == V,-(xa)
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where, for each A € B([0,1]),

Vo (xa)(w) = /Ow xa(t) dA(t) = A([0,w] N A), for w € [0,1].

Since LP~ contains the B([0, 1])-simple functions and has a o-Lebesgue topology,
my,_ is by Proposition indeed a vector measure. For each ¢ € (Lp*yk =
Upen L** with i + i =1, for £ € N, we induce the scalar measure <mvp7,<p> :
B([0,1]) — C given by

(my,_, 0)(A) == (my,_(A),p), for Ae B([0,1]).

By applying the identity x[,u)(t) = X[,1j(w) and Fubini’s Theorem [2.2.3] this scalar
measure can also be expressed by the following term:

(my, (A)g) = / Vi () (w) (w) dA(w)

-/ 1 ([ u®ao) dwaw

= [ ([ xoa® @i ) o)
= [ ([ xeatr o o) et ixe
= [t ([ v et ixw)) anio
_ /A (xpass ) dA(2), (4.16)

for A € B([0,1]). Observe that ¢ — (x1, ) € L' since

/01|<X[t,1]»90>|d>\(t) = /01 /01 Xty (w) p(w) d)\(w)‘d)\(t)

< [ ([ wtwiaw ) oo
< [ ([ wtwiaw ) ao

= [lell A[0,1]) < o0,

because ¢ € L% for some k € N and so ¢ € L'. Hence, by Proposition [2.2.4, the

variation of <mvp_, go> is given by

[(my,_, )](4) = /A (s ) (), for A € B([0,1]). (4.17)
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One of the main objects of interest will be the space of my,_-integrable functions. Re-

call that a function f : [0,1] — C is my,_-integrable if it is scalarly my,_-integrable,
i.e., if it is integrable with respect to each scalar measure (my,_, ), for ¢ € (Lp_)*,
and if, for each A € B([0,1]), there exists an element [, fdmy, € LP~ satisfying

</Afdmvp_,90> —/Afd<mvp_,so>,

for all p € (Lp_)*. Define
h(t) :== xp,, forte[0,1], (4.18)

and observe that h(t) € sim(B([0,1])) C LP~, for each ¢ € [0,1]. Then (4.16)

becomes

(my, (A), @) = /A<h(t), SYd(t), for A€ B([0,1]).

Moreover,
h(t)(w) = X1 (w) = Xjo.u) (1),

for all t,w € [0,1]. Taking a closer look at the previous equations we derive, for
¢ € (LP7)", f € LY(my, ) and A € B([0,1]), after noting that also |f| € L!(my;,_)
and |p| € (LP7)", that

[ G,
J 10 (xa el dxeo
- a0 170 (/ () () (W) ) aAD)
[ @101 ([ xon® el ixw )
= /0(/0 xa(

Define the function

)|
O 1O X101 (1) dA@)) |p(w)] dA(w). (4.19)

gas(w) == / F(t) () (w) dA(t) = / " xalt) B aA(D),  for we [0,1].

We need to prove that g4y € LP~. Since |gays| < gayy, with [f| € L'(my,_), it
suffices to show that g4 s € LP7. Fix k € N and let ¢ € L% C (Lp‘)* with
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-+ ;- = 1. Then also |p| € L** and the measure (my, , |¢[) > 0 is given by

(my,_ [ol)(A) = / (Xeas lel) dA(D),  for A € B(0, 1))

see (4.16). By (4.19) we have

/O g151(w) |o(w)] dA(w / Fld(my, lo]) < (4.20)

Since L** is a reflexive Banach space and (4.20) holds for all ¢ € L, it follows that
ga, s € L™. But, this is valid for all k € N and so g4,s € LP~, as was to be proved.
Hence, the indefinite integral of f € L'(my,_) over A € B([0,1]) can be expressed

) [ i = [ rewsan [ sn ”

and the set function my,_; : B([0, 1]) — LP~ associated with the indefinite integral

my,_ (A /fdmv /f

By the Orlicz-Pettis Theorem it is again a vector measure.

is given by

Before we begin examining the space L*(my, ) let us state here some conclusions we
can draw immediately from the properties of LP~ and of the operator V,,_. Propo-
sition ensures that each f € LP~ is my,_-integrable, i.e., that

LP~ C L' (my, ),

and that, for each f € LP~, the equation

~(fxa) = /f dA—/fdmv . for A e B([0,1]),

holds. Furthermore, since V,,_ is injective (by Proposition , we can conclude
by Corollary that V,_ is A-determined which, on the other hand, implies that

the A-null functions and the my,_-null functions coincide, i.e., that
N () = N(my, ),

and according to Lemma the same is true for the null sets, i.e.,
No(A) = No(my, ).
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Moreover, Theorem yields that L'(my,_) is the optimal domain of the operator
V,— and the optimal extension of V,_ is the integration operator Iy, LY(my, ) —

LP~ given by X X
b, (9)i= [ Fmy, @ [ g herc) n (4.22)

Another important property of the space LP~ is that it is reflexive which ensures that
each scalarly my, -integrable function f € Ll (my,_) is already my, -integrable,

meaning that L'(my,_) = L, (my,_).

In the forthcoming investigations we want to find answers to the following two
questions: Is the inclusion L~ C L'(my,_) proper? Is it possible to characterize
the space L'(my,_)? From the above discussion we see that f € L'(my, ) if and
only if the function w — [, f(t) xp,1(w) dA(t), for w € [0,1], belongs to LP~ for
every A € B([0,1]).

Although it is not a characterization of L'(my,_), the following result exhibits an-

other space of functions which is contained in L'(my,_).

Proposition 4.2.3
Fix p € (1,00). Let f:[0,1] — [0,00) be a function which is Lebesgue integrable over
[0,w], for each w € [0, 1), and such that the function F; : [0,1) — R defined by

Fy(w) == / " F(1) dA)

is an element of LP~. Then f is my,_-integrable.

Proof:

Let f be as in the statement of the proposition. To show the my, _-integrability
of f let {sn}tnen C sim(B([0,1])) be any sequence of B([0, 1])-simple functions satis-
fying 0 < s, T, f pointwise on [0, 1]. Fix A € B([0,1]). Then also 0 < s,xa Tn fxa
pointwise on [0, 1]. Furthermore, since f is Lebesgue integrable over [0, w], for each
w € [0,1), the same is true for fy4 and, as Fy € LP~, with LP~ a Fréchet function
space, the function Ff 4 : [0,1) — R defined by

Fra(w) := / " F et dND)

is an element of LP~ C Ll(mvpf) as well as it satisfies F; 4 < F pointwise A-a.e..
Moreover, from (4.16) and the definition of the integral it follows that [, s, dmy,_
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is the function
/ Spdmy,_ :w / sn(t) xa(t) dA(t), forw € [0,1).
A 0

The calculation (4.19)) reveals that fA Fydmy,_ is the function

/AFf dmy,_ 1w — /Ow f(t) xa(t)d\(t) = Fra(w), forw e]0,1).

