
Eric MSP Veith

Universal Smart Grid Agent

for Distributed Power

Generation Management

λογος

UNIVERSAL
SMART GRID AGENT
FOR
DISTRIBUTED
POWER GENERATION
MANAGEMENT

By Eric MSP Veith

eveith@veith-m.de

λόγος

Logos Verlag Berlin

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Diss., Technische Universität Bergakademie Freiberg, 2017

c©Copyright Logos Verlag Berlin GmbH 2017

Alle Rechte vorbehalten.

ISBN 978-3-8325-4512-3

Logos Verlag Berlin GmbH
Comeniushof, Gubener Str. 47,
10243 Berlin
Tel.: +49 (0)30 42 85 10 90
Fax: +49 (0)30 42 85 10 92
INTERNET: http://www.logos-verlag.de

Abstract

Renewable energy sources provide an ever increasing amount of the global
electric power generation. However, for many regions, even whole countries, the
go-to primary renewable energy sources that are available in large quantities
are wind and solar radiation, which are highly volatile since they depend on
a factor that is not human-controllable: the weather. The traditional power
grid featured centralized power generation and a hierarchical structure; but in
addition to the volatility, renewable energy sources blur the distinction between
generator and consumer: Through photovoltaic panels on rooftops, a consumer
can alternate between becoming a generator and a consumer during any one
day. Moreover, wind farms and larger photovoltaic power plants feed into
the intermediate layer of the power grid, the distribution grid. Today, lower
levels of the power grid feed back into the upper levels, voiding the traditional
hierarchical structure of the power grid; power generation has also become
distributed, just as the consumption of power. Due to technical restrictions
that are inherent in the type of power plant, the traditional coal, oil, or nuclear
power plants cannot accompany this volatility with arbitrarily changing their
power generation.

At the same time, the notion of the smart grid introduces a vast array of new
data coming from sensors in the power grid, at wind farms, power plants, and
consumers. The new wealth of information can help in managing the different
actors in the power grid. This thesis proposes to view the outlined problem of
power generation and distribution as a problem of information distribution and
processing.

To accommodate the new, decentralized architecture of the power grid,
an equally decentralized approach to grid-wide information processing and
distribution is sensible. Each power plant, substation, transformer, and large
consumers, such as factories, become agents that exhibit proactive behavior

i

ii ABSTRACT

and communicate to maintain the grid-wide power balance.
Local forecasting is the basis for these entities. Every agent forecasts its

future power balance or imbalance from historic data. The agents utilize
individually trained Artificial Neural Networks to exhibit this forecast. The
agent now seeks the help of other agents to solve this disequilibrium. The
rules of this exchange are governed by a protocol designed in this thesis. The
core principle of the rules that govern the information exchange is to arrive
at a power equilibrium while being as scalable as possible without any agent
having a priori knowledge of other agents. For this, the protocol remodels
the power grid in the communication architecture to take advantage of the
properties of the electric grid. Which agent contributes which part to the power
equilibrium, however, remains a combinatorial problem. This thesis models
the demand and supply of power in the Boolean domain. The power balance
solver leverages Ternary Vector Lists and the XBOOLE system to master the
emerging complexity. Thus, a distributed demand-supply calculation is defined.

The thesis proves the feasibility of this approach and introduces a metric
that combines the information-centric world of the agent software with the
world of the power grid. This metric, the data efficiency, shows the impact of
the computational approach and enables the comparison of different approaches.
This thesis then shows the efficiency gain in terms of line loss avoided based on
this metric, comparing the Universal Smart Grid Agent to other solutions.

Acknowledgements

I sincerely thank Prof. Dr. Bernd Steinbach, my doctoral thesis supervisor,
from the bottom of my heart for his tremendous amount of help, feedback, and
encouragement during the creation of this thesis. Without your trust, I would
never have been able to even start this dissertation. Without your patience and
your time, I would never have been able to complete it.

I feel deeply indebted to Prof. Dr. Johannes Windeln, my mentor, who
enabled me to pursue this goal. Had you not given me this chance, and supported
me through these years, I would not be where I am today.

I am grateful to Prof. Dr. Jürgen Otten, my second supervisor, who very
kindly supported me, gave me valuable suggestions, and helped me in many
ways.

I also specifically thank the German Ministry for Economic Affairs and
Energy for funding the comCIGS II project. The members of this project
provided me with valuable feedback to my work and ideas.

Ralph Bothe, mayor of the association of municipalities Monsheim, and
Willi Bayer and Stefan Radmacher of AöR Energieprojekte Monsheim provided
me with data for model development. Uwe Ohl and Sven Wagner of EWR AG,
Dr.-Ing. Frank Wirtz of Bayernwerk AG, and Robert Heiliger of E.ON AG
helped me to test my ideas against real-world scenarios. I am grateful for their
support.

Johannes of Salisbury cites Bernhard of Chatres in his famous quotation,
“Dicebat Bernardus Carnotensis nos esse quasi nanos gigantum umeris insidentes,
ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut
eminentia corporis, sed quia in altum subvehimur et extollimur magnitudine
gigantea,” most commonly known in this version by Sir Isaac Newton: “If I
have seen further it is by standing on ye shoulders of giants.” I am very grateful
to Prof. Dr. Martin Ruppert, who sparked my interest in machine learning and,

iii

iv ACKNOWLEDGEMENTS

specifically, Artificial Neural Networks, and who endowed me with a remarkable
algorithm. And I cannot even begin to count how many valuable suggestions I
received during conferences, at talks or in e-mails from researchers all over the
world.

But for a work like this to happen, I also had to lean on the important
people in my life, who supported me, listened to my problems, and morally
helped me wherever they could: My mother, whose kind words straightened
me up whenever I was crestfallen; my father, whose immense support gave
me the freedom to write this thesis as it exists today; my grandparents, who
always listened to me; and my beloved Sabine, who was always at my side and
supported me in uncountable ways. I am deeply thankful that you are a part
of my life. I cannot begin to image how I would have been able to face all these
challenges had it not been for you.

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures vii

List of Tables ix

List of Symbols xiii

List of Acronyms xvii

Glossary xxi

Typographic Conventions xxix

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution and Constraints 4
1.3 Overview . 5

2 Fundamentals and Related Work 7
2.1 The Electric Power Grid . 7
2.2 Simulation and Modeling . 30
2.3 Computer Networks . 35
2.4 Artificial Intelligence . 40

v

vi CONTENTS

2.5 Boolean Algebra . 47

3 Approaching the Smart Grid by Modeling and Simulation 51
3.1 Models of the Power Grid . 51
3.2 Reference Situation . 58
3.3 Smart Grid Simulation Environment 62
3.4 Data Quality Assessment and its Influence on Simulation Runs 77

4 The Universal Grid Agent 81
4.1 Modular Design Principle . 81
4.2 Interfaces . 84
4.3 Agent Behavior . 87

5 Forecasting Power Demand and Supply 91
5.1 Design of the Forecaster Universal Smart Grid Agent Module . 91
5.2 The Multipart Evolutionary Training Algorithm for Artificial

Neural Networks . 100
5.3 Forecasting Accuracy and Efficiency 108

6 Social Component: Inter-Agent Communication 117
6.1 Motivation . 117
6.2 Design Principles . 118
6.3 Data Encoding . 134
6.4 Analysis . 137

7 Modeling and Calculating Demand and Supply for Agents 153
7.1 Agent-Local Power Balance . 153
7.2 The Combinatorial Demand-Supply Problem 154
7.3 A Boolean Model of Demand and Supply 157
7.4 Evaluation of Efficiency . 174

8 Conclusion 181

A Theses 185

B Protocol Message Types and Data Fields 191
B.1 Data and Field Types . 191
B.2 Message Types . 194

Bibliography 209

List of Figures

2.1 The traditional view of the power grid as one-way flow of power
from generators to consumers . 8

2.2 Schema of a storage power station 10
2.3 Schematic view of a coal power plant 12
2.4 Schematic view of a combined gas and steam power plant 15
2.5 Power curves of wind turbines with different control technologies . 19
2.6 Loads of utilities in the Eastern New England Division in 1919 . . 31
2.7 Model complexity versus model confidence and model accuracy . . 33
2.8 The ISO/OSI reference model . 36
2.9 Schema of an artificial neuron . 44
2.10 Two types of Artificial Neural Networks 46
2.11 Binary Decision Diagrams of two equivalent Boolean functions with

different argument ordering . 50

3.1 Excerpt from the simulator architecture for models and associated
states . 53

3.2 Logic view on the modeled reference power grid 59
3.3 Active power at wind farms and the connecting substation during a

day in February in the reference grid 60
3.4 Peak load of the 110 kV nodes in the reference grid 61
3.5 The simulation kernel . 67
3.6 Data sources and their area of effect 76
3.7 Events created by two different data sources for the same day . . . 78

4.1 Modules of the Universal Smart Grid Agent 85
4.2 Components of the Universal Smart Grid Agent 86
4.3 Activity diagram depicting the Universal Smart Grid Agent’s behavior 89

vii

viii List of Figures

5.1 Forecaster module of the Universal Smart Grid Agent 94
5.2 The sliding window structure maintained in the forecaster module 97
5.3 Euclidean distances of patterns derived from the reference situation 99
5.4 Plot of the initial population in Ackley’s Function 103
5.5 Implicit gradient in a REvol population 106
5.6 REvol tuned to let the population escape a minimum 108
5.7 Training algorithm performance . 111
5.8 The Artificial Neural Network’s activation function and the power

curve of a wind turbine . 112
5.9 Size tuning procedure of the forecaster’s Recurrent Neural Network 114
5.10 Result of node-local forecasting at ‘Bare Hill Wind Farm’ 115

6.1 The power grid as an overlay network 119
6.2 The four-way handshake of a demand-offer sequence 125
6.3 Types of protocol messages along with the class they belong to . . 128
6.4 Sample network with message propagation boundaries 145
6.5 Message propagation in the ‘Saltwater Town’ part of the reference grid147
6.6 Possible attack vectors . 151

7.1 The Universal Smart Grid Agent’s internal power balance 155
7.2 An example of a power balance state after the discretization 159
7.3 An example of the acceptance function 162
7.4 Memory size and computational complexity of XBOOLE-based and

Edge-Valued Multi-valued Decision Diagram-based demand-supply
solvers . 169

7.5 Data volume used compared to line loss avoided 174
7.6 ‘White Hill Springs Substation’ backfeeding, ‘Bare Hill Wind Farm’

active power production, and data efficiency of grid-local consumption177
7.7 Total data volume by time required by the Universal Smart Grid

Agent in the Fukui-TEPCO power grid during high load 179

List of Tables

3 Typographic conventions . xxx

2.1 Nominal voltages in the power grid and their application 28
2.2 Boolean operators, their set operator counterparts, and the corre-

sponding XBOOLE function using Ternary Vector Lists in Orthogo-
nal Disjunctive/Antivalent form . 49

3.1 Parameters and values for traditional turbine-based power plants . 52
3.2 Parameters for different power grid models 58

4.1 German power grid infrastructure 82

5.1 Parameters of REvol and Standard Particle Swarm Optimization 2011110
5.2 Comparison of the Universal Smart Grid Agent’s forecaster module’s

performance with known values from literature 115

6.1 Binary encoding schema of the Lightweight Power Exchange Protocol
message header . 137

6.2 Messages forwarded in the reference grid during the broadcasting stage148

7.1 Ternary Vector List representing S4
5 of the example power balance 165

7.2 Binary Vector List for an example symmetric function, S3(x) . . . 171
7.3 Comparison of the Universal Smart Grid Agent and Binary Decision

Diagram approach on the Fukui-TEPCO power grid during high load178

ix

List of Algorithms

1 Event loop of the simulation software 68
2 Main loop of the multipart evolutionary algorithm 104
3 Lightweight Power Exchange Protocol message processing . . . 138
4 Handling of maintenance messages 138
5 Processing of power messages 139
6 Forwarding of Lightweight Power Exchange Protocol messages 141
7 Calculation of the next valid permutation for the Binary Vector

of the symmetric function . 172
8 The Universal Smart Grid Agent’s central solver procedure . . 173

xi

List of Symbols

Symbol Meaning
Ai A particular agent i
Ai,t State of agent i at simulation clock t
B The Boolean space
B Susceptance, in Siemens
C Capacity of an information channel, in bit/s
Ci Constraint definitions for agent i
C(xi,t̃,P̃) A cover function indicating a power balance equilibrium

for the argument vector
d(ri) A function that calculates the distance value of the

requirement sent by agent i
d(x, y) A function that calculates the distance or distortion

between two values
D Data volume
DW Architecture-dependent word size, in bits

D
DW

Data volume, in words
η Efficiency, in percent
Fi Forecaster Module of agent i
G Conductance, in Siemens
i A unique agent ID, i ∈ I
I Set of all unique agent IDs
I ′ Set of all unique agent IDs which are explicitly known, e.g.,

as part of a simulation run description or because they
have responded to a request; I ′ ⊆ I

j A particular message ID
J Set of all active message IDs

xiii

xiv LIST OF SYMBOLS

k General counter variable
k Boltzman constant (1.380 648 52× 10−23 J K−1)
Li Ordered set of connections (links) of the agent i
li A particular connection (link) of agent i
l Length, in meters
Mi Messaging Module of agent i
mj A particular message j, j ∈ J
N (µ, σ2) A normal distribution with mean µ and variance σ2

n Any number of items
O Set of all objects in the Multipart Evolutionary Algorithm
o An object, as an individual in a population
os Scatter vector of an object
op Parameter vector of an object
oi An offer from agent i
p, q Any vector
p Pressure, in bar
P Real power, in kilowatts
P̃ A power interval, P̃ = [P1;P2]
P , Q Any set or Ternary Vector List
Pi Power balance of agent i
q A symbol of an alphabet
q ≺ q′ q precedes q′ lexicographically
q � q′ q precedes or is equal to q′ with regards to lexicographic

ordering
Q Reactive power, in VAr; also:

Rate of flow
Q′C Capacity of a cable, in µF/m
ri A requirement from agent i
ri(xi,t̃,P̃) Acceptance function for the requirement ri

R Set of all requirement equations; also:
Resistance, in Ω

s A state of a Finite State Machine
S Apparent power, in voltamperes; also:

Set of states of a Finite State Machine
SD Final simulation state as desired by the simulation run

description
St Simulation state at clock t
ST Final simulation state as result of the actual simulation run

xv

Sn(x) A symmetric function with |x| arguments and n 1-bits
Σ An alphabet
ς A data source
t A time value, e.g., as simulation clock
T A time constance; also:

Simulation clock at the end of a simulation run; also:
Absolute temperature of a system, in Kelvin; also:

t̃ A time interval, usually t̃ = [t1; t2)
θ Angles
ϑ Temperature, in degrees Celsius
U [0; 1) A uniform distribution of random numbers in the interval

[0; 1)
v Speed, in meters per second
v Vector of vertices of a tree
w Energy density, in Wh/kg; also:

A weight value
wG Weight of the implicit gradient information used in the

Multipart Evolutionary Algorithm
w Vector of trainable weights of an Artificial Neural Network
xi,t̃,P̃ An atom of a requirement from agent i denoting the time

interval t̃ and the power interval P̃
X Reactance, in Ω
X ∼ U [0; 1) Drawing of a random number from a uniform distribution

(notation is used analogous for normal distributions)
X
U [0;1)
k The k-th drawing of a random number from a uniform

distribution (notation is used analogous for normal
distributions)

Y Matrix of admittances

List of Acronyms

AC Alternating Current
ADSL Asymmetric Digital Subscriber Line
ANN Artificial Neural Network
API Application Programing Interface
AS Autonomous System
ASIC Application-Specific Integrated Circuit

BDD Binary Decision Diagram
BDEW Bundesverband der Energie- und Wasser-

wirtschaft e.V.
BGP Border Gateway Protocol
BV Binary Vector
BVL Binary Vector List

CA Certificate Authority
CIGS Copper Indium Gallium (Di-) Selenide
CIM Common Information Model
CPU Central Processing Unit

DC Direct Current
DDoS Distributed Denial of Service
DHCPv4 Dynamic Host Configuration Protocol, version 4
DoS Denial of Service

EGP Exterior Gateway Protocol
EREC European Renewable Energy Council
EU European Union

xvii

xviii LIST OF ACRONYMS

EVBDD Edge-Valued Binary Decision Diagram
EVMDD Edge-Valued Multi-valued Decision Diagram

FIFO First In, First Out
FPGA Field-Programmable Gate Array
FSM Finite State Machine

GCD Greatest Common Divisor
GIS Geospatial Information System
GPGPU General-Purpose Graphics Processing Unit
GSM Global System for Mobile Communications

HAWT Horizontal Axis Wind Turbine
HSDPA High Speed Downlink Packet Access
HTTP Hypertext Transfer Protocol

IAEA International Atomic Energy Agency
ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IEC International Electrotechnical Commission
iff if and only if
IP Internet Protocol
IPCC Intergovernmental Panel on Climate Change
IPsec Internet Protocol Security
IPv4 Internet Protocol, version 4
IPv6 Internet Protocol, version 6
ISO International Standards Organization

JADE Java Agent Development Framework
JSON JavaScript Object Notation

LPEP Lightweight Power Exchange Protocol
LSD Link State Database
LSTM Long Short-Term Memory
LTE Long-Term Evolution

MAE Mean Absolute Error
MAS Multi-Agent System
MDD Multi-valued Decision Diagram

LIST OF ACRONYMS xix

MSE Mean-Squared Error

NED Network Description

OCSP Online Certificate Status Protocol
ODA Orthogonal Disjunctive/Antivalent
OSGP Open Smart Grid Protocol
OSI Open Systems Interconnection
OSPF Open Shortest Path First

PDF Probability Density Function
PSO Particle Swarm Optimization
PV Photovoltaic

RMSE Root Mean Squared Error
RNN Recurrent Neural Network

SA Simulated Annealing
SESSL Simulation Experiment Specification via a Scala

Layer
SLP Standard Load Profile
SPSO Standard Particle Swarm Optimization
SSTP Scalable and Secure Transport Protocol
STL Standard Template Library

TAI Temps Atomique International (en. Interna-
tional Atomic Time)

TCP Transmission Control Protocol
TEPCO Tokyo Electric Power Company
TLS Transport Layer Security
TTL Time To Live
TV Ternary Vector
TVL Ternary Vector List

UDP User Datagram Protocol
UML Unified Modelling Language
UMTS Universal Mobile Telecommunications System
UUID Universally-Unique Identifier

xx LIST OF ACRONYMS

VoIP Voice over IP
VPN Virtual Private Network

WGS World Geodetic System
WoT Web of Trust

XML Extensible Markup Language

ZBDD Zero-Suppressed Binary Decision Diagram

Glossary

A

active power Work done per unit of time at a load in the power grid

actuator (agent) Any device, hard- and software alike, that provides the
agent with a means to influence its environment

after-heat Heat emitted from a nuclear power plant’s reactor core after shut-
down

agent This is a piece of software that perceives its environment through sensors
and acts upon it through actuators. An agent selects an action in order
to maximize its performance in regards to its defined goal.

ancillary service Services necessary to maintain reliable operations of the
power grid and to facilitate the transmission of power from generator to
consumer. This includes reactive power and voltage control, load following,
and loss compensation.

apparent power The combination of active and reactive power in an AC
circuit, specifically, the magnitude of the vector sum of active and reactive
power

area of effect (simulation environment) A closed polygon describing the
area in which a particular effect takes place

B

back-propagation of error A training algorithm for Artificial Neural Net-
works that derives the adjustment of the individual connection weights
from the output error that is back-propagated from output to input layer

xxi

xxii GLOSSARY

back-propagation through time A variant of the back-propagation of error
training algorithm that is suitable for training Recurrent Neural Networks

base load The minimum amount of electricity demanded during a 24-hour
period

Betz limit This number, modelled and proven by Albert Betz, describes the
theoretical maximum efficiency of an ideal wind turbine: η = 16

27 ≈ 59.3%.

big endian The byte order, or endianness, describes the order in which a
digital word is stored or transmitted. Big endian transmits (or stores)
the most significant byte first. Little endian stores/transmits the least
significant byte first.

black box This term expresses that the object at hand is opaque to the user
and its internals are thus unknown and unobservable. Black-box testing
observes the tested object’s outputs to a known input and tries to infer a
model of the test subject from these observations.

black start A start of a power plant without using outside power

block (power plant) Denotes a unit of a steam-based power plant that sum-
marizes all machinery necessary to generate power, such as the boiler or
steam generator, the turbine set, etc. Blocks are commonly characterized
by their rated power, e.g., ‘a 800 MW block.’

C

constant-speed (wind turbine) This term describes a wind turbine design
in which the generator is directly connected to the grid. Therefore, the
grid’s frequency dictates the generator’s speed.

context layer In a Recurrent Neural Network, the layer whose neurons feed
the results of the previous activation to neurons in another layer

Contract Net Protocol This is the name of a protocol for agent behavior in
which agents can award tasks for other agents to solve. The agents form
contracts (and, possibly, subcontracts) for the awarded work items.

GLOSSARY xxiii

D

data quality “The state of completeness, validity, consistency, timeliness and
accuracy that makes data appropriate for a specific use.” (Schultze-Melling,
2010, p. 256)

decay heat Heat generated by a nuclear power plant’s reactor core after power
generation has been stopped

Dijkstra’s Algorithm A path-finding algorithm

discard work Work (in the sense of the unit) that does not contribute active
or reactive power to the grid, e.g., when wind turbines are disconnected
from the grid when they could feed in.

discrete-event simulation This is a type of simulation that is driven by
events. Time can be kept in an abstract manner in the form of ticks,
where a tick is defined by the occurrence of one or more events, without
the need for a relation to a real date and time.

distribution network The high (not highest) voltage part of the grid dis-
tributes power regionally, e.g., to metropolitan areas.

divide et impera Being the classic Latin origin of ‘divide and conquer,’ this
term describes an ancient strategy in warfare: In order to win against an
superior enemy, its main force must be split into smaller, separate parts
which can now be matched by one’s own force and can thus be defeated. In
computer science, the term is used analogously: A big problem is broken
down into smaller, manageable chunks which are solved one-by-one. Thus,
a problem that could not be solved in its entirety can be solved piece by
piece.

E

epoch This is the point of origin for the Unix timestamp. The epoch is exactly
midnight on January 1st, 1970, UTC. The Unix timestamp is a continuous
counter of the seconds that have been elapsed since the epoch.

extra-high voltage Typically 220 kV, 380 kV, 500 kV, 700 kV, or 735 kV; can
be up to 1500 kV

xxiv GLOSSARY

H

high voltage Typically 60 kV or 110 kV

Hill Climbing An optimization algorithm utilizing local search that is eas-
ily trapped in local minima (or maxima, depending on the goal of the
optimization)

host This denote an entity on a computer network that can be identified using
its network address. A host is compromised of at least one physical
interface, but can have more than one.

hydroelectric power plant A type of power plant where water drives a
turbine directly to generate power

I

idempotent This word comes from the Latin words idem, ‘the same,’ and
potentia, ‘capability,’ and describess the property of a function to achieve
the same result, regardless of how often it is executed.

interval map This structure extends the notion of an interval set with map-
pings. Since the contents of a set must be distinct, an aggregation function
typically exists to solve the case of equal or overlapping arguments.

interval set A set consisting of intervals, i.e., a collection of well defined and
distinct intervals

L

load following Operational mode of a power plant that is flexible enough to
decrease or increase its output according to demand

load gradient The possible change of a power plant’s output over a given
time: ∆P

∆t , typically given in units of %Pn

min (percent nominal power per
minute)

low voltage Typically 230 V to 400 V

N

n-1 criterion A system that operates with n objects is still functional after
the complete loss of 1 object fulfills the n-1 criterion.

GLOSSARY xxv

network byte order This describes the order in which bits and bytes are
transmitted over a computer network; it is the same as big endian.

O

Optimal Brain Damage This algorithm modifies the number of connections
in an Artificial Neural Network, removing enough that the training set
still passes, but the network cannot suffer from overfitting. See overfitting.

overfitting This describes that state of a model, specifically an Artificial
Neural Network, in which the model describes statistical noise instead of
the underlying model and looses its ability to generalize, i.e., to derive
meaningful output from a pattern that is not part of the training set. See
Optimal Brain Damage.

overlay network Is a network existing on the basis of another network ar-
chitecture as a logic entity on existing infrastructure. Overlay networks
often use their own addressing and routing schemes.

P

pari passu Pari passu is a Latin phrase that means ‘on equal footing’ and can
be translated in the sense of ‘ranking equally.’ When two actors, such as
agents, are pari passu, neither actor controls the other one and both have
similar tasks of equal importance.

peak load A period of simultaneous, strong consumer demand for electric
power

peer-to-peer network An overlay network in which all peers are equivalent;
distinct roles such as client, server, and especially router do not exist
in peer-to-peer networks as the interconnected peers perform these roles
equally

perceptron Denotes a form of Artificial Neural Networks in which input
is strictly feed-forward propagated from the input to the output layer,
forming a (simple) associative memory.

ping Ping is the name of a network administration software utility program
that is used to test whether a host is reachable or not. The name is
inspired by the sound of a sonar.

xxvi GLOSSARY

power to gas Usage of electric power to generate and store a form of gas that
can be used to drive a power plant

PQ bus (power system load flow analysis) A load bus at which active
power and reactive power values are known

prosumer A portmanteau of ‘consumer’ and ‘producer’ that describes an
entity that can act both, as a consumer and a producer, at different times

pseudo-Boolean function A function that maps Boolean arguments to inte-
ger results

PV bus (power system load flow analysis) A generator bus, supplying
active power and voltage

R

reactive power Reactive power is power that, due to the delay between voltage
and current, cannot perform any work at the load and flows back to the
generator.

S

secondary customer Consumers receiving electric power at sub-kilovolt volt-
ages; mostly private households

self-healing A system that is self-healing can automatically reconfigure itself
in order to mitigate the effects of a fault.

sensor (agent) This denotes any device, hard- and software alike, that pro-
vides the agent with data about its environment in order to allow it to
update its internal state.

separation of concerns This is a design principle in computer science that
mandates separating a piece of software or a software architecture in
several distinct units, where each unit addresses exactly one concern. A
concern is a set of information that affects the behavior and, therefore,
the code of a computer program.

slack bus See VD bus.

GLOSSARY xxvii

smart grid This term denotes a form of the power grid that makes use of digital
information, digital information processing, and/or digital communication
in order to improve efficiency, reliability, and security of the electric grid.

smart meter A smart meter is a monitoring device that records the flow of
power to and from a customer at intervals of an hour or less and transmits
the data to the utility for billing. Smart meters can be used to control
(e.g., switch on or off) other devices at the customer’s site for demand
response.

steam generator The boiler of a power plant along with the pipes, valves,
etc. that generates steam for the turbines

T

tick Abstract time unit in a discrete-event situation, marked by the occurrence
of one or more events

tile server This is a type of server that renders a map at different scales
according to a stylesheet and serves the resulting images subdivided into
tiles to a client program.

transmission grid This denotes the highest-voltage part of the grid that
serves to transmit power over wide distance. Voltage is high so that the
current can be low and losses are within acceptable limits.

trusted third party In cryptography, two parties often need to authenticate
each other. They do so by each checking the respective certificate of their
partner. If the certificate is signed by an issuer whom both trust, the
authentication succeeds. Trust is therefore established through a third
party that both trust, the trusted third party.

turbine set A number of turbines (high, medium, and low pressure) that are
driven by steam coming from the steam generator and excite a generator
to produce electrical power in a power plant’s block

U

unit test A software testing methodology in which individual units of the
software are tested separately, without interaction between each other

xxviii GLOSSARY

V

variable-speed (wind turbine) This term describes a wind turbine design
in which the generator is decoupled from the power grid and can therefore
be driven at variable speed.

VD bus (power system load flow analysis) A bus at which voltage mag-
nitude and voltage phase angle are known

Typographic Conventions

This work will follow certain typographic conventions in order to distinguish
termini technici, URIs, source code, etc. from running text.

Technical terms will be printed in italics when first mentioned, but not
formatted differently from the surrounding text upon later occurrences. Names
of algorithms will be formatted in small capitals.

Whenever a term has an abbreviation, it is mentioned in parentheses upon
the first occurrence of the term. After that, only the abbreviation will be used.

Double quotation marks are used to denote quotes from external sources.
Single quotation marks, in contrast, denote commonly used terms that are not
termini technici or to express statements coming from the author.

Source code will always be printed in non-proportional (typewriter) script.
Additionally, symbols in formulae follow a certain formatting to distinguish

constants, real numbers, complex numbers, vectors, sets, and matrices from
each other. These are listed in Table 3. The only notable exception from the
general rules that are established in this table are the traditional symbols for
physical units, such as P for real power, which are not sets, but nevertheless
typeset in uppercase italics.

Additionally, Table 3 on the following page shows all typefaces used through-
out this thesis to denote words with special meanings.

xxix

xxx TYPOGRAPHIC CONVENTIONS

Table 3: Typographic conventions

Typeface Meaning Example
Single Quotes Commonly used terms ‘if and only if’
Double Quotes Quotes “To be or not to be

[. . .]”
Italics Terminus Technicus Wind energy not used

for generating electric-
ity is known as discard
work.

Typewriter script Source Code puts "Hello,
World!"

Uniform Resource Iden-
tifier (URI)

http://
www.google.com/

Upright (in formulae;
including parentheses)

Functions d(p, q)

Upright (in formulae;
no parentheses)

Contants k

Bold italics (in forum-
lae)

Vectors |q|

Bold (in formulae) Matrices I = Y ·V
Uppercase italics (in for-
mulae)

Sets s ∈ S

Underlined (in formu-
lae)

Complex numbers Y = Z−1

http://www.google.com/
http://www.google.com/

1 Introduction

1.1 Motivation

‘Somewhere, there’s always wind blowing or sun shining.’ This maxim could
lead the global shift from fossil to renewable energy sources, suggesting that
there is enough energy available to be turned into electricity. And there are
impressive numbers available: As of today, a number of countries satisfy more
than 50 % of their energy demand with renewable energy sources. Iceland, for
example, draws all its electricity from them; other countries also have high
percentages, such as Norway (92 %) or Brazil (82.7 %) (Observ’ER, 2013).

Closer inspection of statistic reports, however, reveal that these high numbers
are backed by generation from hydroelectric power plants, with biomass energy
far behind. Neither option, however, is applicable to all countries. Hydroelectric
power plants obviously need their construction requirements fulfilled so that the
turbines can be driven by strong currents. Biomass is often considered to lead
to monoculture in agriculture where plants are grown exclusively for conversion
into electricity at the expense of food-yielding crops.

Still, the European Union (EU) targets a continuous increase of electricity
generation from renewable energy sources to a total of 20 % by 2020 (European
Parliament, Council, 2009); the European Renewable Energy Council (EREC)
has even published a whitepaper that targets a complete supply of electricity
from renewable energy sources by 2050 (Zervos et al., 2010). These goals are
even more important considering the fast-closing action window for an effective
reduction of greenhouse gases (FAZ.NET, 2015).

Where hydroelectric or biomass are not available as sources of electricity,
two other, well-known types of technology are brought into focus, which the
leading statement implicitly mentioned: wind turbines and photovoltaic panels.
Germany, for example, drew 27.8 % of its demand in 2014 from wind power

1

2 CHAPTER 1. INTRODUCTION

and solar radiation (AGEB, 2015). Although quite easy to harvest, wind and
solar radiation make us depend on a phenomenon we cannot yet control: the
weather.

Historically, the power grid had to accommodate for a variable power
consumption, while the operator had control over the generation of electricity.
The grid’s capacity, contracts with the owners of power plants, and technical
characteristics of the power plants themselves limited the operator’s ability to
react to changes in the grid. Approximate forecasting through synthetic load
profiles allowed for a certain amount of planning ahead of time. These synthetic
profiles are created for the year ahead and thus allow for the formation of
contracts and general operating plans with a certain time buffer.

The feeding of renewable energy sources has also been included into these
synthetic profiles. However, today, no method exists that would allow a precise
forecasting of wind and cloud cover for a year ahead.

Inaccurate forecasts can obviously lead to two kinds of error: Either an
under-estimation of the feeding, or an over-estimation of the generated electricity.
Both can endanger the grid, either by overloading it or by causing outages.

Reacting to over-production is, of course, quite easy; one can simply dis-
connect wind turbines, whole wind farms, and solar panels likewise from the
grid. Although it saves the latter, it also means that potential electricity is
lost. This so-called discard work is an inefficiency whose primary effect is
a financial impact on the owners of those wind or solar farms. In the end,
somebody has to pay for this loss of profit. Governments can and do attenuate
this impact. However, a loss is a loss; it does not vanish if it is spread out to the
taxpayer (Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post
und Eisenbahnen, 2014).