By applying the Monotone Convergence Theorem on [0, w] for each fixed 0 <
w < 1 we obtain that

w

lim $p(t) xa(t) dA(t) = Fra(w). (4.23)

n—oo 0

But, as LP~ has a o-Lebesgue topology and since 1) is equivalent to (FﬂA —

fA Sy, dmvp_) In 0 pointwise, the sequence {fA Sn, dip—}neN C LP~ converges to

F 4 in the topology of LP~. It follows from Proposition that f is then my,_-
integrable. [

A full characterization of the space L'(my,_) will be given later in Lemma m
However, the first question concerning the inclusion LP~ C Ll(mvp_) can be an-

swered without a major effort.

Proposition 4.2.4
Let f € L. Then f is my,_-integrable.

Proof:

Let f € L'. Then,

wmaéuwwm<w

Fix k € N and choose an arbitrary A € B([0,1]). Then,
1 w
| roxawaxe

Tk (/Af(t)h(t)(-)d)\) - (
( ()] xa(t) dA(t)>rk d)\(w)) o

Y
< ([ ([ o) o)
([ st )
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= (Il M0, D™ = I flh < oo,
——

=1

meaning that [, f(¢) h(t)(-)d\ € LP~. As A € B([0,1]) was chosen arbitrarily,

vl ) () = {as ([ FOROO @) 4 € B0} < 111 < .

This is true for all k& € N implying that f is my,_-integrable, ie., f € L'(my,_ ).
O

From ({2.7) and Proposition we can deduce the following chain of inclusions
L~ S L' C LY (my,.)

where the first inclusion is indeed proper. To see this, consider the function f :
(0,1] — C defined by

f(w) :=w™ " forw e (0,1],
where r > 1 is an element of the sequence {ry}ren C R satisfying 1 < ry 1% p and
L™ = (Ven L'*. Then f € L', since
1

1
[ = [ g o] el
0

1
1 r 0

where s is the conjugate exponent of r. However, f ¢ LP~ as f ¢ L" because

/0 w7 A\ (w) = /o w dA\(w) = lim (In(1) — In(g)) = oco.

e—0

Hence, LP~ G L'. The question arises whether the inclusion L' C LY(my, ) is

proper as well. To answer this question let us prove some further lemmas.

Define the LP~-valued function g, : [0,1] — LP~ by

gp_ (Zf) = X[t,1]~ (4.24)

Of course, this is the function A in (4.18)) but now we need to examine the dependence
of this function on p. Due to its “nice” properties the function g, will play a major

role in the forthcoming investigations.
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Lemma 4.2.1
For each p € (1,00), the function g,_ as defined in (4.24) is Bochner \-integrable.

Proof:

Let s,t € [0,1] be any pair of distinct real numbers. Without loss of generality,
assume that s < t. For each k € N we thereby obtain that

0k (9p-(5) = gp-(1)) = @ (Xe1) — X1e1)

= Gk (X[s,t])

1 1/rp
N (/ Ix[&t]\”dA)
0

_ /\([S,t])l/rk _ |t_8’1/7’k’

which shows that g,_ is a continuous function.

As [0,1] is compact and g, is continuous, it follows that g, ([0, 1]) is compact
in the Fréchet space LP~ meaning that g, is a compact metric space and thus, is
separable, [22 pp. 18-19|. Since g,_([0, 1]) is a Suslin space we can make use of [34]
pp. 67-68|] to conclude that g, is strongly A\-measurable.

Furthermore, we have for each k£ € N

1/7k
@ (9p- (1)) = @ (x1)) = (/ X1 kd/\) = A([t, ) = (1= t)/™ (4.25)

and therefore obtain that

1 1
r
[ o) axe 2 [a-nrrang = <o (829)
0 0 + T
Thus, g,— is Bochner A-integrable. [

It turns out that the Bochner M-integral of g, coincides with my, _, since for any
fixed A € B([0,1]) we have

(B) - / Gy (£) (1) = (B) — / Xien AA()

and so, for ¢ € (Lp*)*,

(®) - [a-0a0.e) B [Gueao
= ([ et ) axey
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(my,_(A), ¢).

Since p € (Lp*)* is arbitrary, we can conclude that

(B) - / G (1) AN(1) = my, (A),

for all A € B([0,1]). This result gives a new insight into the theory of the vector
measure associated with the Volterra operator; it also gives the way to further
investigations. We recall from Section that the indefinite Bochner M-integral
Ag,— + B([0,1]) = LP~ defined by

Ny, (A) = (B) - / G- (t)dA(), for A € B(0,1]),

is an LP~-valued vector measure of finite variation. Moreover, for each k € N, the

variation [(Ag,_)x| is given by

(g, Jil(A) = / 2 (g (1)) dA(H) 2 / DY (D),

for A € B([0,1]). We therefore have, for each k € N, that the local-Banach-space-
valued vector measure (my,_ )y : B([0,1]) — L™ is given by

(s (4 = [ g dX®, for A€ B(0.1), (4.27)

where again g, (t) := X1, for all ¢ € [0,1], but this time considered as being an

L -valued function. Its variation measure is given by

(v, Jl(A) = | (A, )il(A) = / (1— )V dA(t), for A € B(0, 1))

see [28, Section 5|. Further investigations concerning the vector measure (my,_ )
and its variation also occur in [28]. As a consequence there is another interesting

space of integrable functions to investigate, namely

() L (10w, nl) = (VLM = DY dA (D).

keN keN

Recall that the topology of this Fréchet space is generated by the increasing sequence

of semi-norms { py }ren where, for each k € N,

n= [l = [ o0 o< @29
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for f € Nyen L' (|(mv,_)x]); see Section

In the forthcoming investigations we will make use of the following two lemmata.

For the Banach space setting of L? they occur as Lemma 5.1 and Lemma 5.3 in [2§].

Lemma 4.2.2
Let 1 < p < oo with g, as defined in (4.24) and let f : [0,1] — C be a measurable

function. Then the following assertions are equivalent:

(i) fg,— is Bochner A-integrable as an LP~-valued function.
(i) [} 1) (1 — ) dA(t) < oo, for all k € N,

(iii) f € Mien L1(|(mfo)k|)-
(iv) The function F; given by

Fy(w) = / CLF@1aA)

is defined for A\-almost every w € [0,1] and, for each k € N, the function Gy,
given by
Grar(w) = (1 = w) "™ Fy(w)

(where sy, is the conjugate exponent of 1) is an element of L.