One could try to store the generated electricity. But no matter what technol-
ogy is used, be it batteries, pump storage or pressurized air, a non-dismissable
percentage of the original energy is wasted in the process of converting it multiple
times and large power storage facilities with sufficient capacities and acceptable
efficiency are large, hard to build, expensive, or a combination thereof, and
have therefore not yet found deployment in capacities where they could supply
a large portion of consumers for more than a couple of minutes.

This question of inefficiency due to the inability to put the potential electric-
ity to use poses a question: Could somebody have used this additional energy?
Or, better yet: Could somebody have used it, had he known beforehand that it
was to become available for a certain period?

Integrating the consumer into the planning process seems to be a logical
choice. If the source of energy is not completely under our control, we need

1.1. MOTIVATION 3

to become more flexible in the way we use power. This becomes especially
important in cases of a power shortage. Then, it becomes not just a question of
efficiency, but one of preventing a collapse due to brown- or blackouts.

Smart meters have been introduced as a means of achieving a shift of
load when the generation capacity comes close to exhaustion. The concept
is quite simple: What if customers could delay their consumption by a small
amount of time, e.g., an hour, in order to take some pressure from the grid?
Air conditioning units, on a hot day, could be flexibly controlled to let the
temperature rise by 2 °C in order to relieve some pressure off the grid. This
way, the loss of comfort for an individual consumer would be minimal, but the
sum of all minor power savings would help to soften the spike in the load curve.

The appeal to the consumer stems from a more direct pricing, tailored to the
actual situation on the grid. The smart meter will receive continuous updates
on the current electricity prices. Together with user-set thresholds, the device
can exert control on connected devices in the household.

Fox-Penner (2010) describes this approach detailed in his book “Smart
Power.” He summarizes an experiment in Sequin, Washington, in 2005, where
smart meters had been deployed in a number of households to test this theory:
That direct, real-time pricing allows the peak load to shift in order to smooth
the load curve. His overall assessment of a smart grid based initially on smart
meters is positive; he continues to outline necessary changes and challenges for
utilities in the view of market behavior, legislation, and hardware maintenance.

Reality elsewhere, however, has seen mixed results to this approach. Some
field studies suggest that users are inclined to make use of this kind of control
in order to save money, while other surveys have received negative feedback,
indicating that most people lose interest in this technology after a short period
of time (Merrion, 2011; Buchholz et al., 2012). Also, one could argue that
electricity should be a ‘when you need it’-type of resource.

Making consumers use more energy instead of less is even harder to achieve.
That would mean that the smart meter turned on the washing machine whenever
electricity is inexpensive. Typically, however, people do not want be forced to
do their laundry just because the electricity is cheap, especially if this comes
without warning.

Currently, variances in photovoltaic and wind farm production are handled
by base load power plants that can be controlled in a timely manner. Wind
farms and photovoltaic installations just feed into the power grid; control
impulses are scarce.

However, with an increasing use of renewable energy sources, this does
not remain an option. Intellegient grid management is necessary in order

4 CHAPTER 1. INTRODUCTION

to accomodate the volatility of these resources. Microgrids with fine-grained
forecasts and potential island mode are needed to accomodate the distributed
nature of these sources.

But the increase of distributed power generation also increases the amount
of information necessary for monitoring and controlling the power grid. Today,
central points of control are in charge to ensure the stability of the power grid
in general. However, considering the increased load, how do we prevent these
single points of control from becoming single points of failure?

1.2 Contribution and Constraints

If an increase in information exchange can lead to more opportunities to include
renewable energy sources in a more efficient way, the amount of planning for
the short term will also increase. This, however, will in turn also require an
efficient handling of this information.

To this end, this work proposes to accompany a more and more distributed
power generation system with distributed software that enables consumers and
producers alike to engage themselves in a grid-wide planning phase. The idea of
handling a large task by breaking it down into smaller ones and distributing the
workload over a number of participants is generally not new; the Contract Net
Protocol Smith (1980) proposes, formulates a high-level approach on a protocol
basis for exactly this task. Smith assumes that a task can be subdivided into
smaller ones, and that any node can design whether it will take on the large
task at hand, or award this task—or parts of it—to other, remote, nodes. These,
in turn, can decide whether to claim the task or not, offer a certain price for it,
and, after winning the bid, even subcontract it to other nodes. While appealing,
this approach needs refining in order to find an application in a smart grid;
balancing the grid’s power level cannot be optional; a different set of rules
applies when contracting for power supply or consumption.

Through localized forecasting that is able to include the characteristics
of a certain site, nodes in the grid are enabled to act in a proactive manner.
They become agents, equipped with one piece of software instanciated on each
node that initiates and performs a grid-wide demand-supply calculation. This
calculation starts in the immediate vicinity of the acting node, but spreads if
the volatility cannot be handled locally.

Therefore, this work views the problem of including renewable energy sources
to provide base load functionality as a problem of information interchange and
distributed intelligence, i.e., as a software and networking problem. It makes

1.3. OVERVIEW 5

use of the increased efficiency and network connectivity of factories, or the
primary control capabilities exhibited by newer installations of wind turbines or
Photovoltaic panels. However, it does not promote nor actively propose further
development in this area; models of these nodes merely form the basic building
blocks for the software agent proposed in this thesis.

The forecasting module of the agent that enables it to act pro-actively will
not be based on meteorological models, but on machine learning. Detecting
patterns in weather conditions is done using Artificial Neural Networks, to
which this work contributes an analysis of a new learning algorithm.

Distributed software needs a means to communicate. A network protocol for
this purpose is therefore proposed in this work. It makes use of standard tech-
nologies available in the traditional ISO/OSI network stack in order to provide
a set of behavioral rules all agents must follow. Information encoding, however,
is not part of the proposal, since we can assume that techniques providing
efficient information encoding are widely known and thus this dissertation will
not contribute to research in this area.

The proposed software agent will be easy to set up. The software must
not need extensive, on-site maintenance, since wind farms are often located in
remote areas, and, considering off-shore installations, can be hard to reach. The
software is therefore self-aware, a trait that also contributes to the justification
of the agent title; no modifications are necessary to accommodate different
types of generators, transformers, or consumers, making the agent universal
with regards to the type of the node in the power grid.

Network communications and self-aware peer-to-peer networks need exten-
sive security and the concept of trust. This thesis will make use of known
techniques in order to attain a secure communication, but will not go beyond
that. The creation of new security concepts is out of the scope of this work.

The heart of this piece of software is the control algorithm that enables it to
act and decide based on requirements received from other agents or stemming
from its own power generation or consumption. This can be viewed as a problem
purely rooted in the Boolean domain and as such, will be solved with the tools
and calculus available in this field.

1.3 Overview

In order to describe the transition from a purely centralized grid control to
a distributed, self-organizing grid, augmented by centralized control, the first
sections of Chapter 2 will outline the state of today’s power grid. This chapter

6 CHAPTER 1. INTRODUCTION

will continue to present the fundamentals required to understand the contri-
butions of the following parts of this thesis; it therefore also outlines essential
knowledge considering Boolean algebra, communication networks, and artificial
intelligence. It discusses the relevant literature in order to allow the reader to
delve more deeply into the corresponding topics if desired.

Chapter 3 introduces the models used by the Universal Agent. The whole
design of the agents needs, of course, extensive testing, which can be accom-
plished by the means of simulation. A simulation of the grid or even only a
part of it depends on various input data sources and, in case of renewable
energy sources, especially weather data. Measurements differ in their quality;
an assessment of data quality is therefore essential. Chapter 3 therefore also
describes a simulation environment for which the continuous monitoring of the
quality of all input data is an essential feature.

Stringently, the design of the proposed software agent is introduced after-
wards. Chapter 4 outlines the modules in use and presents central concepts and
assumptions of the design.

In order to act proactively, effective forecasts must be made. Since the
agents and their planning is of a distributed nature, the forecasts themselves
will also heavily rely on localized forecasts. Each node therefore employs machine
learning in order to forecast weather conditions, power generation, or power
consumption. The corresponding agent module is the subject of Chapter 5.

Afterwards, Chapter 6 details the communication phase of a demand-supply
calculation. Agents are now set up and can use the communication infrastructure;
the software now needs binding rules for communication demand and supply.
During this phase of the distributed planning, all other modules of the agent
are considered to be black boxes. Chapter 6 represents the outside view on the
agent.

With a working communication, this thesis turns its attention back to the
internals of the agent. The algorithm used to find a solution in the demand-
supply calculation is specified in Chapter 7. It is the central of the three pillars
upon which the functioning of the distributed software rests.

Finally, Chapter 8 concludes and attests whether the elementary theory of
this thesis can be positively asserted: Namely, whether a distributed, proactively
acting agent system based on a piece of software that is instanciated on every
node is able to achieve a more effective integration of renewable energy sources
with high production volatility.

2 Fundamentals and Related Work

2.1 The Electric Power Grid

Power Generation

Fundamentals of Power Generation

The traditional electric grid has, from the bird’s eye view, always been un-
derstood as having a unidirectional architecture: Power is generated in large
power plants and is distributed via transmission lines to customers, where it is
consumed.1 Power generation has always been centralized: with a small number
of generating stations supplying a large number of consumers with power. The
consumer, in turn, was strictly that: A form of load that needed to be borne.
Fig. 2.12 depicts this traditional, one-way flow of power.

Power generation mostly relies on electromagnetic induction;3 the constant
changing of a magnetic field creates a current in a conductor. Large-scale
power generation utilizes mechanical motion in order to provide a magnetic
field changing in a constant and reliable manner. The rotating magnetic core,
called rotor, induces current in the stator, a fixed wire. The stator ultimately
interfaces with the power transmission system and the lines that lead from
the power plant. Since it is the rotation of the magnetic core that induces
the current in the field poles, the current alternates with the rotation. The

1The terms ‘generation’ and ‘consumption’ are, in a strict physical sense, wrong. Energy
is not generated or consumed, but always converted from one form to another. However,
these expressions have been widely accepted; also, the conversion of electric energy to, for
example, heat can be thought of as a consumption of electric power in order to convert the
energy to another form. Thus, we will also employ the notion of a producer or generator and
a consumer.

2Based on US-Canada Power System Outage Task Force (2004)
3With the exception of Photovoltaic panels, which we will cover later in this chapter.

7

8 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Generation

Distribution Lines

Figure 2.1: The traditional view of the power grid as one-way flow of power
from generators to consumers

frequency of this Alternating Current (AC) is fixed for the whole power grid; in
most countries, like in Europe, at 50 Hz or at 60 Hz, as in the USA or Canada.
The frequency of the AC is one of the most important indicators for power
quality: Deviating from the set frequency damages devices attached to the grid.

The mechanical motion of the magnetic core is most commonly driven by
a turbine. One way to excite the turbine is steam or water, but using gas is
also possible, as well as relying on wind energy. The following paragraphs will
provide a survey of the most commonly used types of power generating stations.
Many books provide a detailed account of the mechanics involved, for example,
Heuck et al. (2010), Allelein et al. (2010), and Oeding and Oswald (2011).

For the grid operator, power plants typically fall into one of three categories:
Base load, load following, or peak load power plants.

A base load power plant is constantly operated at its maximum efficiency,
typically producing its rated power output. A base load power plant is not
throttled, and only taken offline due to maintenance. The reason for this type
of operation either lies in its design, e.g., it is simply not possible to change
the plant’s output by much, or that throttling would damage the plant. It
might also be harder to start, or take a long time to synchronize with the grid.
Additionally, the cost factor of a power plant plays an important role in its
categorization: Base load power plants are typically most economically run
at their rated power, but quickly become unprofitable if not run in this way.
Nuclear power plants are an example of base load power plants.

Load following power plants can be throttled and operated at non-rated
power output levels. These power plants can react to changes in the power grid
fast enough and with sufficient amounts to take on that role. However, due

2.1. THE ELECTRIC POWER GRID 9

to their design or for other, mostly economic reasons, these power plants are
not disconnected from the grid. This can be due to their design that requires a
certain base load in order not to damage the plant, such as coal, and oil power
plants. Additionally, these power plants require electricity to start, i.e., they
are not black start capable, which is another reason why these are considered
load following, but not peak load power plants.

Peak load power plants are flexible enough that they can be shut down if
not needed as well as started and synchronized with the power grid very quickly
in order to react to peak loads. Gas turbine power plants are usually considered
peak load power plants.

Hydroelectric Power Plants

Water is used directly in hydroelectric power plants. Here, gravity is used
through a downward slope to create a flow of water that applies kinetic energy
to the turbine. Hydroelectric power plants are quite simple in their overall
design as the turbine is directly driven by water and coupled to the generator.
The turbine design changes with the head of water. For heights of 60 m or
less, a hydroelectric power plant, then called a low-pressure unit, is constructed
with a Kaplan turbine, which resembles a propeller. Kaplan turbines provide a
uniform flow speed over the whole surface of the turbine, which is important to
keep the mechanical stress to a minimum. Its impeller vanes are also adjustable,
allowing it to adapt to the water flow. Hydroelectric power plants with heads of
water between 60 m and 300 m, called medium-pressure units, feature a Francis
turbine. Here, the water flows through a circle of guide vanes and hits the
turbine radial instead of directly from above. High-pressure units, defined by
a head of water of more than 300 m, usually requires a Pelton turbine, where
water flows through cones to the turbine. Synchronous machines ensure that
the output frequency of the power plant is stable at the grid frequency.

Hydroelectric power plants can exist as run-of-river power stations, where a
barrage in a river is used to drive Kaplan turbines. Storage power stations as
depicted in Fig. 2.2 use a natural reservoir and have a higher head of water. In
order to keep pressure stress low on the tubes leading to the turbines, when
the vents are closed quickly, so called surge tanks at the reservoir provide the
required pressure compensation. Storage power stations can be constructed to
fill their reservoir with pumps when excess electric power is available in the grid,
allowing to store it for a later time when more power is required. The efficiency
of such a pump storage power plant currently peaks at η = 83 % (Sterner and
Stadler, 2014, p. 492).

10 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Surge Tank

Power Plant

Figure 2.2: Schema of a storage power station

This type of power plant has two important features regarding its role in
the power grid. First, it is easy to start and bring online. In order to put it
into service, only the gate valve needs to be opened. The pressure of the water
streaming in drives the turbine, thus generating power. Hence, a hydroelectric
power plant does not depend on an external source of power in order to start.
This feature is called black start capability.

The second important feature of a hydroelectric power plant also stems
from its relatively simple design: It can change its power output faster than
condensation power stations such as coal- or oil-fired plants. It can be brought
online from complete standstill in one to two minutes (Heuck et al., 2010, p. 24);
it can change its output by 100 % to 200 % of its rated (nominal) power per
minute (VDMA Power Systems, 2013, p. 16). This second characteristic is
called the power plant’s load gradient4 and given in units of percent nominal
power per minute: %PN/min.

For a power grid operator, it is these characteristics that define a power
plant: The time it needs to start and to be brought online, its ability to start
without power from the grid—i.e., whether it has black start capability or not—,

4I.e., ∆P
∆t

2.1. THE ELECTRIC POWER GRID 11

its nominal and, possibly, minimal power output, and its load gradient. When
we now discuss other types of power plants, we will see that these values vary
by a great degree based on the technology used to generate power.

Steam-based Power Plants

A large portion of power plants use a thermal energy derived from another,
primary energy such as chemical energy from coal, or oil, or nuclear fission.
Water is heated; the steam drives the turbine. The steam is then cooled,
again fed to the boiler, where it is again turned into steam. This form of power
generation ensures a stable, continuous supply of electricity; the primary sources
of energy—coal, oil, uranium, etc.—provide independence from volatile external
factors such as weather conditions.

To describe these power plants as ‘glorified boilers’ is, however, an over-
simplification that disregards the characteristics of the design of each power
plant type. Power plants are not only categorized by the primary energy resource
they rely on, but also by the behavior and the amount of control an operator
can exert on the power plant based on the primary energy it uses.

We will now cover power plants that utilize fossil primary energy sources,
namely coal, oil, and uranium, before outlining the functioning of gas turbine
power plants.

Any turbine-based power plant is subdivided into a number of blocks: Each
steam generator or boiler drives a turbine set that excites the generator. The
maximum amount a generator can output is called its rated output and serves
to further characterize a block. For example, a ‘1000 MW block’ is a unit of
a steam generator, turbine set, and a generator that can continuously feed
1000 MW into the power grid.

Coal power plants use the chemical energy bound in coal to generate thermal
that is, in turn, converted into mechanical energy. A schematic view of such a
coal power plant, based on Heuck et al. (2010, pp. 19 and 21), is presented in
Fig. 2.3 and accompanies the following description.

The burner of a block converts the chemical energy of the primary resource
to thermal. In a coal power plant, a mill turns the coal into coal-dust, which is
blown into the furnace of the burner. Hot air is blown in from below to feed the
fire.5 The fire heats water that flows through pipe runs. The feed water pumps
create high pressure between 170 bar to 330 bar (Oeding and Oswald, 2011,
Fig. 3.2d). The steam drives a number of turbines, divided into high-pressure,

5This air is heated by the exhaust of the furnace.

12 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Ash
Coal Drying
and Milling

Air

R
es

id
ua

l H
ea

t

De-
dusting

NOX

Removal
De-
sulfurization

E
m

is
si

on
s

Chimney

*HP: High Pressure
*MP: Medium Pressure
*LP: Low Pressure

HP* MP* LP*

Turbine Set

Feed Water
Pump Condenser

Generator

Cooling Tower

Superheater

Reheater

Feed Water
Tank

Figure 2.3: Schematic view of a coal power plant

medium-pressure, and low-pressure parts. Finally, a condenser cools the steam
back down to water, with the help of a nearby river and a cooling tower. On its
way back to the feeder pump, the water in this closed loop is pre-heated using
bled steam feedwater heating, i.e. using steam that has been tapped after the
first turbine.

The higher the values for pressure and temperature are during vaporization,
the higher is the block’s efficiency. Obviously, the quality and durability of
construction materials forms the direct limit. Raising the values of the main
steam’s state variables from p = 160 bar, ϑ = 530 °C up to p = 280 bar, ϑ =
600 °C increased the block efficiency from η ≈ 38 % to η ≈ 47 % (Heuck et al.,
2010, p. 7).

The construction materials, mainly of the pipes that carry the steam as well
as those of the boiler, also determine a steam power plant’s time until it can be
brought online, and also limits its load gradient. During the start-up phase, the
boiler grows up to 30 cm (Heuck et al., 2010, p. 10). That is why grid operators

2.1. THE ELECTRIC POWER GRID 13

estimate a coal power plant’s start-up time according to the time it has been
offline: Less than 8 hours, 8–48 hours, and more than 48 hours.6 A coal power
plant uses about 5 % of its output for its own requirements, such as the coal
mills or the pumps. Therefore, it has no black start capability.

The operator controls the plant’s power output with the drive of its turbines,
which stems from the amount of steam that is directed to the turbine’s vanes
and that is increased or decreased by valves. The fireing of the boiler must
match the desired flow rate of steam. The transfer of heat from the firing to
the water is the plant’s limiting factor regarding its load gradient, not only in
terms of speed, but also because of potential damage to the pipes. The latter
is the reason that a steam power plant also must run with a certain minimal
load: The pipes must be evenly heated in order to avoid fissures due to heat
stress. This minimum load depends on the plant’s construction details and
varies between 35 % and 65 % (VDMA Power Systems, 2013, p. 16). Another
factor that limits the load gradient is the fuel itself: Anthracite and bituminous
coal that is extracted in mining operations have a higher heating value7 than
sub-bituminous coal and lignite,8 the latter being won in opencast pits. For an
explanation on the different sources of coal, its formation, and properties, refer
to Ghosh and Prelas (2009, Chapter 6).

A steam power plant can also generate heat using oil, which changes the
configuration of its burners, but not the general principle of power generation.
From that point of view, a nuclear power plant also does not differ much, since
the way it generates electrical power is also by means of steam driving a turbine.
However, the design considerations vary greatly due to the different nature of
its fuel: Nuclear fission is a process that is not easily interruptible. It also takes
more time for a nuclear power plant to come online after complete standstill.
Additionally, a nuclear power plant requires electricity even after it has been
shut down: The fission process cannot be abruptly stopped; heat is generated
even after shut down. This heat, called after-heat or decay heat, requires the
reactor to be cooled after it has stopped generating power, thus causing the
power plant to require power itself.

There are many different designs for nuclear power plants available. They
focus on cost optimization, increase of efficiency, rated power output, or safety.9
They are usually classified by the moderator they use, i.e., by the compound,
and application thereof, that controls the nuclear fission, and by the coolant

6See, for example, VDMA Power Systems (2013).
7Between approximately 32 000 kJ/kg and 36 000 kJ/kg
8Approximately 28 000 kJ/kg
9Not all these parameters are mutually exclusive.

14 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

and cooling circuit design they employ. For the power grid operator, the same
variables are relevant as with other steam-based power plants: The start-up
time depends on the plant’s offline time, there is a minimum load required,
and the load gradient resembles that of other steam-based power plants. For
a detailed outline of different nuclear power plant designs, refer to Ghosh and
Prelas (2009, Chapters 9.10 to 9.16).

These steam-based power plants have, in contrast to the aforedescribed
hydroelectric power plants, traditionally been considered to be ‘base-load behe-
moths.’ However, recent development has made authors argue that these power
plants should also participate in the power grid’s load management in a flexible
manner (Brauner et al., 2012), which will change at least the role of coal- and
oil-based power plants.

Gas Power Plants

Power plants fueled by natural gas do not drive the turbines using steam. Instead,
they work like a jet engine: Fresh air is fed via a compressor (p = 15..20 bar)
to the combustor, where it is used to burn the gas. The exhaust (ϑ ≤ 1500 °C)
drives the turbine directly. The turbine drives a generator as usual. The exhaust
is afterwards released to the open, which is why this way of operating a gas
turbine is also called open gas turbine process. This direct method of driving
a turbine in order to generate electrical power allows the plant to start very
quickly; ceramic shielding in the combustion chamber, temperature-stable mono-
crystal impeller vanes, and film-cooling of shields and vanes with compressed air
allows a significantly greater load gradient compared to traditional steam-based
power plants10 while being more expensive to operate.

Additionally, power plants of this type are capable of performing a black
start, and can be brought online in seven minutes.

The exhaust of the turbine is still relatively hot11 and can therefore be used
to additionally drive a traditional steam turbine. Here, the exhaust powers
a superheater that generates steam. This combined gas-and-steam process is
shown in Fig. 2.4.12 Although the overall load gradient of the combined power
plant is lower than that of a pure gas turbine power plant due to its steam part,
the gas turbine can be operated independently, if necessary.

1010 % to 25 %, cf. VDMA Power Systems (2013).
11ϑ ≤ 625 °C, cf. Heuck et al. (2010, p. 21).
12Cf. Heuck et al. (2010, pp. 19 and 21).

2.1. THE ELECTRIC POWER GRID 15

Compressor

Combustion
Chamber

Fuel

Air

GeneratorTurbine Waste Heat
Boiler

Superheater

Condenser Cooling TowerWater-Steam
Separator

Figure 2.4: Schematic view of a combined gas and steam power plant

Geothermal Power Plants

A renewable and, in terms of emissions, ‘clean’ energy source is geothermal
energy. The power plant extracts some of the Earth’s heat content via drill
holes to power a steam turbine. Different layouts of power plants exist, based
on the heat of the drillhole. The Intergovernmental Panel on Climate Change
(IPCC) Special Report on Renewable Energy Sources and Climate Change
Mitigation (Goldstein et al., 2011) outlines the types commonly used today.

A condensing steam power plant is constructed for intermediate or high-
temperature sites (ϑ ≥ 150 °C). The pipeline from the heat source leads to a
steam-water separator; the steam drives a turbine set (turbo generator); the
turbine set is connected to a condenser and cooling tower. From the steam-water
separator, a second pipeline leads back to the reservoir via an injector well,
pumping the separated water back in order to obtain more steam, thus forming
a cycle. When the well delivers hot water, it ‘flashes’ to steam; in contrast, a
dry well delivers steam only.

Lower temperatures13 in the well are accommodated by binary cycle units.
They are more complex than the condensing power plants since the geothermal
fluid is led to a heat exchanger where it heats a second working fluid with a
low boiling point14 that drives the turbine—hence the name ‘binary cycle.’

Geothermal energy is considered a sustainable form of energy, as long as
the amount of fluid extracted from the well stays within the limits of what the
source can produce (Rybach, 2007). The ambient temperature does influence
a geothermal power plant (Imroz Sohel et al., 2009) and can be a target of

13Low- to intermediate-temperature fluids, i.e., with temperatures from 70 °C to 170 řC
14E.g., isopentane or isobutene

16 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

optimization, but is normally considered negligible (Rybach, 2007). The cost
of finding a suitable site, drilling holes, and generally erecting the power plant
are relatively high15 compared with other power plant types. Therefore, a
geothermal power plant is profitable and efficient as a base load power plant.
Due to their design, geothermal power plants obviously are black start capable.

Wind Turbines

Another renewable energy source is wind. In this short survey of power genera-
tors, it is the first volatile energy source: It relies on the current of the wind to
generate power, a force that, especially onshore, is not steady but changes with
weather conditions, sometimes rapidly. Wind turbines cannot increase their
power output on demand, unless they have previously been throttled in order
to allow for a load-following capability (MacDowell et al., 2015). If no wind is
blowing, it obviously cannot produce any power at all. Thus, the output of a
wind turbine is inherently fluctuating; it cannot be dispatched.

Historically, with windmills, this is one of the oldest forms of energy mankind
has employed as an aide to his work. Over time, different designs of wind turbines
have emerged; however, the Horizontal Axis Wind Turbine (HAWT)16 with
three blades is the most commonly seen today. This is due to the reliability
of the three-bladed design, their cost-effectiveness compared to other designs,
and finally their efficiency. This survey will continue in its operator-centric
view; the interested reader should refer to Manwell et al. (2010), which is a
comprehensive monograph covering the historical perspective, different wind
turbine designs, the physics of wind force usage and material design, as well as
economic and environmental aspects.

Most wind turbines are two- or three-bladed, which is due to the fact that, in
order to achieve the greatest efficiency, a wind turbine needs a design that does
not cause the wind to flow around it like an obstacle, but to pass through it in
order to apply its force to the rotor. The ideal wind turbine and its maximum
efficiency17 has been modeled and proven in 1926 by Albert Betz (Betz, 1926).
The three-bladed design provides more stability and runs more steadily than
the version with two blades. Almost all three-bladed wind turbines have upwind
configuration, i.e., the wind reaches the rotor first and then the tower.

The rotor and the configuration of the wings contribute most to the control-
lability of a wind turbine, and are “often considered to be the turbine’s most

15Cf. also Goldstein et al. (2011).
16Meaning that the axis of rotation is horizontal, i.e., parallel to the ground
17The Betz limit of η = 16

27 ≈ 59.3 %

2.1. THE ELECTRIC POWER GRID 17

important components from both a performance and overall cost standpoint”
(Manwell et al., 2010, p. 4). The goal of turbine control is to maximize energy
production,18 preventing extreme loads as to minimize fatigue damage, to pro-
vide acceptable power quality, and to ensure safety while operating the turbine
(Manwell et al., 2010, p. 370). This means that wind turbines are, whenever
possible, operated at their rated power.

How the rotor and its blades are used to control the wind turbine’s overall
power output depends on the mechanical-technical configuration of the drive
train, gearbox, and generator in the nacelle. A distinction is made between
constant-speed and variable-speed operation.

On constant-speed wind turbines, the generator is directly connected to the
grid, i.e., the power grid’s frequency dictates the generator speed, similar to the
connection of steam-based power plants. Stringently, this dictates the rotation
speed of the blades too, to which the term ‘constant-speed turbine’ refers.

Accordingly, a variable-speed wind turbine allows for varying rotational
speeds. One design approach of variable-speed wind turbines uses a synchronous
generator driven by the rotor. In order to decouple the frequency of the turbine
from that of the grid, the generator is connected to a rectifier that converts the
alternating current of variable frequency to Direct Current (DC). The rectifier
feeds the DC to an inverter, where it is converted again to AC with the frequency
of the power grid. Two other, conceptionally less straight-forward designs
use squirrel cage induction generators, or wound rotor induction generators,
respectively. While the former tries to increase the variable-speed turbine’s
efficiency, the latter facilitates variable-speed operation by offering so-called
true variability.19 For a more detailed discussion of the design approaches, refer
to Manwell et al. (2010, Chapter 5.6).

Variable-speed wind turbines keep the stress to the material at a minimum
while generating power efficiently at different wind speeds. In theory, however,
fixed-speed wind turbines are more efficient, buying this advantage with in-
creased stress on the rotor and drive train as well as the need to design rotor
and blades with mechanisms to change their geometry in order to adapt to
different wind speeds while still holding the rotational speed of the turbine
constant or near-constant. While Carlin et al. (2003) stated that most wind
turbines are constant-speed turbines, the simpler blade design of variable-speed
turbines compared to the need for variable-geometry blades of constant-speed
turbines provides an advantage in terms of material stress and improvements in

18below rated wind speed
19Here, power is fed into the rotor, allowing it to work at sub-synchronous speeds.

18 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

power electronics have made grid connected variable-speed turbines a preferred
alternative of many recent, larger wind turbine designs.20

In order to exert control over the turbine, several modes of operation exist.
Constant-speed turbines are either stall- or active pitch-regulated. The blade
design of a stall-regulated wind turbine is such that it passively regulates the
power production of the turbine. The blades are fixed-pitch; the wind’s angle
of attack increases with increasing wind speed. Because of that, a growing part
of the blade, starting at the blade root, enters the stall region. This effectively
limits the wind turbine’s power output and requires heavier blade structures21

that can withstand the blade-bending loads that are typical of this design
(Manwell et al., 2010, p. 372). Active-stall designs use the same physical effect,
but here, the blade can be rotated at the hub about the blade axis. The blades
turn to the front and out of the wind.

Active-pitch regulation also works by turning the blade about its axis, but
here, it is turned downwind. This method of regulation features a higher angle
of rotation and works faster.

Variable-speed wind turbines use active-pitch regulation; stall-regulated
variable-speed turbines are a topic of research, but no commercially viable
designs have emerged yet.22 Active-pitch-regulated wind turbines operate with
fixed pitch in part-load situations in order to optimize the tip speed ratio.23

When rated power is reached, pitch regulation is employed in order to keep
rotor speed within an acceptable limit. The generator torque is used to control
the power output. This configuration maintains a constant power output during
gusts while the rotor speed increases. The energy of the wind is stored as kinetic
energy in the rotor. Diminishing wind speed leads to reduced aerodynamic
torque while the generator output is held constant; if the wind speed remains
high, however, the pitch mechanism reduces the aerodynamic efficiency and
with it the aerodynamic torque.

To a grid operator, the cut-in and cut-off wind speeds are important: They
describe when the wind turbine is brought online or when its control mechanisms

20Cf. Vestas’ 2 MW wind turbine products (Vestas Wind Systems A/S, 2012), but also
Enercon’s smaller products (ENERCON GmbH, 2011).

21Either heavily welded, or cast structures
22Cf. Manwell et al. (2010, Chapter 8.3.2.1).
23The tip speed ratio denominates the ratio of the blade’s tip speed to the wind speed:

λ = ωR

v
,

with ω being the rotor’s rotational speed in radians per second, R being rotor’s radius in
meters, and v denoting the wind speed in meters per second.

2.1. THE ELECTRIC POWER GRID 19

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

T
ur

bi
ne

 O
ut

pu
t [

%
 n

om
in

al
]

Wind Speed [m/s]

Stall (Norwind NW29 200 kW)
Active-Stall (Global Wind Power GWP 47-750 kW)

Active-Pitch (Enercon E-44 900 kW)

Figure 2.5: Power curves of wind turbines with different control technologies

stop the turbine in order to avoid damage. These wind speeds can be plotted
on a power curve that maps wind speed to a wind turbine’s output. Such a plot
also shows the effect of the different regulation designs. Three different wind
turbines of different manufacturers with different regulation mechanisms are
shown in Fig. 2.5. Both cut-in and cut-off wind speeds are typically averaged
over a number of minutes, i.e., a wind speed of 5 m/s that lasts for 1 minute
does not cause the wind turbine to synchronize its generator with the power
grid. Obviously, this is aimed at reducing fluctuations in the power grid from
wind turbines that are brought online and offline in quick succession. The fact
that a wind turbine needs no external power except for wind makes it capable
of performing a black start.