Proof:

(i) < (ii) is clear as, for each k € N, the following equality holds:

/Olqk((fgp)(t))dw) = /(/ (1) g () (w)[™* dA(w ))Urkd)\(t)

= /O|f (/ | gp— () (w)|™ dA(w ))l/rkd)\(t)

/ )] g (g (1)) dA(2)
/ A1 = Y D).

So, the left-side is finite for each & € N (that is, fg,— is Bochner A-integrable) if and
only if the right-side is finite for each k € N.

(ii) < (iii) results from the definition of the semi-norms in (7, oy L1(|(mvp7)k|).
For each k£ € N, we have

/ F1 dl(my, )] / ()] (1= £/ dx(e).
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(iii) < (iv) To prove this equivalence fix an arbitrary & € N and let s; be the

conjugate exponent of 7. Then % =1- i and, for each t € [0,1], the equality

1

[0 = S(-3) amw ] —na-o

¢
holds. By applying Fubini’s Theorem we obtain that

1 1

re [ 1fdl(my, x| =
0 0
1

(1 —w) e d)\(w)) d(t)

X1 (w) (1 — w)_l/sk d/\(w)) dA(t)

I
2
—
=
~ N/~ N, N —

ol (1= ) dAw) ) ()
= [amwe ([l ow ) s
= [amwe ([Croiom) aw

= [a- e Ew i)

_ /O G p(w) dA(w).

Hence, [)'|f|d|(my, )| < oo, for all k € N (that is, f € Nyew L' (I(mv, )il)), if
and only if Gyj € L', forall k e N. O

Lemma 4.2.3
Let 1 < p < oo with g, as defined in (4.24) and let f : [0,1] — C be a measurable

function. Then the following assertions are equivalent:
(i) fg,— is Pettis A-integrable as an LP~-valued function.
(i) fe L' (my,_).
(iii) fol |F)][{gp-(t), 0)| dA(t) < o0, for every p € (LP7) .

(iv) The function F; as given in Lemma is defined for \-almost every w € [0, 1]
and Ff e L.
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Proof:

(i) < (iil) follows from the reflexivity of LP~ and the equalities

[lsow oo = [ 1560 -@.0)lao
- / O g (0), 0] AN,
for each p € (LP7)".

(ii) < (iii) Using formula (4.16) the scalar measure (my, , ) can, for each
€ (Lp_)*, be written as

(i YA P [ () 3O = [ (a0, ) are)

for all A € B([0,1]). Furthermore, by 1) the variation of (my,_, ) is given by

(s () = [ (- 0)] XD, tor A€ B(0.1),

Since L*(my,_) = L, (my,_), it follows that f € L*(my,_) if and only if

/If!dl - ,90>}—/ FO1|{gp- (1), )| dA(E) < o0,

for every ¢ € (Lp_)*. This is what was to be proved.
(iv) = (iii) Let F} E LP~. Choose an arbitrary ¢ € (LP7)", i.e., ¢ € L* for at
least one k£ € N where _- —|— — =1and 1 <7, Tx p. Then,

/!f )| (g (1), )| dA(t)
- [1sal ] / g (D)0 ¢<w>dx<w>\ aA(H)

< /|f ([ xeatw) letwlaray ) i
= [ ([ xou el ) ax
= [ ([ w0100 lewl ixw
= [ ([ o) o)

= /0 7 (w) [p(w)| dA(w) = (Fy,|el) < au(Fy)llells, < oo
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(iii) = (iv) Fix ¢ € (LP7)". Then,

\ / |f<t>|<gp_<t>,so>dA<t>\< [ 10100 30 <

Bu,
(Bl = | [ Erw)etw) i)
<[ (/ (O] () )|so<w>|dA<w>
= [ ([ w0100 1otw)l ixw
= [ ([ vt 150130 ) 1ot ax)

_ / ( / X (w) ol >|dA<w>) A1)

= /!f ) {gp- (1), |]) dA(t) <

(by hypothesis) as ¢ € L for some k implies that also |¢| € L% C (Lp_)*. So, we
have shown that |(F}, )| < oo, for all ¢ € (LP7)", meaning that F; € LP~. [

Lemma states some criteria that allow us to decide whether the inclusion

L' C L'(my,_) is proper or not.

Proposition 4.2.5
For each p € (1, 00) the inclusion L' C L'(my,_) is proper.

Proof:
Consider the function f :[0,1) — C defined by

1
fw) := i—w) for w € [0,1),

which is evidently not an element of L'. The claim is that the function Fy : [0,1) —

C defined by
- — —1In(1 -
/ 1 td)\ n( w)

is an element of LP~. To see this, fix an arbitrary & € N. Then, by substituting
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v :=1— w, we obtain

1 1
/ |Ff(w)|rk d\(w) = / (—In(1 — w))"™ dA\(w)
0 0
1
_ / (= In(v))™ dA(v)
01
= / viavo‘(—ln(v))rk dA(v)
0
where v™® € L' whenever 0 < a < 1. Now, fix an arbitrary « € (0,1). Then it

suffices to show that v®(—1In(v))™ € L*. Applying L’Hopital’s rule I times (I € N)

we obtain

. oaf Tk — .
g () = gy
—l Tk—l
)
v—0 v«
(= 1) (= (U= 1) (= In(w))™
= lim T
v—0 Qv

Continue until (r; — ) < 0. Then,

lin re(rg —1) - (m;il; 1))(=In(w)=" 0

and, hence, v“(—ln(v))rk € L™ as required. As k € N was chosen arbitrarily,
—In(1 — w) € LP~. Lemma now implies that f € L'(my, ). O

Thus, we obtain the chain of proper inclusions

L~ S L' G LY (my, ).

There are still some further connections between various spaces of integrable func-
tions. According to (2.34)) we know that

() 2 ((mv, )el) € L ma, ) < () B ((mvg i)

keN keN

with all inclusions being continuous. The question arises whether both inclusions
involved are proper. The answer for the right-hand inclusion is no. Actually, it is

an equality.
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Proposition 4.2.6
For each p € (1,00) we have L*(my, ) = (| L' ((mv,_)x).

keN
Proof:

It suffices to show that (.o L' ((mv,_)r) C L'(my,_). Recall, for each k € N,
that the vector measure (my,_); : B([0,1]) — L™ is given by

(my, Je(A) / gr, (1) dA(E), for A € B([0, 1)),

where g,, : [0,1] — L™ is defined by g, (t) := xp1- Fix £ € N. In Lemma 5.3 of
[28] it was shown that,

1
fel((my, i) < /‘UwH@mwwﬂdMﬂ<“x%Hm¢€L%,MBW
0
where s is the conjugate exponent of r.