Another regulation mechanism of modern wind turbines is concerned with
the wind’s direction. In order to achieve maximum efficiency, the rotor’s surface
of revolution and the attack vector of the wind must obviously form a 90° angle
to each other. The turbine’s whole nacelle is rotatable by 360° in order to
achieve this. More specifically, the nacelle can be turned by more than 360°,
e.g., two full turns. How many turns a nacelle can make in order to ‘follow the
wind’ is specific to a manufacturer, however, and is limited by the cabling in

20 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

the tower, which is being twisted by the wind-following motion of the nacelle.
After this limit has been reached, the wind turbine needs to shut down and
employs a motor to unwind. After that, when it has reach its 0° position, it
resynchronizes itself with the grid.

The wind turbine regulation options presented here are important for the
turbine to be reliably operable while converting as much wind energy to electrical
energy as possible. However, they are not employed to throttle the wind turbine’s
output. Instead, a whole wind farm, i.e., a collection of wind turbines is subject
to the grid operator’s control. Reducing the farm’s output is achieved by
throttling select turbines or by bringing them offline.

It is obvious that, while the regulation mechanisms presented here try to
allow a turbine’s output to be at its rated power for as long as possible, a larger
part of the power curve is highly dependent on the current wind. Forecasts thus
play an important role when increasing the share of wind power in the energy
mix. We will outline one way of forecasting using local data in Chapter 5.

Asides from its fluctuating active power output, wind farms have traditionally
been considered grid-burdening generators, because they require inverters to
generate AC and therefore influence the balance of reactive power and the
operator’s ability to dispatch reactive power when needed. However, modern
wind turbines can also offer ancillary services (MacDowell et al., 2015).

Photovoltaic

Photovoltaic (PV)24 power plants use photovoltaic panels to create electrical
power from solar radiation. For the layout of these panels, two noteworthy
designs exist today.

The older variant uses doped semiconductors of the periodic table’s IVth

main group that release charge carriers when irradiated with light. This is called
the photoelectric effect and in this design is achieved by using silicon25 that is
doped with elements of the IIIrd or Vth main group. This way, n-type and p-type
semiconductors are created; layers of n- and p-type semiconductors further
create the n-p transition. Here, an electric field is developed that separates
the charge carriers of the layers. This creates the DC of the cell. The cells are
connected in series in order to achieve the desired voltage.

The creation of crystalline cells is material consuming, since the cells are
cut from one block of silicon and feature a thickness of about 400 µm. A better

24The word is artificially created from the greek work for light, phos, genitive photos, and
the term voltage.

25The semiconductor

2.1. THE ELECTRIC POWER GRID 21

alternative in this context are thin-layered solar cells made from copper, indium,
gallium, and (di-) selenide, which are only 3 µm thick. Moreover, the fabrication
of silicon-based cells is more energy consuming: A silicon cell typically has
to work for 1.5 years to 2.5 years, depending on the amount of solar radiation
received every year, in order to produce the amount of energy that was required
to create it (Burger et al., 2016).

In order to judge the performance of a solar cell, two values are of importance:
first, its efficiency and second, its specific size ratio. The latter is expressed in
terms of m2/kWp, where the index p stands for ‘peak,’ i.e., the peak output is
reached at E = 1000 W/m2 radiation power.

In past years, polycristalline silicon cells have been considered to have the
highest efficiency. For example, Heuck et al. (2010, Chapter 2.4.8.1) lists mono-
crystalline cells with η = 14 % and a size ratio of 7 m2/kWp to 9 m2/kWp, multi-
crystalline cells have been rated with η = 13 % and a size ratio of 8 m2/kWp
to 11 m2/kWp, whereas Copper Indium Gallium (Di-) Selenide (CIGS) mod-
ules have been quoted with η = 10 % and 11 m2/kWp to 13 m2/kWp. More
recently, Burger et al. (2016) tally monocristalline silicon cells at η = 22.9%,
polycristalline silicon cells at η = 19.2%, and CIGS modules at η = 17.5%.
Through recent progress in CIGS development, an efficiency of η = 21.7 % has
been reached under laboratory conditions (Jackson et al., 2014), while the best
polycristalline silicon cell currently peaks at η = 21.3 % (Burger et al., 2016).

To the grid operator, the fluctuation of an array of solar modules due to solar
radiation is of importance; the peak output is determined by the actual modules
that are being used. Thus, forecasts are as important for PV installations as
they are for wind farms. A PV power plant is capable of black start as long as
the sun is shining.

Other Means of Generating Power

The power generator types presented in the previous sections are not the only
ones that are in use world-wide to produce electric power. Those are, however,
the most commonly encountered types.

Other types of power plants use tidal force. A reservoir is filled during high
tide; upon low tide, the water flows back into the sea, driving a turbine or
a set of turbines with it. Those types of power generators must be seen as
base-load power plants since they have limited controllability by design. The
reservoir must be sized in order to supply water for the whole six hours of
low tide. For example, consider a power plant that supplies P = 1000 MWel
with an efficiency of η = 80 %. If the average slope usable, i.e., the difference

22 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

between reservoir and the sea, is ∆z = −4.5 m, it requires a volumetric flow
rate of Q = 2.8× 104 m3/s. If the reservoir’s water level will vary by 1 m, the
reservoir will require a surface area of 600 km2 (Allelein et al., 2010, p. 267).
Kaplan turbines with adjustable vanes can be driven with water flow from both
directions, i.e., the plant will generate power also during high tide.26

Engineers also use the power of waves for generating electric power. Re-
searches have classified waves into three categories: seismic, surf, and wind
waves. The latter two’s energy can be converted into electric energy by using
the continuous alternation between potential and kinetic energy. That can be
done using floaters whose periodic up-and-down movement drives a generator,
through sub-sea installations where the movement of the waves is used to pump
a work fluid that actuates a generator or an Oyster-resembling construction
where two frames are connected by a hinge: the lower frame is fixed to the
ground, whereas the other one is moved by the waves. The movement drives a
pump cylinder, driving air with p = 69 bar through a tube to a turbine installed
on the land.27

In terms of using solar radiation, solar heat power plants are in use. They
capture solar radiation using collectors, focusing the rays to heat a work fluid.
Considered base load power plants, they are obviously dependent on the sun
and capable of performing a black start.

Power Storage

In our simple producer–transmission–consumer view, power storage is not easy
to place. One can argue that, since the efficiency of any known method of
storing power is below 100 %, a power store is more a consumer than it is a
producer. Additionally, it does obviously not ‘produce’ power by itself, but
rather conserves power produced by other generators. Still, the purpose of any
form of energy storage is to store power that existed in surplus at a point in
time and could not be used by consumers in order to re-feed it into the power
grid when needed. Therefore, we will survey forms of energy storage available
today in this section, all the more as experts consider energy storage to be a
necessary key point with regards to a high penetration of the power grid with
renewable, volatile energy sources.

The hydroelectric power plant with a reservoir that is pump-filled when a
surplus of power exists, has already been presented in Section 2.1. Other means

26Cf. Allelein et al. (2010, p. 268).
27Cf. Allelein et al. (2010, Chapter 11.7).

2.1. THE ELECTRIC POWER GRID 23

of energy storage can be roughly categorized as either electrical, electrochemical,
chemical, mechanical, or thermal, based on how power is actually stored. This
survey will outline the different types of storage in the order mentioned here, and
briefly discuss their properties regarding their inclusion and use in the power grid.
It is based on Sterner and Stadler (2014), a—of the time of writing—current
and extensive monograph covering current power store technologies.

Electrical energy stores include so-called supercaps, i.e., cylindrical capacitors
that use a dielectric that is rolled in order to increase the overall area, thus
increasing the capacity of the supercap.28 Supercaps have an energy density of
w = 0.1..10 Wh/kg at η = 90..95 %, making them useful at places where high
wattages are needed for a short period of time, for example, in wind turbines for
pitch regulation. Superconducting coils are another way to store electric energy
without prior conversion. Even though they, too, possess a high efficiency of
η = 92 %, the energy density of superconducting coils is low at w = 1 Wh/kg.
Additionally, the cost of the two energy store systems is high compared to
other methods: supercaps cost 5150e/kWh to 12 000e/kWh, superconducting
coils 13 570e/kWh to 75 670e/kWh. These properties make them only for
niche applications the preferred choice, but not for the overall concept of a
power-grid-supporting energy storage.

Electrochemical energy storages denote the colloquially known ‘batteries.’ Of
the different chemical base compounds available,29 and the redox-flow battery
technology, two types emerge as probable for an larger-scale inclusion in the
power grid. Lithium batteries have an energy density of w = 110..190 Wh/kg
and a price range of 170e/kWh to 600e/kWh, but need to be replaced after
400 to 1900 loading cycles. Natrium batteries are high-temperature batteries,
featuring w = 100..165 Wh/kg at 265e/kWh to 645e/kWh, and have a longer
life span of 2500 to 8250 cycles. The efficiency of natrium batteries (η = 72..81 %)
is, however, lower than that of their lithium counterparts (η = 90..97 %).
Batteries are well suited to provide controlling power, but not to level renewable
energies such as wind power. For example, a battery park in Germany containing
25 000 lithium-ion batteries can supply 5 MW of power (Deutsche Presseagentur,
2014).

The aforementioned storage technologies must be considered ‘short-term,’
except for the hydroelectric power plant with pump-filled reservoir. Technologies
that can provide greater amounts of power storage are categorized with the
term power to gas. Electric power is used to generate and store a form of gas

28Based on C = εA
d29Lead-acid, nickel, lithium, natrium

24 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

that in turn can used to drive a power plant. Useful gases are methane and
hydrogen. Both can be stored in caverns or, in the case of methane, also in pore
storage with energy densities of 14 300 Wh/kg, 34 000 Wh/kg and 13 450 Wh/kg.
Efficiency, however, does not depend on the storage technology in use alone.
In order to provide a full electricity–gas–electricity circle, a transformer, an
electrolyzer, a means to methanate, a compressor, a type of storage, and finally,
a kind of discharger must be used. Each one of these elements has its own
efficiency. Thus, using hydrogen yields an efficiency of η = 34..51 % and methane
of η = 30..38 %.30 How much power a power-to-gas facility uses when storing
depends on the electrolyzer; when feeding, the values of a gas turbine power
plant apply.

Power Grid Infrastructure

The most obvious sign of a power grid are its cables, which are typically
conducted as overland power lines. Their form is chosen to accommodate
the voltages of the lines they carry, which, in turn, hew to the distance the
cable spans.31 Several nominal voltage values exist; Table 2.1 lists those most
often encountered. The highest voltage, which operation is technically and
economically feasible, is 1500 kV (Flosdorff and Hilgarth, 2005).

The grid thus has been organized as a hierarchy: the transmission grid
carries the highest voltages, called extra-high voltage, and is used to transmit
power over large distances. Most traditional power plants feed into the grid
at high voltages since centralized power generation means that the generated
power needs to be transmitted over larger distances in order to reach consumers.

The transmission grid feeds into the distribution network through trans-
formers. At lower voltages that are now called high voltages, this part of the
grid distributes power to large customers as well as to towns or parts of a city.
NB. that wind farms and photovoltaic power plants feed into the distribution
network; their conceptionally lower rated power output makes a connection to
the transmission network more sensible.

Medium voltages are often encountered within cities or used to connect
industrial customers. These voltages still range from 3 kV to 30 kV; only the
so-called low voltage reaches private consumers—known as secondary customers—
with 230 V to 400 V.

30Cf. Sterner and Stadler (2014, Tab. 8.30).
31Pdiss = I2R = (P

U cosφ)2 designates the dissipated power, which decreases by voltage
squared.

2.1. THE ELECTRIC POWER GRID 25

The resistances encountered in the power grid’s cabling depend not only on
the length of the cable itself, but also on the material it is made of and the
configuration in which it is deployed, along with the temperatures encountered in
the specific configuration. Reinforced conductors also experience eddy currents,
and thus, a theoretical approach is often eschewed in favor of empirical data
(Heuck et al., 2010, p. 233). Reference works typically offer tables containing
the usual values for different cables and landlines in the usual configurations.32

No part of the power grid infrastructure is neutral with regards to the power
transmitted, but dissipates power. This loss is composed of three parts:

1. Voltage-dependent loss

2. Current-dependent loss

3. Compensation loss.

Voltage-dependent loss occurs as soon as the line carries a voltage. It is
caused by the fact that no insulation is, in reality, ideal. This loss is expressed
by:

PVU = n ·G′ · l · U2 , (2.1)

where n is the number of parallel cable systems, G′ is the conductance per unit
length in Siemens per meter, l is the length of the cable, and U is the voltage.

While the voltage-dependent loss changes only with the voltage, the current-
dependent loss changes with the load of the cable:

PVI = 1
n
R′ · l

(
S

U

)2
. (2.2)

Here, R′ expresses the resistivity in Ohm per meter, and S denotes the
apparent power transmitted.

Compensation losses occur in cables with reactive power compensation,
which is necessary on 380 kV land lines starting from 20 km. Compensation loss
is computed to:

PVK = n · (1− g) · k ·Q′C · l , (2.3)

with Q′C being the capacity of the cable, g the Q factor of the compensation
inductor, and k being the inductor’s compensation level.

32Cf. Heuck et al. (2010, pp. 742) and Oeding and Oswald (2011, A.11 to A.14).

26 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

The combination of the three terms forms the total power dissipated, which
every distribution system must try to minimize. This can be achieved either by
design—for example, landlines have lower resistance values than earth cables—,
or by simply reducing the distance power has to travel. E.g., a typical 380 kV
land line with bundle conductor,33 designed for 1.1 GW per three-phase system,
dissipates about 1 % of power transmitted per 100 km at maximum load (Oswald,
2007).

Each part of the power grid has a maximum capacity in terms of power it can
be loaded with. The specific resistance of the material, varies not only with the
material itself, but also with its temperature. The more power is transmitted via
a cable, the more it heats up, finally reaching its limit. The same effect defines
the capacity of all other parts of the power grid, espcially transformers. An
accepted rule of thumb is that life expectancy for insulation in transformers34 is
halved for every 7 °C to 10 °C increase in operating temperature (Walling and
Shattuck, 2007). They require cooling,35 which defines their load limit.

Highest power flows occur in short-circuit situations, which can happen for
numerous reasons: the insulation can be worn down due to constant overload,36

because of cables coming into contact with each other, caused by, e.g., wind, or
due to cables coming into contact with the ground, because of a tree toppling
over, or a cable that sags too much because of its load.37 The short-circuit
power flowing then excessively exceeds the normal power, causing more heating
over a short span of time and therefore imminent damage.

Short-circuit capacity is therefore an important rated value for parts of
the power grid. It quantifies the maximum stress of an electrical unit and the
breaking capacity of a circuit breaker.38 The required short-circuit capacity
rises with development of the power grid.

One might expect that measurements of the power grid’s state are read-
ily available since they form the variant, time-dependent counterpart to the
infrastructure’s static parameters. However, this is not the case: often, parts
of the power grid are not equipped with sensors, because all relevant pieces

334×564/72 Al/St
34More generally, all electric machines
35Larger transformers are cooled with dielectric, i.e., non-conducting liquids, often trans-

former oil.
36This can, in a broader perspective, be a sign of an overstrained power grid (Berg and

Fritze, 2011) and leads to burning transformers (Fleischhauer and Nelles, 2007; Seller and
Röderer, 2015).

37The cable heats, as previously described; the heating causes the material to expand and
thus the cable to grow longer, which leads to it sagging.

38The interested reader is referred to Flosdorff and Hilgarth (2005, pp. 142) for details.

2.1. THE ELECTRIC POWER GRID 27

of infrastructure are generously dimensioned for not only for peak load, but
even for an outage of another part. Then, the remaining ones would have to
shoulder the load of two. This design principle is called the n-1 criterion: if,
for the operation of a system, n objects are available, and the loss of one object
does not impact the system’s operation as a whole, the n-1 criterion is complied
with. The German power grid is designed according to the n-1 criterion (Berndt
et al., 2007).

However, considering the smart grid, in which active and reactive power will
be traded on a short-term basis due to volatile power generation, it is important
to estimate the impact of this variable load-behavior on the grid. Power flow
analysis exists as a mathematic approach to this problem. To estimate the
power grid’s future state given the initial state and known changes on load and
generator buses. It is a non-linear problem that can be solved computationally;
details can be found in Powell (2005) and Momoh (2012, Chapters 3 and 4).