Now, let f € en Ll((mvp_)k). Choose an arbitrary ¢ € (Lp_)*. Then p € L%
for some k € N. Tt follows from (4.30)) that

/0 |FO)][{gr, (1), )| dA(t) < 00.

Since g,—(t) = g, (t)|Lr—, for each t € [0, 1], it follows that

/0 ()] |{gp- (1), )| dA(t) < o0.

As ¢ was chosen arbitrarily this is true for all ¢ € (Lp_)* and so Lemma m
implies that f € L'(my,_). O

What about the inclusion

() L' (|0my, )el) € L' (m,_)? (4.31)

In |28 Section 4] it was shown that in the case of the Volterra operator V, being
defined on the space L", for 1 < r < oo, the inclusion becomes an equality whenever

r=1orr=o0,i.e.,
L'(Jmy|) = L'(my,)  tesp.  L'(Imy.[) = L' (my..).
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However, if 1 < r < 0o, then

LY (Imw;]) & L (my;).

Indeed, the function f, : [0,1) — C defined by

o (I—=In(1—=1¢t))—r
SO = g —m =g e

)7 [267 pp. 125-
127]. The attempt to construct a similar function, which could verify that the

where ¢ := 1 — exp(1 — r), belongs to L!(my.) but not to L'(|my,

inclusion (4.31)) is proper as well, ended without success. So, the question whether

the inclusion is indeed proper or reduces to an equality is still open.

A last problem that is worth to be solved concerns the properties of the integration
operator
Ly,

Vp—

: LY(my, ) = L7,

more precisely, the compactness of Imvp_ . Recall, for X, Y being Fréchet spaces, that
a continuous linear map T : X — Y is called compact if there is a neighbourhood
U of zero in X such that the closure of its range T(U) is compact in Y. Since
this definition may not always be the best one to check compactness of a given
integration operator I,,, : L'(m) — X associated with a Fréchet-space-valued vector
measure m : X — X, [24] provides alternative characterizations of compactness of
I,,,. In the case of Imv,,,» the following theorem turns out to be quite helpful, [24] p.

211 & p. 220].

Theorem 4.2.1

Let X be a Fréchet space and m : ¥ — X be a vector measure. The integration
operator I,, : L'(m) — X is compact if and only if there exists an index | € N such
that I,,,, : L*(my) — X}, is compact and L*(my) = L'(my), forevery k > 1. [

Having this theorem and the results established in [28] available the question con-
cerning the compactness of the integration operator ]mvp_ is answered immediately.
To show that I, - L'(my,_) — LP~ is compact we needed to prove the existence
of an index [ € N such that Iy, Ll(mvrk) — L™ is compact, for all k > [. How-
ever, the investigations in [28, Proposition 5.5| revealed that none of the integration
operators I, : L'(my,) = L", for 1 <r < oo, is compact. Thus, the requirements
for the compactness of ]mvp_ as stated in Theorem are not met and we can

draw the following conclusion.
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Proposition 4.2.7
For each p € (1,00) the integration operator Iy, L'(my,_) — LP~ is not compact.
0]

4.3 The convolution operator

In this section we turn to integration on a certain class of topological groups. Let
(G,+) be an (additive) compact Abelian group and consider the finite measure space
(G, B(G), 1) where p is normalized Haar measure on G, Le., u(G) = 1, and B(G) is
the Borel o-algebra of G. For p € (1,00) fixed, let LP~(G) be the Fréchet function
space as defined in Example this time defined on G instead of the interval
0,1]. That is, LP~(G) = ey L™ (G) with 1 < 74 T3 p, equipped with the norms

1/rg
=(/G |f|’"’“du) Sl for £ € I (@),

for k € N.

For g € L'(G) fixed, define on LP~(G) the convolution operator C?~ : LP~(G) —
LP~(G) given by f+— CP~(f) where

Co (f)(x) = f * g / fy du(y), for u-almost every z € G.
(4.32)
Since for functions f € L™ (@), with k € N, and g € L'(G) the resulting function
f * g is an element of L™ (G) (see p. , it is clear that indeed C?~(f) € LP~(G),
for all f € LP~(G). Note that the convolution operator is linear. It is continuous as

well as seen via the next result.

Proposition 4.3.1
Foreach1 < p < oo and g € L'(G), the convolution operator C2~ : LP~(G) — L~ (G)
is continuous.

Proof:

Let f € LP~(G). Then f € L™(G), for all k € N, and since g is an element of
L'(G), we obtain by applying (2.38)) that

a(C (1) =a(Fx9) < al(f) gl = M au(f),

=M

for all £ € N. Thus, C?~ is continuous. [
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We now take a closer look at the vector measure Mep- associated with the operator

Cy~, Le., the vector measure mp- : B(G) — LP~(G) defined by

mog—(A) =CP (xa) = xaxg, forAecB(G).

9

Clearly, Mep- is finitely additive. To see that Mep- is a vector measure let {A;},en C
B(G) be any sequence satisfying A; |; @. For k € N fixed, we obtain that

(2.38)

qk(mcg— (A])) = gk (XAj * g) < Qk(XA]) ||g||1

1/rk
= ([ arean) ol
G

= u(A4)"™ gl
for all 7 € N. But, p being a measure, it follows that
< i —(A)) < i L/ =
0< jlgg Qk(mcg (AJ)) X J.lggoﬂ(AJ) ||9||1 0

implying that Mep- is o-additive.

For each g € L'(G) define the reflected function g € L'(G) by g(z) := g(—=z), for
all z € G. Then we obtain, for each A € B(G), that

Cy (xa)(z) = /GXA(y)g(:r —y)duly) = /Ag(x —y)duly) = /Aé(y — ) dp(y),
for z € G. For each ¢ € (L~ (G))" = Upey L (G) with % + i = 1 (see Example
2.3.1| (i) with G in place of [0,1]), we can deduce a formula for the scalar measure
<mcg—, ¢) : B(G) — C given by

<mcg—, ©)(A) == <mcg—(A), @), for A€ B(G).

Namely, by applying Fubini’s Theorem [2.2.3] the expression can also be written as

T~

(mee-(A),0) = (Ch(xa)s )

Cy~ (xa)() (x) dp(z)

S—a—

(xa* g) (@) ¢(x) du(z)

= /G(/GxA(y)g(:c—y) du(y)) ¢(x) du(z)
= /GXA(y) (/Gg(x—y)q)(l‘) du(l’)) du(y)
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~ [ ([ at- 60 dute)) autr

= / (g * (p) dp, (4.33)
A
for each A € B(G). Note that g x ¢ € LY(G) for at least one ¢ € (1,00). This is

due to the fact that § € L}(G) and ¢ € (IP~(G))" = Upey L (G) implying that
@ € L1(G) for at least one ¢q € (1, 00).