Recalling Fig. 2.1, one can easily see that the classic power grid implements a
hierarchy: power is generated in a centralized manner with few large power plants
feeding 500 MW to 1500 MW39 into the power grid. From the transmission
network that is meant to cover large distances, power is stepped down into
the distribution network, whose purpose is described by its telling name. The
customer is on the receiving end; thus, the traditional power grid resembled a
hierarchical tree structure that is ever more finely ramified. Table 2.1 strengthens
this point (Flosdorff and Hilgarth, 2005).

However, PV installations on roofs naturally feed into the low voltage power
grid, whilst larger photovoltaic power plants feed into the distribution network,
where also wind farms are connected. A transformer is a two-way device; on
exceptionally windy or sunny days, power actually flows from the distribution
network back into the transmission network. This had originally never been
considered since power always flows from generator to consumer and power
generation in lower voltage grids that could not only satisfy but exceed the
demand of an area fed by a distribution network was practically unthinkable.
Renewable energy sources thus constitute a paradigm shift in generation, as
well as in distribution towards local, decentralized power generation.

Bush (2014) argues that the more the power grid becomes a true mesh
instead of a (cyclic)40 tree structure, the more it can be seen analogous to
computer networks and compares terms (Bush, 2014, Tab. 1.1). This originates

39Cf. Table 3.1.
40Meshed power grid topologies have long since existed since even a circle structure provides

redundancy to allow power transmission even if a line becomes faulty.

28 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Table 2.1: Nominal voltages in the power grid and their application

Nominal Voltage [kV] Voltage Range Application
0.23, 0.40 Low Voltage Small Consumer
3, 6, 10, 15, 20, 30 Medium Voltage Industrial Consumer, City

Feed-in
60, 110 High Voltage City/Overland Feed-in
220, 380, 500, 700, 735 Extra-High

Voltage
Metropolitan Area Feed-in,
Collective Economy

from the fact that sensors providing detailed real-time data of the power grid’s
state are mostly not present because they were not needed in the classical grid
(Calpe, 2015). But Bush develops this thought further: He goes so far as to state
the emergence of a “power system information theory” that “explicitly combines
power systems and information theory,” noting that “while a unification of
Maxwell’s equations and Shannon information theory is suggested for a power
system information theory, the unification could perhaps more easily take place
at a simple level, such as Kirchhoff’s laws [...]” (Bush, 2014, pp. 186, 189).

From the thought experiment of Maxwell’s Daemon (Knott, 1911; Maxwell,
2011) and Landauer’s Principle (Landauer, 1961; Bennett, 2003), we know that
the energy released by an irreversible logic operation—i.e., a loss of information
entropy—is

E = kT ln 2 , (2.4)

where k is the Boltzmann Constant and T the absolute temperature of the system.
Bush further explains the correlation between energy and a bit transmitted.
The energy required to transmit one bit given an infinite amount of time is
shown by:

Emin
b = N0 lim

C→0

2C − 1
C

= N0 ln 2 , (2.5)

where N0 is the noise variance N0 = E[nn∗] of a complex Gaussian distribution
and C is the information channel’s capacity.41 Bush then states that, given the

41A communication channel’s capacity can be expressed as C = B log2(1 + S
N

), where B
denotes the bandwidth, S the signal, and N the noise of the channel.

2.1. THE ELECTRIC POWER GRID 29

difference in a power grid between power generated and power received, ∆E, it
will take an amount of bits equal to

D = ∆E
2kT ln 2 (2.6)

in order to compensate for this power loss by a smart operation of the power
grid (Bush, 2014, Chapters 6.2 and 6.3).

We can therefore conclude that the power grid as infrastructure, although
seemingly defined a set of parameters, forms in its mapping to a communication
network the vital backbone of the development of a new organization of power
generation and power consumption. Thus, “bits (of communication) per kilowatt
(of active power delivered),” and “maximum transmission efficiency (power
delivered/generated) per bit (of communication)” (Bush, 2014, p. 201) form
two important metrics that can be used to measure a system that uses digital
information distribution and processing to increase the efficiency of the power
grid.

This thesis has hitherto used the term smart grid in a manner that suggested
that its meaning is immediately obvious to the reader. Bush has tried to follow
the historic trail in order to find the first usage of the term (Bush, 2014,
Section 1.5), tracing it to a time after the Northeast Blackout of 2003. As for a
definition, this work will use a part of the US code from 2007 that stipulates “[the
smart grid makes] [i]ncreased use of digital information and controls technology
to improve reliability, security, and efficiency of the electric grid” (Bush, 2014,
ibid.).

Power Consumption
In the power grid, due to its alternating current nature, two types of power exist.
The apparent power, expressed through S = IrmsVrms, consists of active power
and reactive power . Active and reactive power can be expressed as vectors;
thus, the Pythagorean Triangle equation is applicable and yields:

S2 = P 2 +Q2 . (2.7)

All three are products of voltage and current, which is expressed as watts;
in order to distinguish between them, only active power is expressed in terms of
watts, while apparent power has the unit VA (read: volt-amperes) and reactive
power is expressed as VAr, volt-amperes reactive. Reactive power is power that
is not used for real work, but exists when current and voltage are not in perfect

30 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

alignment. It is power that oscillates between electric and magnetic fields in
the power system:

Q = IrmsVrms sin Φ . (2.8)

Reactive power is not desired, but is introduced as a natural consequence of
inductive loads that shift the phase angle Φ = ∠IV . Compensating reactive
power is an ancillary service and necessary as most non-resistive loads in the
power grid are inductive; large factories are typically billed not only for active
power like private customers are, but also for the reactive power they introduce
in the system. Condenser batteries are used to ‘counter’ reactive power.42 A
power plant can supply the ancillary service by exciting of their generators.

The traditional grid already relied heavily on planing; power consumption is
estimated using Standard Load Profiles (SLP). For Germany, they are computed
by the Bundesverband der Energie- und Wasserwirtschaft e.V. (BDEW).43

Fig. 2.6 shows a historic load profile from New England in 1919 (National
Museum of American History, 1919). In the modern grid, these load profiles are
either a mapping of the corresponding consumer—e.g., household, bakery, etc.—,
or have huge deviations due to photovoltaic installations on rooftops that change
the overall consumption/production values and make the consumer a prosumer ,
i.e., a producer and consumer in a single entity. Forecasting algorithms need to
accommodate these situations.

The SLP assume a consumption behavior that is insensitive to the grid’s state.
In the future, a consumer might be incentivized to reacting to signals coming
from the power grid. Especially industry consumers can help shifting loads:
They can consume surplus power when available and throttle consumption at a
later point when power is in shorter supply. Cold storage houses, for example,
can act as thermal energy storage in using surplus power for cooling well beyond
the normally required temperature and switching off the chiller during a peak
load situation.

2.2 Simulation and Modeling

Simulation is “the process of designing a model of a real system and conducting
experiments with this model for the purpose of understanding the behavior
of the system and/or evaluating various strategies for the operation of the

42A capacitor shifts the phase angle Φ = ∠IV by 90°, i.e., the AC voltage lags the current:
IC = I0 cos(ωt+ 90°). In contrast, inductive loads shift the phase angle by a negative value.

43En. German Association of Energy and Water Industries

2.2. SIMULATION AND MODELING 31

Figure 2.6: Loads of utilities in the Eastern New England Division in 1919

system” (Shannon, 1998). According to Banks et al. (2013), a simulation is
appropriate when the given models and their interactions need to be observed
over time in order to arrive at a result, while the complexity of the overall
system is too high to allow a single, formulated calculation of it. Computer
networks especially lend themselves to simulation, for obvious reasons: the
nodes exchange messages that influence their behavior greatly while the state of
all nodes in the system must be maintained over time; observing this message
exchange and the exhibited behavior in different situations, along with the
nodes’ internal state, is often the main interest of a network researcher.

Simulations of computer networks can be conducted as discrete-event simula-
tions. Here, the simulation is driven by discrete events that indicate a change in
the simulated environment, such as the transmission or reception of a message.
Timekeeping is done in an abstract manner based on ticks. A tick44 marks the
occurrence of one or more events, but is not related to a particular date or time.
If an event is associated with a real-world time, the timespan between two ticks
can be anything from the fraction of a second to many days, months, or years.

44Inspired by the tick-sound of a clock

32 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Discrete-event simulations are not only useful for the simulation of computer
networks, but anything that can be modeled through discrete events. They do
not require specialized simulation software and simple queueing simulations can
even be conducted with a piece of spreadsheet software. For an introduction to
the basics and implications of this type of simulation, along with the relevant
statistics knowledge, the reader is referred to Kelton and Law (2000); Banks
et al. (2013); Fishman (2013).

Software or frameworks for discrete-event simulation exist in plenty. The
network simulators NS-2 (Bajaj et al., 1999), NS-3 (The NS-3 Project, 2015),
J-Sim (Sobeih et al., 2006), SSFNet (Cowie et al., 1999), JiST/SWANS (Barr
et al., 2004), OPNET Modeler (OPNET Technologies, Inc., 2015), and Qualnet
(Scalable Network Technologies, 2016) have inspired the design of the OMNeT++
simulation environment (Varga, 2001; Varga and Hornig, 2008).

OMNeT++ defines units in the form of modules in order to structure the
model. Modules have gates that send and receive messages; OMNeT++ as
a whole relies on message passing to exchange information between modules.
These modules can be grouped together to form compound modules, creating
hierarchies in the model.

OMNeT++ is written in C++, which above all permits the use of existing
libraries written in C/C++ to extend the simulator. This way, real-world imple-
mentations of protocols such as TCP can be used directly. This extensibility
also makes OMNeT++ modular; the simulation core can be embedded into
other applications. In addition to that, it features an Integrated Development
Environment (IDE), wherein the user can set up the simulation, write C++ code
in order to define the behavior of its own modules, and view results recorded in
previous simulation runs.

The definition of the simulation environment’s layout as well as the simulation
parameters is done in a description language specific to OMNeT++, called
Network Description (NED).

While the software framework delivers the engine of the simulation, the most
important part of any simulation are its models. Any modeller needs to create
a conceptual model of what he or she is about to simulate before everything else.
A conceptual model, according to Robinson (2004), is the process in which “[t]he
modeller, along with the clients, must determine the appropriate scope and level
of detail of model [...]” and determines its effectiveness (Law, 1991). Authors
have identified several qualities of an effective model (Willemain, 1994; Brooks
and Tobias, 1996), from which Robinson (2004, Chapter 5.4.1) syndicates the
“four main requirements of a conceptional model: validity, credibility, utility,
and feasibility.”

2.2. SIMULATION AND MODELING 33

Model Scope and Level of Detail (Complexity)

M
od

el
 C

on
fid

en
ce

Confidence
increases

Confidence
decreases

Model Scope and Level of Detail (Complexity)

M
od

el
 A

cc
ur

a
cy

Figure 2.7: Model complexity versus model confidence and model accuracy

Validity The conceptual model is, according to the modeller, sufficiently
accurate for the purpose at hand.

Credibility The conceptual model is, according to the client, sufficiently
accurate for the purpose at hand.

Utility The conceptual model is, according to both, the modeller and the
client, useful in order to aid decision-making within the specified context.

Feasibility The conceptual model can according to both the modeller and the
client, developed into a computer model.

The general goal is thus to keep the model as simple as possible while still
meeting the objectives of the simulation study. Simple models can be developed
faster, are more flexible and typically require less data while still being accurate
enough. Most importantly, their structure is better understood (Innis and
Rexstad, 1983; Ward, 1989; Salt, 1993; Chwif et al., 2000). Fig. 2.7 shows that
not only will the confidence in the model decrease with increasing complexity,
but also there will be little gain when increasing the model’s complexity past a
certain point; it might even become less accurate.45

Complex models can be simplified in two ways: either by removing com-
ponents that have little to no impact in the model’s accuracy, or by replacing
parts of the model with simpler ones while still maintaining a satisfactory level
of accuracy. Innis and Rexstad (1983); Courtois (1985) discuss methods of
model simplification; Pidd (1999) argues the reverse: that one should start with
the simplest model possible and add to its level of detail step by step until the
desired accuracy is reached.

45Based on Lobao and Porto (1997); Robinson (1994, 2004)

34 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Methods of model simplification include grouping of entities, black-box
modeling and the replacement of components with random numbers. When
entities are grouped, the modeller describes a whole group by an aggregated
model instead of modeling individuals one by one. This can be seen analogous
to the flyweight pattern in software design (Gamma et al., 1995a). When the
designer choses black-box modeling, he does not try to model the intrinsic
workings of an entity, but merely tries to represent its responses given a set of
inputs: the entity is conceived as a black box whose inner workings are unknown.
Instead, it can be represented as a function. Artificial neural networks lend
themselves to this kind of modeling regarding more complex components since
they can learn to represent any function.46 Finally, instead of creating a
model by describing the entity’s behavior, the designer can choose to represent
the particular component by random numbers by choosing a random number
distribution with parameters matching the entity’s observed values. A gentle
introduction to the required statistics knowledge, the process of selecting the
appropriate random number distribution and testing the fitting, including the
well-known χ2 test, can be found in Robinson (2004, Chapter 7).

A conceptual model can be represented in different formats. A component
list is a textual representation in the form of a table giving the components
and noting their respective complexity. In terms of graphical formats, the
Unified Modelling Language (UML) can be used to represent a conceptual model
(Richter and Marz, 2000; Knaak and Page, 2006).

The most important property of a conceptual model is its objective: “A
model has little intrinsic value unless it is used to aid decision-making [...]”
(Robinson, 2004, p. 80). It is therefore necessary to define the metrics with
which its success can be measured.47 In order to indicate success or failure of a
simulation run, inputs and outputs need to be defined. In almost all situations,
this means numerical and graphical reports. Ehrenberg (1999) discusses the
merits of graphical and numerical reports.

It is strongly advisable to decouple the definition of input and output
values and sources, and, if possible, their analysis from the simulation software
itself. I.e., the separation of concerns (Dijkstra, 1982; Reade, 1989) should be
followed. This allows the modeller to reason about simulation parameters and
the response of the system without having to write a program; he can focus on
the task at hand, potentially with the customer, who, in most cases, is not apt
to programming. OMNeT++ uses the NED (Varga and Hornig, 2008) for that

46Cf. Section 2.4.
47The metrics defined in Bush (2014) lend themselves exactly to that purpose.

2.3. COMPUTER NETWORKS 35

purpose; a more generalized approach is Simulation Experiment Specification
via a Scala Layer (SESSL) (Ewald and Uhrmacher, 2014, 2012).

2.3 Computer Networks

The most important foundation of today’s communication networks, especially
the Internet, is the International Standards Organization (ISO)/Open Systems
Interconnection (OSI) reference model (Zimmermann, 1980), also colloquially
known as the ‘ISO/OSI stack.’ It consists of seven layers in total, as shown
in Fig. 2.8.48 Each layer in the ISO/OSI stack model has its own purpose,
independent from the others; no task is shared between any two layers. At least
in theory, this also entails modularity: One can exchange protocols at one layer
without having to touch any of the other protocols on the other layers; the
operation of each layer in the OSI reference model is completely transparent.
When the user browses a web site, the Hypertext Transfer Protocol (HTTP)
that is used to transfer the site’s content does not need any information about
the underlying link, whether it is a wireless LAN connection or established using
a cable. For this, the OSI reference model uses the concept of encapsulation:
to a protocol in a certain layer, everything the upper layers produce is simply
payload. Consequently, it has no knowledge of the operational data of the lower
levels’ protocols.

Although numerous people have argued that, in the face of today’s develop-
ment of the Internet on a large scale, the OSI reference model is obsolete49 and
have therefore offered different approaches (O’Malley and Peterson, 1992; Zitter-
bart et al., 1993; Handley, 2006; Reuther and Henrici, 2008; Henke et al., 2010),
it still forms the centerpiece of modern communication system architectures.

Layers 1 and 2 define access to a physical medium and how communication
across a single link is to be conducted. The ubiquitous Ethernet (Institute of
Electrical and Electronics Engineers (IEEE), 2012b) and Wi-Fi (Institute of
Electrical and Electronics Engineers (IEEE), 2012a) protocols reside in these two
layers, along with those used in cellular networks, i.e., Global System for Mobile
Communications (GSM) (Redl et al., 1998), Universal Mobile Telecommunica-
tions System (UMTS) (Kreher and Ruedebusch, 2007), High Speed Downlink
Packet Access (HSDPA) (Holma and Toskala, 2007), and Long-Term Evolution
(LTE) (Sesia et al., 2009).