Our main investigations will concentrate on the space Ll(mcg—). Let the measurable

function f : G — C be mcg——integrable, le.,

/G’|f| d‘<m0§’_’90>| < oo, forall pe (Lpi(G))i

and, for each A € B(G), there exists an element [, f dmep- € LP~(G) satistying

</Afdmcg7§0> = /Afd<mcg,gp>, for p € (LP(G))".
Then, for each A € B(G), we have via Fubini’s Theorem [2.2.3) that
[ ratmeo) @[ 1w @) auty)
= [ ([ -2 e)dute)) dut
=[x ([ s - e ) dut)

= /G(/G(fo)(y)g(fv - y) du(y>> p(z) dp(z)

- /G ((Fxa) * ) (@) (z) du(z)
= {(fxa)*g.9),

where the last equality is only possible if (fxa) * g € LP~(G). Hence, the indefinite
integral of f € L' (m,-) over A € B(G) is given by

Afdmcg‘ =(fxa)*xg, for Ae B(G), (4.34)

provided that (fxa) x g € LP~(G), for every A € B(G). In this case, the vector
measure Mmep- , : B(G) — LP~(G) associated with the indefinite integral of f is
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given by
mcg*,f(A> = /Afdmcg = (fxa)xg, forAeB(G). (4.35)

In order to apply the theory of Chapter We need to show that C?™ is u-determined.
To prove this and some of the forthcoming assertions we will make use of the fact
that for each A € B(G),

mep-(A) € LP7(G) = () L™(G) € L™(G), forall k € N.

Hence, it makes sense to take the local-Banach-space-valued vector measures
(mc_f,’*)k’ 1y o mgp- B(G) — L™(G), for k€N,
into account. For fixed k € N, we thereby have
My (A) = (mep e(A) = xa % g € L'(G),

for all A € B(G). Note, for each k € N, that the vector measure (mcgf)k coincides
with the vector measure mqre : B(G) — L™(G) as investigated in [25]. We follow

that notation and write
(mog—)k(A) =1 M7 (A) = C;k (xa), for Ae B(G), (4.36)

where Cgk : L™ (G) — L™(G) is the Banach-space-valued operator of convolution
with g € LY(G).

Proposition 4.3.2
For each 1 < p < oo and g € L'(G)\{0}, the convolution operator C?~ : L'~ (G) —
LP=(Q) is u-determined.

Proof:
We apply Lemma which states that the operator C?~ is u-determined if

and only if the mcg——null sets and the p-null sets coincide. We show at first that
No(mep-) € No(p) holds. Let A € No(m,p-), that is,

mer-(B) = xpxg=0¢€ L' (G),

for all B € B(G) with B C A. Since LP~(G) C L™ (G), the discussion prior to this

proposition gives that
mern (B) = xp*g=0¢€ L™(G),
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for all B € B(G) with B C A, meaning that A € N()(mcgl). But, by applying
Lemma 2.2 of [25] to the Banach-space-valued vector measure m¢r, we obtain that

A € No(n). Hence, No(mcg—) C No(p)-

The inclusion No(u) € No(mep-) is an immediate consequence of Lemma w
Let A € B(G) be any p-null set. Then yxp is a p-null function, for all B € B(G)
with B C A and, thus, by Lemma also an mcgf—null function. But this means
that A is an mgp--null set, ie., No(p) C J\/'o(mcg_). Thus, the p-null sets and the
mcgf—null sets coincide and so, by Lemma , CP™ is p-determined. [J

According to the previous result, the y-determinedness of C2~ implies that the p-null

functions and the mog——null functions coincide, i.e., that
N() = Nmey),

and the same is true for the null sets, i.e.,
Nolk) = No(mey ).

By applying the theory of Chapterwe can derive some additional facts about Mep-
and Ll(mcg-). Proposition yields that each f € LP~(G) is mep--integrable,
ie.,

L77(G) € LMmey ),

and so, for each f € LP~(G), the equation
Cr () = (Pua) «9 = [ amey, tor A€ BG),
holds. Furthermore, Theorem ensures that L'(mey-) is the optimal domain
of CF™ and its optimal extension is the integration operator I, Ll(mcg—) —
LP~(@G) given by '
[mcg—<f) = /GfdmCS =fxg, forfe Ll(mcgf).

Moreover, since LP~(G) is reflexive, Ll(mog—) = L}U(mog—).

This allows us to study further the space Ll(mcgf). Let us first establish the

following two statements.

Lemma 4.3.1
Let 1 <p<ocandge LY(G). Then, L'(mep-) € LH(G).

116



Proof:

Let f be an mcp—-integrable function. Since LP~(G) is reflexive, f € Ll(mcgf)

is equivalent to f € L}U(mcg—) meaning that

/G”f| d’<m(]§7790>| < oo, forall pe (Lp_(G))*7

where (Lp*(G))* = Upen L°#(G) with % + L =1and 1 <7t p. In particular,

Sk

for any fixed £ € N we have

/G | f] d|<mcg—,<p>| < oo, forall p € L°*(G). (4.37)
On the other hand, as discussed prior to Proposition [4.3.2]
mep-(A) = meg (A) = xa % g € LP(G) € L™(G),
for all A € B(G), and thus,

<mc§‘7 90> = <mC§k , ‘P>

as scalar measures. Hence, (4.37) shows that
/ |f1d|(mere, )| < oo, forall p € L*(G) = (L™(@))",
¢

meaning that f € Liu(mcgk) and since L™ (G) is reflexive, f € Ll(mc«;k). By
Theorem 1.1 (v) in [25] it is known that L'(mgri) € L'(G). Hence, f € L'(G) and

the assertion of this lemma holds. O

Lemma 4.3.2
Let 1 <p <oo, g € LYG) and f € L'(mep-). Then (fxa) * g € LP~(G), for all
A € B(G).

Proof:

Let f € Ll(mcgf). In the proof of Lemma it was shown that necessarily
fe Ll(mcgk), for all £ € N. For any fixed k£ € N, Theorem 1.1 (vi) of [25] implies
that (fxa) *g € L™(G). But, as k € N was chosen arbitrarily it follows that
(fxa) *g € L™(Q), for all k € N, and consequently (fxa)xg € LP~(G). O

The previous thoughts give an idea for characterizing the space Ll(mcgf). Indeed,

whenever g > 0, we obtain the following result.
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Proposition 4.3.3
Let 1 < p < oo and let g € L*(G)\{0} satisfy g > 0. Then,

LY mcp ={f € LYG): (fxa)xg € LP(G), forall A € B(G)}.