48Based on (Fall and Stevens, 2012, p. 9)
49Indeed, layer violations are widely known, such as the combination of link and network

layer in the Dynamic Host Configuration Protocol, version 4 (DHCPv4) (Droms, 1999).

36 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Application

Presentation

Session

Transport

Network or
Internetwork

Link

Physical1

2

3

4

5

6

7

Al
l N

et
wo

rk
ed

 D
ev

ice
s

Ho
st

s

Specifies methods for accomplishing some user-initiated task. Application-
layer protocols tend to be devised and implemented by application

developers. Examples include HTTP, FTP, Skype, etc.

Specifies methods for expressing data formats and translation rules for
applications. A standard example would be conversion of EBCDIC to ASCII
coding for characters (but of little concern today). Encryption is sometimes

associated with this layer but can also be found at other layers.

Specifies methods for multiple connections constituting a communication
session. These may include closing connections, restarting connections,

and checkpointing progress. OSI X.225 is a session-layer protocol.

Specifies methods for connections or associations between multiple
programs running on the same computer system. This layer may also

implement reliable delivery if not implemented elsewhere (e.g., Internet TCP,
ISO TP4).

Specifies methods for communicating in a multihop fashion across
potentially different types of link networks. For packet networks, describes
an abstract packet format and its standard addressing structure (e.g., IP

datagram, X.25 PLP, ISO CLNP).

Specifies methods for communicating across a single link, including “media
access” and control protocols when multiple systems share the same media.

Error detection at this layer, along with link-layer address formats (e.g.,
Ethernet, Wi-Fi, ISO 13239/HDLC).

Specifies connectors, data rates, and how bits are encoded on some media.
Also describes low-level error corrections and frequency assignments.

Examples include V.92, Ethernet 1000BASE-T, SONET/SDH.

Number Name Description/Example

Figure 2.8: The ISO/OSI reference model

Layer 3 is concerned with routing: Protocols in this layer span link networks,
potentially of different types. They define the address format of hosts50 and
perform multiplexing by defining networks as packet-switched. The most
commonly known representatives are the older, but seemingly still-prevailing
Internet Protocol, version 4 (IPv4) (Postel, 1981a) and its newer counterpart,
the Internet Protocol, version 6 (IPv6) (Deering and Hinden, 1998). The latter
one can be deemed of high importance for the smart grid: The number of nodes
participating in a grid-wide communication network will be significant and the
IPv4 address space of 232 addresses is already exhausted (Cannon, 2010; Lee
et al., 2011). IPv6, in contrast, offers 2128 addresses.

Since computer networks can be treated uniformly, i.e., independent from
50NB. that a host is a logical concept, and can be made of several physical interfaces.

2.3. COMPUTER NETWORKS 37

the underlying transmission technology, as a graph theory problem, principles
from that domain form the rationale underlying today’s routing algorithms. The
Internet is subdivided into Autonomous Systems (AS). The ASs communicate
their routing information using an Exterior Gateway Protocol (EGP); the most
commonly used EGP is the Border Gateway Protocol (BGP) (Rekhter and Li,
1995). It is a path vector protocol: For each node, the router stores a vector
containing a concatenation of all edges, i.e., paths a packet needs to travel in
order to reach the designated node. Routers transmit their vector database to
their neighbors in order to allow them to build their own. BGP, because of its
nature as a path vector protocol, has a fast convergence.

Within an AS, the network administrator is free to choose whatever routing
protocol he likes. Often, Open Shortest Path First (OSPF) (Coltun et al., 2008)
is chosen for the task. It is a link-state protocol that builds a sink-tree for each
router, based on Dijkstra’s Algorithm (Dijkstra, 1959).

Routing algorithms are important to understand how a packet or datagram
finds its way from sender to receiver, the basis for any point-to-point commu-
nication in a computer network. They are also applicable to the power grid:
Chapter 6 shows how. The details of the actual protocols, be it BGP, OSPF, or
other, are discussed at length in various literature, e.g., by Tanenbaum (2003).

Most packets in IP networks travel point to point; they are sent in a unicast
fashion from one sender to one receiver. Multicast, i.e., a packet sent by one
transmitter to several receivers, needs to be implemented in an efficient fashion—
a sender does not simply transmit n packets to n receivers. Instead, the packet’s
destination address is a multicast address, i.e., a special address, that belongs to
a particular multicast group. Groups can be formed on different bases; compare
Haberman (2002); Savola (2011) for details.

Layer 4 of the OSI reference model harbors all transport protocols. Their
responsibility is to transfer between programs.51 The most commonly known
protocols here are the User Datagram Protocol (UDP) (Postel, 1980) and the
Transmission Control Protocol (TCP) (Postel, 1981b).

The two differ in their intended goals and thus mode of operation: The
TCP provides the concept of a connection between two programs within which
a stream of data exists. TCP preserves the order of data transmitted and
minimizes52 loss of data through explicit segment acknowledgement and re-

51Notice the hierarchy: Layer 2 is responsible for transferring data between adapters on a
single link, Layer 3 transfers packets between hosts in networks, and Layer 4 finally reaches
applications on hosts.

52No algorithm can guarantee complete protection against loss of data: A link may become
offline, e.g., because of a hardware failure.

38 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

transmission of all data lost. En lieu of this, the TCP also has mechanisms
for congestion control, i.e., for throttling the rate of transmission in order to
neither overload the receiver nor the network.

This comes at a cost: While the TCP can reliably saturate a link with a
stream, retransmission introduces latency whenever segments are lost. This is
the raison d’être for the UDP, which cares neither for the order of datagrams
or for loss minimization or congestion control. Through this ‘bare-bones’ design
the application programmer needs to concern herself only with the network’s
latency; she exerts direct control over the transmission and reception behavior
of her program. This is especially important for low-latency applications like
Voice over IP (VoIP) or video streaming. If mechanisms such as rate throttling
or retransmission are desired, the application programmer needs to implement
those on top of the UDP.

Higher levels define application protocols, incorporate encryption and au-
thentication mechanisms, and also concern themselves with the encoding of
user data.

If a person wants to avoid binary encoding of data that would be the most
efficient way of representing data in terms of encoding/decoding speed and
space consumption in order to achieve human-readability, two textual formats
are well established: The Extensible Markup Language (XML) (Bray et al.,
1998) and the JavaScript Object Notation (JSON) (Bray, 2014). The JSON can
be chosen over the XML for the faster performance of parsers and generators
reading respectively writing the format, fewer space requirements and arguably
better readability over the XML, even though it offers a reduced feature set
compared to its counterpart (Nurseitov et al., 2009).

The emerging Common Information Model (CIM) (International Standards
Organization (ISO), 2005) models objects of transmission, distribution, and
generation of electric power and aims at providing a common data exchange
format for every aspect in the power grid, including trade. It uses the XML due
to its complexity to benefit from the namespacing XML offers. However, the
smart grid knows many participants with difficult connectivity such as remote
wind farms or smart meters in cities, where a robust technology is desirable.
Long wave-based protocols such as LoRa (LoRa® Alliance, 2016) can fulfill these
requirements, but offer low data rates, e.g., 0.3 kbit/s to 50 kbit/s due to the
underlying physics, which make general deployment of the rather heavyweight
CIM a point of discussion.

A computer network, especially considering the Internet, has many points at
which an attacker could intercept datagrams to learn secrets, or worse, modify
the data transmitted; security is thus paramount. The abstract term ‘security’

2.3. COMPUTER NETWORKS 39

consists of two distinct tasks: The most obvious task is to encrypt data so that
no entity can ‘eavesdrop’ on a communication between two parties; also, any
corruption of the transmission needs to be detected. Additionally, the parties
require a means to identify themselves to each other: Both end points need to
ascertain that their counterpart is actually the desired communication partner
and not a man in the middle.

A user typically knows the underlying protocols indirectly from secured
web connections; the basis for this is the Transport Layer Security (TLS) suite
(Dierks and Rescorla, 2008) that assembles encryption and authentication. The
latter is achieved using certificates. Each party that wants to authenticate itself
presents a certificate, which not only carries that party’s common name, but
also a validity date and a signature. This signature is affixed by the certificate’s
issuer that acts as a trusted third party: Both communicating parties trust
the issuer and can thus, if the issuer authenticates the respective certificates,
trust each other. TLS itself is used to provide security to many protocols; the
underlying mechanisms are also used in another protocol that provides security
in IP networks: Internet Protocol Security (IPsec) (Kent and Seo, 2005).

Providing a detailed introduction of security measures available for computer
networks and possible vectors of attack is beyond the scope of this work; the
interested reader is referred to Tanenbaum (2003, Chapter 8) for a gentle
introduction and Stallings (2013) for a broader lecture regarding cryptography
and its application in computer networks.

A full protocol stack as hitherto described can prove to be resource inten-
sive, especially considering embedded devices for sensor hardware, even with
stripped-down network stack implementations (Sehgal et al., 2012). Due to
the OSI reference model’s modularity, the protocols mentioned in the previous
paragraphs are not the only ones that provide certain features such as transport
reliability and security. For exactly that reason Kim et al. (2011) propose
the Scalable and Secure Transport Protocol (SSTP) for smart grid devices. It
resides on Layer 4 of the OSI reference model, and provides reliable delivery
through and acknowledgement/retransmission mechanism similar to the TCP.
In contrast to the latter, however, it is not meant for high-volume data trans-
missions, and therefore features no congestion control. Instead, a number of
low-volume messages are exchanged, which also explains the absence of an order-
preservation mechanism. It pays attention to scalability and strives to reduce
latency. The SSTP also includes security features instead of relying on TLS.
While this approach saves resources, it can also quickly form a possible vector
of attack as the Open Smart Grid Protocol (OSGP) has shown, as discussed
below.

40 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

It should be noted that in their paper, Kim et al. (2011) perform a simulation
to compare the SSTP with the TCP, using the TCP Reno congestion control
mechanism. Although published in 2011, newer methods of TCP congestion
control, such as CUBIC (Ha et al., 2008), have already become available. This,
however, does not invalidate their motivation and approach, and makes the
SSTP a worthwhile consideration.

The hitherto complete description of the OSI reference model allows us now
to understand the concept of an overlay network: An overlay network constitutes
a logic network on existing infrastructure; it uses an already existing network
architecture and topology to form its own. Overlay networks often implement
their own addressing and routing schemes independent from the underlying
communication architecture, thus forming their own topology. The overlay
network concept is used as a basis for the protocol presented in Chapter 6.
Other existing overlay networks are peer-to-peer networks such as Chord (Stoica
et al., 2003).

While the OSI reference model and its most commonly known implementa-
tion, the Internet, is ubiquitous, it has not ousted other approaches to networking
or their perceived necessity. In fact, a widespread protocol dealing with smart
grid devices, the OSGP (ETSI, 2012), is not based on the OSI reference model
and the protocols adhering to it, but on the ISO/International Electrotechni-
cal Commission (IEC) 14908 Control Networking Standard For Smart Grid
Applications (International Standards Organization (ISO), 2012).

The OSGP consists of a number of protocols; the ISO/IEC 14908 communi-
cation standard also defines a protocol stack model. The OSGP uses its own
addressing scheme and routing protocol. It is optimized for the interaction with
smart grid devices, such as smart meters, and aims at providing an efficient
mechanism for data querying and control commands. To that end, the OSGP
also defines its own authentication, authorization, and encryption layer.

Specifying technologies similar to those already in use, especially in terms of
security, opens the protocol up to attack similar to those seen on the Internet,
especially regarding weak cryptographic cyphers, as Jovanovic and Neves (2015)
have shown.

2.4 Artificial Intelligence

Agent Concept
Russel and Norvig (2010) describe agents as “anything that can be viewed as
perceiving its environment through sensors and acting upon that environment

2.4. ARTIFICIAL INTELLIGENCE 41

through actuators” (Russel and Norvig, 2010, p. 10). The term agent originates
from Turing’s (1950) famous paper, “Computing Machinery and Intelligence.”

The agent’s behavior is described by the agent function that selects an action
based on the agent’s internal state, its knowledge, and the input data gathered
by its sensors. A program implements this agent function. The terms sensor and
actuator describe any device, hard- and software alike, that is—in case of the
sensor—able to provide the agent function and thus the implementing software
with information about its environment in order to update the agent’s internal
state, and to—in case of the actuator—influence its environment through actions
chosen based on the agent’s sensory input, internal state, and agent function.
The agent function chooses an action from the pool of actions that are available
to the agent in order to maximize the agent’s performance in regards to its
defined goal.

The simplest form of an agent is purely reflex-based: It exhibits an action
based on the environment it perceives at that particular moment; it only reacts.
Such a design is called a simple reflex-based agent. This simple behavior model
has strong conceptional ties with psychological behaviorism (Skinner, 1953). If
the world it cannot currently perceive is also part of the action-selecting process,
then it must maintain a model of the world, and thus becomes a model-based
reflex agent.

However, in order to exhibit stringent behavior in the long term, it also
needs a definition of its global goal, making it a goal-based agent. Furthermore,
an agent can possess a function that judges different ways to reach the global
goal, a utility function that extends it to a utility-based agent. If the agent is
able to change its behavior based on previous sequences of inputs, actions, and
results, it is able to learn, i.e., it becomes a learning agent. Russel and Norvig’s
(2010) standard monograph covering artificial intelligence describes the design
and development of agents based on this typology in further detail. A different
typology is offered by Nwana (1996).

Wooldridge and Ciancarini (2001) summarize an agent’s four most important
properties: Autonomy, i.e., the agent’s ability to encapsulate a state (or state
estimation) and act based on that; reactivity, meaning the agent’s perception
of its environment, allowing the agent to react to changes in it promptly;
proactiveness, since the agent is able to show initiative; and the agent’s social
ability, as it communicates with other agents, and possibly humans. Strictly
speaking, agents cannot be understood in terms of functional systems as they
change their environment during execution.

One of the most notable formal approaches to agents, their communication,
and how it can generally be used to solve problems in a distributed way, is the

42 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Contract Net Protocol by Smith (1980). Indeed, one can easily identify the ideas
in Chapters 4 and 6 due to the general nature of Smith’s approach. On closer
inspection, the reader will note the differences due to the task at hand, especially
in the agents’ communication behavior that is dictated by the protocol presented
in this thesis. Other approaches to agent-oriented software engineering, i.e., how
to model agents, are presented and summarized by Wooldridge and Ciancarini
(2001).

From the example of Smith’s paper and the characteristics offered by
Wooldridge and Ciancarini it becomes obvious that, when designing agents,
one does not only need to concern oneself with the software itself, but also
with a communication protocol the agents utilize in order to be able to exhibit
social behavior. As we know from Section 2.3, communication protocols encom-
pass not only a means of encoding and representing data, but also a behavior
that needs to be followed by all communication partners lest the information
interchange fails. There is no ‘gold-standard’ for agent communication, but
standard frameworks exist, such as Java Agent Development Framework (JADE)
(Bellifemine et al., 2007). One can argue that behavioral rules form the most
important portion of any agent communication protocol, not encoding, and thus
already existing protocols based on standards should be employed as the basis
for agent communication. Section 2.3 has listed some, also in the context of the
smart grid; the IEC 61850 and IEC 61499 also lend themselves to infrastructure
automation in the smart grid (Vyatkin et al., 2010b).

Agents have been used widely in many fields of application, for example,
as agents acting in the economy (Cliff, 1997; Greenwald and Kephart, 1999;
Kephart et al., 2000; Kephart, 2002; Padovan et al., 2002; Koritarov, 2004;
Vale et al., 2011), or for data mining (Cao et al., 2009). In terms of the smart
grid, the agent design suggests itself readily and therefore finds publication in
different approaches.

McArthur et al. (2007a,b) outline the Multi-Agent System (MAS) approach
to power engineering applications in two papers presented by the IEEE Power
Engineering Society’s MAS Working Group. From the idea of self-healing
shipboard systems on board combat ships, where power flow needs to be
reconfigured in the face of damages on the system during a battle to keep
the ship operational (Butler et al., 1999), self-healing in terms of dynamic
reconfiguration to mitigate the effects of a fault has been defined as a task for
the smart grid that can be achieved using software agents (Nagata and Sasaki,
2002; Davidson et al., 2006; Vyatkin et al., 2010a; Zhabelova and Vyatkin, 2011;
Higgins et al., 2011).