Proof:

Let f € L'(m¢p-). Then f € L'(G) by Lemma W Moreover, Lemma W
yields that (fxa) * g € LP~(G), for all A € B(G). Hence,

Ll(mcgf) C{feL(@): (fxa)xge L' (G), for all A€ B(G)}.

Conversely, let f € LY(G) satisfy (fxa) x g € LP~(G), for all A € B(G). Fix
k € N. Since LP~(G) C L™ (G) it follows that

(fxa)*xge L™(G), forall Ae B(G).

By Proposition 3.2 of [25] we can conclude that f € Ll(mcgk) for the Banach-space-
valued vector measure mere : B(G) — L™(G). Then f € L}U(mcgk) and so,

/ | f] d‘<mcgk,<p>‘ < oo, forall g€ (L™(G))" = L*(G).
G
However, as noted prior to Proposition

mcg—<A) =mer(A) = Cg*(xa) = xaxg, for A€ B(G).

Hence,
/ |f] d|<mcgf,g0>| < oo, forall p € L*(Q). (4.38)
a

But, £ € N was arbitrary, so 1) holds for all k¥ € N and since (Lp‘(G))* _
Uren L*(G), it follows that

/G|f| d|(mep-, )| < oo, forall p € (L (G))",

that is, f € L, (mgp-) and since LP~(G) is reflexive, f € L'(meyp-). O

Remark 4.3.1
Observe that the first part of the proof of Proposition 4.3.3|did not use the condition

g = 0 and so the inclusion
L'(mep-) C€{f € LY(G) : (fxa) xg € L' (G), for all A € B(G)}
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holds for any C-valued function g € L'(G).

In contrast to the investigations above, we now change the conditions on ¢g. From
now on g will always be an element of the smaller space LF~(G) C L'(G). Propo-
sition W gave a characterization of the space L'(m,-) for g € L'(G) satistying
g = 0; the question now is whether a characterization of Ll(mcgf) is also possible
for g € LP~(G), but without assuming g > 07

So, let g € LP~(G). Define, for y € G fixed, the translation operator 1, : LP~(G) —
LP~(G) by

7y(9) = g(- — ). (4.39)
The fact that the Haar measure p is translation invariant ensures that the translation

operator 7, is continuous on LP~(G). To see this, choose an arbitrary function
g € LP~(G). Then, for each k € N, we obtain that

a(ry(9)) = (/GlTy(g)‘rk dlu)l/m

= ([ 1ste =)l auto)) o

- (/G|g(l’)l”“ du(f’f))l/rk = ai(9)- (4.40)

This shows that 7,(g) € LP~(G), for each y € G, and that the operators {7, |y € G}
are all continuous on LP~(G).

Fix g € LP7(G). Associated with 7, define the LP~(G)-valued function FI~ : G —
LP~(G) by
Ey(y) = my(9) = 9(-—y), foryeC. (4.41)

The function FP~ will serve us well in the following investigations. This is due to

its special properties, two of which we state here.

Proposition 4.3.4
For each 1 < p < oo and g € L~ (G), the function F?~ as defined in (4.41) is
continuous.

Proof:

Fix £ € N and note that ¢ € L™(G). Hence, by the uniform continuity of
the function FJ* : G — L™(G), [30, p. 3], for any given ¢ > 0 there exists a
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neighbourhood V}, of zero in GG such that

Qk’(Fg_(w) - F;‘(y)) = qr(Tw(g) —y(9)) <¢

whenever w —y € V.. [

Proposition 4.3.5
For each 1 < p < oo and g € LP~(G), the function P~ as defined in (4.41)) is Bochner

p-integrable.
Proof:

Let g € LP~(G). Since F}~ is continuous and G is compact, F?~(G) is compact
in the Fréchet space LP~(G) meaning that FP~(G) is a compact metric space and
thus, is separable, [22, pp. 18-19]. Hence, F?~(G) is a Suslin space and it follows
from [34, pp. 67-68] that F~ is strongly u-measurable.

Moreover, we have for each k € N

a(F2 (1) = a(y(9) = aulg), forally € G, (4.42)

and thus,
/ a (F?~(y)) dp = / ar(9) i = qr(g) p(G) < 0.
G G

Hence, FP™ is Bochner p-integrable. [

For the following proposition and main result of this section we take a second time
a closer look at the local-Banach-space-valued vector measures (mcgf)k : B(G) —
L™ (@), for k € N, given by

mep(4) = (meg W(A) = [ glo =) duta) = [ 70)w) duta)
where 7,(¢g) := g(- —y) is again the translation operator, this time having L™ (G) as
domain and codomain. It follows from Lemma 2.3 (ii) of [25], for each k € N, that

the variation measure |mqr | = |(mcgf)k| : B(G) = [0, 00] of mere is given by

[men

(A) = |(mez-)il(A) = A\\F;k(y)}}rk dp = [|g|lrp(A), for A€ B(G),
(4.43)

where I+ is defined as in (4.41) this time, however, considered as an L™ (G)-valued

function. Note that each Fj* is Bochner p-integrable as well, [25, p. 532].

Now we can prove the main result of this section; it states six equivalent assertions
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that hold whenever ¢ is an element of LP~(G)\{0}.

Proposition 4.3.6
For 1 < p < oo and a non-zero function g € L'(G) the following assertions are
equivalent:

(i) g € L (G).

(ii) Mep- s of finite variation.

(i) Mo L' (0meg el) = LY.

(i) L' mgy) = L'(G).

(v) Mien L (I(meg-)il) = Lt (mey-).

(vi) mep- has an LP=(G)-valued Bochner density F?~.
Proof:

(i) < (ii) Assume that g € LP~(G), meaning that g € L™(G), for all £ € N.
According to [25] Theorem 1.2] each of the vector measures mqr = (mep-)i
B(G) — L™(G), where k € N, has finite variation and thus, Mep- B(G) — L~ (G)

is of finite variation as well.

Conversely, let Mep- be of finite variation. By definition this means that each
of the vector measures (mcg;—)k = mgre © B(G) — L™(G), for k € N, has finite
variation. But, for k& € N fixed, this is by [25, Theorem 1.2]| equivalent to the
requirement that g € L™ (G). As this is true for all & € N it follows that g € LP~(G).

(i) = (iil) Let g € LP~(G). Then g € L™ (G), for all k € N. Theorem 1.2 of [25]
(see (i) & (vi)) yields then that

M L (I0mep)el) = () L (Imeze]) = LY(G).

keN keN

(iii) = (iv) It follows from (2.34) and (iii) that

LNG) = [ L (I(mep-)el) € LM (mep-) (4.44)

keN

and from Lemma that

L'(mg-) C LY(G). (4.45)

g

It is then clear that (iv) holds.

121



(iii) = (v) follows immediately from (4.44) and (4.45).
(iv) = (i) Let L'(mgp-) = L'(G) be true. By Remark [1.3.1] we then know that

LYG) = LY (mep-) C{f € LNG) : (fxa)*g € LP7(G), for all A € B(G)} C L'(G).

Consequently, for any f € L'(G), the function f * g is an element of LP~(G) =
MNien L (G). So, for k € N fixed, fxg € L™(G), for all f € L'(G), yields according
to [15] Lemma 35.11] that g € L™(G). As this is true for all £ € N we obtain that
g € L™(@Q), for all k € N, and thus, g € L~ (G).

(v) = (i) Assume that

ﬂ L' ([(mep-)il) = L (mep-)

holds. Making use of Proposition and the fact that LP~(G) contains the B(G)-

simple functions, we obtain the following chain of inclusions:

sim(B(G)) € LP(G) € L'(mep-) = [ L' (|(mep-)

keN

But this means that xg € (e L' (|(mcgf)k|). Furthermore, since pi(xa) < oo, for
all £ € N, the equalities

nxe) = [ el dltmeg il = gl u(G) = (o)

—1
imply that gx(g) < oo, for all k£ € N, and hence, g € LP~(G).

(i) = (vi) It is known by Proposition Wthat FI'=: G — LP7(G) as defined in
(4.41)) is Bochner u-integrable. Furthermore, for each A € B(G), we obtain that

(B) - /AFé"(y) dp(y) = xa* g =mep-(A).

This follows from [25, Lemma 2.3 (ii)] applied in each Banach space L™ (G) to mcrx,
for k € N, after noting that F?~ can be interpreted as being L™ (G)-valued, where
it is denoted in [25] by Fj*.

(vi) = (ii) Let F?~ : G — LP~(G), as given in , be the Bochner density
of Mep- Fix an arbitrary k£ € N and consider the local-Banach-space-valued vector
measure (mep-)k = mene = B(G) — L™(G). Then F§™ : G — L' (G) € L™(G) is
the Bochner density of mere. It follows from [25, Lemma 2.3] that mere = (mcg—)k

has finite variation. As this is true for all £ € N, the vector measure Mep- is by
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definition of finite variation. O

From the results we have obtained in Proposition we can deduce an additional

property of the integration operator

.71 -
mcgf L (mcé’f) — LP (G)7

namely the compactness of ]ch*' For the proof we can fall back on Theorem [4.2.1
g

again.

Proposition 4.3.7
Let g € L'(G) be a non-zero function. Then the following assertion is equivalent to the

assertions (i)—(vi) of Proposition[4.3.6

(vii) The integration operator I e Ll(mcgf) — LP~(QG) is compact.

g

Proof:

First, assume (i) of Proposition ie., g € LP~(G)\{0}. According to the
implication (i) = (iv) of Proposition we have L'(mgp-) = L'(G). Let | € N
be the smallest integer such that ¢;(g) > 0 yielding that g € L™ (G)\{0}. It follows
from Theorem 1.2 of [25] and the discussion prior to Proposition that also
Ll((mcg—)l) = L'(m¢n) = L'(G) and hence,

L (mcg—) =L ((mcg— )i)-

Since the semi-norms {qx }ren are increasing in LP~(G) we have ¢x(g9) > q/(g) > 0,

for all £ > [. The same argument as for [ shows that
Ll(mcgf) = Ll((mcgf)k), for all k > [.

As for each k£ > [ we have g € L™(G)\{0}, Theorem 1.2 of [25] implies that the
integration map

Ty L ((meg- ) = L™(G)

m057
is compact, for all k£ > [. Hence, all assumptions of Theorem are fulfilled for
Mep- B(G) — LP~(G) and we can conclude from that result that

ney-  Mmgg) = 1P7(0)

is compact, i.e., (vii) holds.

Now assume I, , LY(mgp-) — LP~(G) is compact. Choose [ € N as in

123



Theorem By that result

Lty L ((mep-)i) = L™(G)

g

is compact, for all k¥ > . Then [25, Theorem 1.2| yields that g € L"(G), for all
k > 1, and since L*(G) C L"(G) for s > r we obtain that

g €[ VL™MG) =) L™(G) = L' (G),

k>l keN

that is, condition (i) of Proposition holds. O
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Chapter 5
Conclusion

The results we have obtained in Chapter |3 revealed that the “optimal domain pro-
cess” works also for continuous linear operators T': X () — X defined on a Fréchet
function space X (u) over a o-finite measure space (2,3, 1) and with values in a
Fréchet space X. Of course, as in the case of Banach function spaces, to obtain
that the optimal domain of T"is L'(my7) and its optimal extension is the integration

operator I,,. it is necessary that the space X (u) and the operator T fulfil certain

T
requirements. First of all, the definition of the set function my : ¥ — X associated

with the operator T' given by
mp(A) :=T(xa), for AeX,

expects the space X (u) to contain the X-simple functions sim(X). Moreover, as
in the case of Banach function spaces where the o-order continuity is essential we
cannot do without the o-Lebesgue topology of X (u) (which is the analogue to the
o-order continuity of a Banach function space). It ensures that sim(X) is dense in
X (), as established in Lemma [2.3.2] and that the finitely additive set function msy
becomes og-additive and hence, a vector measure, as seen in Proposition By
Proposition and Proposition we know that under these conditions X (u)
is always contained in L'(mz) and that the inclusion map jr : X(u) — L'(mz)
is continuous. However, to make sure that X (u) is continuously embedded into
L*(mr) the inclusion map jr : X (u) — L'(m7) needs to be injective; a property jr
has whenever the operator 7" is y-determined (Proposition and Lemma [3.2.2)).
Having all these “ingredients” available it follows that the Fréchet function space
L'(m7) is the largest amongst all Fréchet function spaces over (2,3, 1) having a
o-Lebesgue topology into which X (u) is continuously embedded and to which T
admits an X-valued continuous linear extension. Moreover, such an extension of T’
is unique and is precisely the integration operator I,,, : L'(mr) — X (Theorem
3.3.1).
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Such a strong result as Theorem [3.3.1] calls for applications. The operators we
have chosen in Chapter [4 have received much attention when defined on a Banach
function space. Therefore it was challenging to find out how the results differ when
the operators were defined on a Fréchet function space. Since the Fréchet function
spaces should contain the Y-simple functions and have o-Lebesgue topology the
choice fell on the spaces LP~([0,1]) resp. LP~(G) and LY (R) (see Example [2.3.1
and Example [2.3.2).

The first results concern the multiplication operator M}~ : LP~([0,1]) — LP~([0,1]),
for p € (1,00) and g € MP~ fixed, which is indeed a continuous linear operator
(Proposition . Moreover, it is A-determined (and thus, the theory of Chapter
is applicable) if and only if g # 0 A-a.e. on [0,1] (Proposition [£.1.2). It is then
known that the optimal domain of MP~ is Ll(mMgf) and its optimal extension is
I

MP~

. A characterization of L'(m,,,-) is given by
: :

LY (my-) = {f € L([0,1]) : fg € L7 ([0, 1))}

(Proposition . The subsequent investigations showed that a major part of
the results in Subsection depends on the function g. A remarkable connec-
tion between the vector measure m,,»- and the spectral measure P : B([0,1]) —
Ls(LP=([0,1])) given by P(A): f s fxa, for A€ B([0,1]) and f € LP=([0,1]), how-
ever, allowed us to use the investigations in [I] to find a characterization of MP~,

namely

MPm = () L*([0.1]).

1<s<o0

Moreover, the same characterization of MP~ makes it possible to decide for which
g € MP~ the optimal domain coincides with L~ ([0, 1]). This is done in Proposition
414 which states that

Ll(mMgf) = LP7(]0,1]) if and only ifé e M.

Finally, further studies on the vector measure M- showed that the variation of
My~ is infinite for every g € MP7\{0} (Proposition |4.1.5)).

The investigation of the multiplication operator M}, : Lf, (R) — L (R), where
p € (1,00) and g € M, is fixed, produced similar results. So, M}, . turns out

to be continuous (Proposition [4.1.6) and to be A-determined if and only if g # 0
A-a.e. on R. In that case, the theory of Chapter |3|implies that the optimal domain

of M;loc is Ll(mM;mc) and its optimal extension is the integral operator [me; " A

126



characterization of L'(my» ) is
g,loc

L'(myp )={f€L'R): fge L (R)}

g,loc

(Proposition 4.1.7)). Again, there is a connection between the investigations in [I]
concerning the spectral measure P : B(R) — L, (L} (R)) given by P(A): f = fxa
for each A € B(R) and f € Lf .(R), and the space M} . Indeed, Proposition [4.1.8]

loc loc*

identifies the space MY as

~

ME = LX(R)=L'(P).

loc

loc

The question whether Ll(mMp1 ) is strictly larger than L} (R) could not be an-
g,loc
swered without taking a closer look at the function g. So, whenever % € L¥ (R) the

(R) coincide, but as soon as + ¢ L (R) this needs not
g

1 P
spaces L (mMgp’loc) and L o

loc

to be the case and the inclusion L} .

(R) € L'(myer ) may indeed be proper. A last
g,loc
result on the vector measure my» associated with the operator M. concerns its
g,loc )

variation. It is infinite, for every g € MP \{0} (Proposition [4.1.9)). Note that in all

loc

these investigations the case p = 1 has not been considered.

The study of the Volterra operator V,,_ : LP~([0,1]) — L*~(]0,1]), for p € (1, 00),
revealed that many of the results obtained in Section resemble those established
in [28]; there the Volterra operator V,. defined on the Banach function space L"(]0, 1]),
for 1 < r < oo, was investigated. First of all, since V,_ is continuous (Proposition
and injective (Proposition , thus, by Corollary also A-determined,
we can apply the theory of Chapter |3 to conclude that Ll(mvp_) is the optimal
domain of Vj,_ and its optimal extension the integral operator ]mvp; However, the
investigations should not only concentrate on the space L'(my,_) but also include
the spaces (Vey L' (|(mv,_)x]) and Ny L' ((my,_)x). With the aid of the function
gp— 1 [0,1] — LP=([0, 1]) given by

gp,(t) = X[t fort € [0, 1],

it is possible to give a full characterization of the spaces (o L' (|(mv,_)x|) and
L'(my,_ ) (Lemma and Lemmal4.2.3)). In summary, concerning the connections

between the different spaces, we have the following inclusions:
Lr=([0,1]) G LY([0,1]) G L' (mv, ),

yielding that the optimal domain of V,_ is indeed strictly larger than LP~ ([0, 1])

(Proposition and Proposition [4.2.5)). Moreover, Proposition established
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the equality

) =)L ((my, )

mv
keN

Still open, however, is the question whether the inclusion

ﬂ L mvp ) C L (mvpf)

keN

is strict (which would be the respective result to the case of V, defined on the
Banach function spaces L"(]0,1]), where 1 < r < o0) or reduces to an equality.
Further investigations took a closer look at the variation of my,  and the properties
of the integration operator Imvp_. Since my,_ coincides with the Bochner A-integral
of g,— (see the discussion following Lemma its variation is finite. And as in
the case of the Volterra operator V. defined on the Banach function space L" ([0, 1]),
where 1 <7 < oo, the integration operator I, is not compact (Proposition .

Regarding the convolution operator C¥~ : LP~(G) — LP~(G), where p € (1,00) and
G a compact Abelian group, we obtained a couple of results which keep on the whole
to the results established in [25]. Since C?~ is continuous (Proposition and
pi-determined, for each g € L'(G)\{0} (Proposition[d.3.2), it is clear from the theory
of Chapter 3| that the optimal domain of C?™ is Ll(mcg—) and its optimal extension
is the integration operator [,

. A first characterization of the space Ll(mog-)
shows that ’

L'mep-) = {f € LNG) : (fxa) x g € LP~(G), for all A € B(G)},

whenever g € L'(G)\{0} satisfies ¢ > 0 (Proposition [£.3.3). A more interesting
result can be achieved when ¢ is an element of the smaller space LP~(G). By making
use of the continuous and Bochner p-integrable function F?~ : G — LP~(G) given
by

FV(y) =g(—y), foryeG

(Proposition and Proposition , it is possible to establish seven equivalent
assertions which hold if and only if g € LP~(G)\{0} (Proposition and Propo-
sition . Among others we obtain the equality L'(mg,-) = L'(G). Since mep-
coincides in that case with the Bochner p-integral of FF™ it follows that Mep- is of

finite variation. And last but not least, the integration operator [mcp_ turns out to
g

be compact if and only if g € LP~(G).

Nevertheless, the operators investigated in Chapter {4 represent only a small part of

the applications that are possible with the results established in this thesis. Many
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more operators T defined on Fréchet function spaces (others than only LP~(]0, 1]),
LP~(G) and L} (R)) wait to be studied. Prospective investigations will not only
be interesting in view of the optimal domain L'(mr) of those operators and the
question whether L'(mr) is strictly larger than the original domain, but also in

view of their optimal extension, the integration operator I,,,, and its properties.
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