But not only recovery, but also optimization of the power grid has been

2.4. ARTIFICIAL INTELLIGENCE 43

targeted by researchers using the MAS paradigm. In a series of papers, Rogers
et al. (2010); Aquino-Lugo and Overbye (2010); Aquino-Lugo et al. (2011) use
software agents to optimize power flow, for voltage support. Their approach
to manage active and reactive power uses an hierarchical chain-of-command
structure.53 In fact, Pipattanasomporn et al. (2009) explicitly state that “[t]he
idea behind any multi-agent system is to break down a complex problem handled
by a single entity—a centralized system—into smaller simpler problems handled
by several entities—a distributed system.”

Thus, many designs of agent systems for the smart grid distinguish between
different types of agents based on their task, position in the system, or their
overall hierarchical design. This Divide-et-Impera approach certainly follows
the guidance of good software design, but also leads to very specific, distinct
software packages that are tied to particular hardware types, locations, or
perform only a single, distinct task, making multiple agents in one installation
necessary. The agent design proposed in Chapter 4 does not distinguish between
different hardware types in a hard-coded manner.

Machine Learning through Artificial Neural Networks

Artificial Neural Networks (ANN) try to implement machine learning by creating
a model of the brain: the neural network. It contains artificial neurons that
mimic the behavior of their biological counterparts: a neuron receives a number
of stimuli through connections that are summed up and inhibited by a threshold
value. It finally activates the neuron, transforming the input into an output.
This creation of a structure that is modeled on the human brain dates back to
the work of McCulloch and Pitts (1943).

Neurons are connected to each other: one neuron’s output forms a part of
another neuron’s input. These connections are weighted, i.e., values that are
‘transferred’ between neurons are modified by the connection’s weight. Training
an ANN describes the task of modifying the neuron’s connections’ weights such
that the network’s output matches the desired output given the respective input
presented to the ANN.54 See Fig. 2.9 for a schematic view of a neuron.

A simple form of an ANN is the perceptron, invented by Rosenblatt (1957).
A perceptron contains neurons that receive input data to the neural network

53More specifically, the authors organize their agents based on the Incident Command
System (U.S. Department of Transportation, Federal Highway Administration, Office of
Operations, 2013).

54Training also incorporates the modification of a neuron’s activation threshold. In order
to simplify this, this threshold is externalized in form of a bias neuron.

44 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Input Activation
Function

Output

Bias

Figure 2.9: Schema of an artificial neuron

and output neurons from which the result of the network’s calculation is read.
Neurons are grouped into layers according to their position in the network, thus,
a perceptron contains at least an input layer and an output layer. Hidden layers
are also usual: they are located between the input and the output layer and
not visible from the outside, hence the name.

A perceptron is a directed, acyclic structure. Input is fed to the network’s
input layer neurons, their output travels along connections to neurons in the
hidden layers and finally reaches the neurons in the output layer. Perceptrons
are thus simple, feed-forward networks. Despite their seemingly simple structure,
ANNs can represent any function: A single layer is enough to represent any
continuous function, whereas a network with two hidden layers can represent
any mathematical function (Cybenko, 1988, 1989). A perceptron that can be
trained to represent the XOR function is depicted in Fig. 2.10a.

The works by Cybenko show how important the activation function is and
that choosing a sigmoid function is often the most beneficial. Jordan (1995)
explicitly discusses the role of the sigmoid function, i.e.,

sig(x) = 1
1 + e−x

. (2.9)

The power of an ANN lies in its ability to derive meaningful results from
unknown inputs that follow a pattern it has previously been trained to recognize.
We can see from the results published by Cybenko that the network’s size and
layout directly influences its ‘memory,’ i.e., its ability to learn a pattern. More
complex patterns require more complex networks. However, simply increasing
the number of neurons and layers is no solution, even if one dismisses memory and
computation time considerations: If a network contains too many connections,
it will suffer from overfitting and loses its ability to generalize, i.e., to derive
meaningful values from unknown, but pattern-matching, input values. However,
a method called Optimal Brain Damage for removing superfluous connections
exists (Le Cun et al., 1990; Sietsma and Dow, 1988).

2.4. ARTIFICIAL INTELLIGENCE 45

While the perceptron is able to detect static patterns and infer related ones,
it has no concept of time. Users often try to work around this shortcoming
by creating a vector of items of a time series xt, xt−1, . . . , xt−n that is fed as a
whole to the perceptron’s input layer. While this ‘flattens’ a time series into a
static pattern, it still does not enable the perceptron to learn about a timely
series; it merely creates a new pattern.

Researchers have therefore created neural network structures that contain
a ‘memory.’ They introduced an additional layer, called the context layer ,
whose neurons’ inputs are the outputs of other neurons in a different layer.
The neurons in the context layer save the input they receive and feed it to
their associated neuron on their next activation. Thus, each neuron in the
context layer feeds the result of the t− 1-th run on the t-th activation, acting
as a memory. These types of networks are called Recurrent Neural Networks
(RNN). The most notable works that have introduced this ANN architecture
are the papers by Jordan (1986); Elman (1990). The difference between the
two approaches is the connection of the context layer: In Elman networks, the
context layer is fed by the hidden layer; Jordan networks feed it from the output
layer. Fig. 2.10b shows a small Elman RNN.

Hochreiter and Schmidhuber (1997) have extended the RNN’s memory
through their Long Short-Term Memory (LSTM) design. Today, RNNs such as
Elman’s and Jordan’s are called Simple RNNs.

In order to train ANNs in a supervised manner, a training set containing a
number of samples with known results is presented to the yet untrained network.
The training’s obvious goal is to reduce the error of the network’s output
compared with the desired—and known—result of the training sample towards
0. Again, one can borrow inspiration for an algorithm from neuroscience, and
follow Hebb’s postulate:

“Let us assume that the persistence or repetition of a reverberatory
activity (or ‘trace’) tends to induce lasting cellular changes that add
to its stability. [...] When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.”
(Hebb, 2012)

The application of Hebb’s postulate led to a family of algorithms that use
the back-propagation of error . Here, the error is propagated backwards from the
output through the hidden to the input layer. Since its inception, the original

46 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Input Hidden Output

(a) A perceptron

Input Hidden Output

Context

(b) An Elman RNN

Figure 2.10: Two types of Artificial Neural Networks

algorithm has been modified and revised several times in order to optimize it; the
most notable optimization being the Rprop algorithms (Bryson and Ho, 1969;
Rumelhart et al., 1986; Riedmiller and Braun, 1992; Riedmiller, 1994a,b; Igel
and Hüsken, 2000, 2003; Lalis et al., 2014). RNNs cannot be trained with the
original back-propagation algorithm. Instead, those are unfolded over a number
of time steps so that they become feed-forward networks. The corresponding
algorithm is known as back-propagation through time (Mozer, 1989).

In general, finding a good weight configuration for a given neural network is
an optimization problem that is NP-complete (Judd, 1990). As a gradient-decent
algorithm such as back-propagation of error can get stuck in local minima, other
approaches of informed search can be used instead, such as Simulated Annealing
(SA) (Kirkpatrick et al., 1983), Particle Swarm Optimization (PSO) (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1998; Clerc, 2012), or evolutionary
algorithms (Branke, 1995). Chapter 5 will present a training algorithm in this
regard (Ruppert et al., 2014).

Researchers have shown that the number of samples for testing is related to
the size of the ANN. Baum and Haussler (1989) state that roughly, given the
vector of trainable weights of an ANN, w, a number of samples equal to

n = |w| log |w| (2.10)

is necessary; Anthony and Bartlett (2009) offer a more sophisticated theory.

2.5. BOOLEAN ALGEBRA 47

There are numerous examples for the application of ANNs. With regards
to the smart grid, they find application in terms of weather forecasting, since
wind farms and PV power plants rely on weather alone for their power output
(Maqsood et al., 2004; Ruppert et al., 2014). Load forecasting is also possible
using ANNs (Liao and Tsao, 2006).

While ANNs can yield impressive results, incorporating them into a software
requires carefully designed interfaces. Sculley et al. (2014) outline some of the
factors that create technical debt in this regard. Chapter 4 will therefore outline
the interfaces that avoid entanglement.

2.5 Boolean Algebra

The Boolean Algebra, which is named after George Boole, whose logical calculus
created it in 1847 (Boole, 1847), is a special algebraic structure. It is, according
to Peano (1888), a set with two elements, namely true (1) and false (0), on
which a unary operation, the negation, not (¬), and the two binary operations
and (∧), and or (∨) are defined. Other operations, such as the exclusive-or,
XOR (⊕), are defined using these operators and Peano’s axioms.55

A binary vector of length n is a n-tuple

b = (b1, b2, . . . , bk, . . . , bn) with bk ∈ B = {0, 1} . (2.11)

The Boolean space Bn contains all vectors b of length n:56

Bn = {b | b = (b1, b2, . . . , bk, . . . , bn) with bk ∈ B} . (2.12)

This basic definition is important in order to define a Boolean algebra as an
algebra of sets.57 However, this definition alone does not yet enable efficient
representation and solving of large Boolean equations. An equation f(x) = g(x)
with n distinct variables requires us to compute 2n Boolean values in order to
achieve a complete solution set. Not only does this exhibit a runtime complexity
of O(2n), it can also, in the worst case, entail n · 2n symbols in 2n vectors that
need to be stored.

Ternary Vector Lists (TVL) are a structure to efficiently store a list of
Binary Vectors (BV). The space efficiency of a TVL is achieved through the

55More specifically, every Boolean Algebra gives rise to a ring through a⊕ b := (a ∧ ¬b) ∨
(b ∧ ¬a) = (a ∨ b) ∧ ¬(a ∧ b).

56The number of elements in a given space Bn is therefore 2n.
57In fact, Peano (1888) introduced the symbols ∪ and ∩; Huntington (1904, 1933b,a)

introduced Boolean algebra as axiomatic algebraic structure in a series of papers.

48 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

introduction of a third symbol, ‘−.’ The binary tuple B = {0, 1} is thus extended
and becomes T = {0, 1,−}. The two-valued nature of the original model is not
lost; a biunique mapping between a Binary Vector List (BVL) and a TVL is
ensured by the following rules:58

• The symbol ‘−’ may be substituted by 0 as well as by 1.

• Every substitution of the dashes by 0 or 1 must lead to a binary vector of
the original BVL.

• Each BV of the given BVL must be reconstructible from at least one
Ternary Vector (TV) of the resulting TVL through an appropriate setting
of the dash elements.

A researcher cannot only use TVLs as space-efficient data structure; op-
erations with TVLs that are used to represent Boolean functions are also
well-defined: At no point is it necessary to convert a TVL to its BVL representa-
tion when manipulating Boolean functions that are represented by a TVL. The
standard monographs by Posthoff and Steinbach (1979b,a); Steinbach (1984)
detail and discuss the usage of TVLs for that purpose.

The most important tool that implements TVLs and operations on them
is XBOOLE (Bochmann and Steinbach, 1991; Steinbach, 1992; Dresig, 1992;
Posthoff and Steinbach, 2004). The symbols used in this thesis, along with their
corresponding XBOOLE function, are listed in Table 2.2.

XBOOLE has been used successfully to solve complex equation systems
resulting from various models, including demand and supply of active power
in the smart grid (Steinbach and Posthoff, 2012, 2014; Posthoff and Steinbach,
2014; Steinbach and Werner, 2014; Veith and Steinbach, 2015).

Another approach to handling complex Boolean functions are Binary Deci-
sion Diagrams (BDD). This Divide-et-Impera method is based on articles by
Akers (1978); Bryant (1986). A BDD is a tree—i.e., a rooted, acyclic graph—
that represents a Boolean function: Its nodes represent the function or its
subfunctions and are labeled by its variables. Each node has exactly two edges:
One that corresponds to the variable being set to true, i.e., the 1-edge, and
another one a solver travels when the variable denoted by the vertex is false,
i.e., the 0-edge.59 The tree’s leaves, or terminal nodes, represent the function’s
values. If edges from two distinct non-terminal nodes that share the same result

58Translated from Bochmann and Steinbach (1991)
59Bryant (1986) denotes the children of a vertex v as high(v) for v and low(v) for ¬v.

2.5. BOOLEAN ALGEBRA 49

Table 2.2: Boolean operators, their set operator counterparts, and the corre-
sponding XBOOLE function using Ternary Vector Lists in Orthogonal Disjunc-
tive/Antivalent form

Name Logic Notation Set Notation XBOOLE Function
Not h = ¬f H = F̄ H := CPL(F)
And h = f ∧ g H = F ∩G H := ISC(F, G)
Or h = f ∨ g H = F ∪G H := UNI(F, G)
XOR h = f ⊕ g H = F 4G H := SYD(F, G)

also share the same terminal node, and this is true for all, i.e., the BDD has at
most two terminal nodes, it is also called a reduced BDD.

In his paper, Bryant does not only prove that graph manipulation operations
can be used to work with Boolean functions that are represented as a graph,
but also shows that the ordering of the variables has a huge influence on the
graph’s layout and size. Fig. 2.11 shows two graphs that denote two functions
that differ only in the ordering of their input arguments, yet the BDD first one
has 8 edges, while the second one features 16 edges.60

Since the original article, many special forms of BDDs have emerged. For
this thesis, two types deserve special notice: Zero-Suppressed Binary Decision
Diagrams (ZBDD) and Edge-Valued Multi-valued Decision Diagrams (EVMDD).

ZBDDs introduce nodes only when the positive part is different from the
constant 0. This allows the user to create compact graphs for functions that
yield 0 as result for most argument values. ZBDDs have been introduced by
Minato (1993). He later applied the ZBDD concept to the power grid in order to
find a feeder configuration that minimizes line losses in changing demand/supply
scenarios (Inoue et al., 2014).

A Multi-valued Decision Diagram (MDD) represents a function f(x) whose
arguments x = (x1, x2, . . . , xn) are p-valued. Its results are values from
(0, . . . , p − 1) as well and thus constitute the tree’s p terminal nodes, i.e.,
one corresponding to each logic value (Kam et al., 1998). A MDD is therefore
useful to represent functions in the integer domain. A MDD can be reduced in
the same way a BDD can be.

An Edge-Valued Binary Decision Diagram (EVBDD) is a directed, acyclic
graph whose edges are valued: in addition to the edge denoting 0, an edge can
have any value, not just 1 as it does in a BDD. The tree’s non-terminal nodes

60Cf. Bryant (1986, Fig. 2).

50 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

1

2

3

4

5

6

0 1

x1 ∧ x2 ∨ x3 ∧ x4 ∨ x5 ∧ x6

1

2 2

3 3 3 3

4 4 4 4

5 5

6

0 1

x1 ∧ x4 ∨ x2 ∧ x5 ∨ x3 ∧ x6

Figure 2.11: Binary Decision Diagrams of two equivalent Boolean functions
with different argument ordering

denote the variables; its only terminal node is 0. The result is obtained by adding
the edge values. EVBDDs are used for so-called pseudo-Boolean functions, i.e.,
functions that map Boolean arguments to integer results: {0, 1}n → Z. For
functions with integer variables, these most be converted to BVs. EVBDDs
were introduced by Lai (1993); Vrudhula et al. (1996).

EVMDDs, finally, shorten EVBDDs and MDDs by combining their strengths.
An EVMDD can map an integer input to a multi-valued integer output: Z→ Z.
This structure has been introduced by Nagayama and Sasao (2007) to represent
elementary functions in a compact manner.

The fundamentals outlined in this section will find their application in the
agent’s heart piece, found in Chapter 7.

3 Approaching the Smart Grid by Modeling
and Simulation

3.1 Models of the Power Grid

Traditional Power Plants

We know from Section 2.2 that a simulation is appropriate whenever the subject
of research is too complex for calculation, or when a simulation will yield
insight into the behavior or intrinsic nature of the subject in a new or altered
environment. The power grid is such a subject: Not only is it complex, but
the change in the power mix through the large-scale introduction of volatile
renewable energy sources places it in an altered environment. More than that,
the application of software agents as proposed by this thesis will alter not
only power generation and consumption behavior, but also communication.
Computer networks have been subject to simulation for a long time as has the
power grid; this work will therefore follow this tradition.

A simulation that seeks to create an environment within which software
agents control the distribution of power must also provide models of power
generators and consumers.

One of the easier models that are available is that of a traditional power
plant based on steam or gas turbines. Necessary details on the physical and
engineering basics required for the modeling can be found in Section 2.1.

Such a traditional power plant is initially defined by its rated power output,
which is also part of the standard vocabulary, e.g., ‘a 1000 MW coal power
plant.’ In the power plant’s type there are also, through its design and fuel, two
other important parameters hidden: Its load gradient and the minimum load.
The fourth parameter necessary for creating an initial model is the power plant’s
startup time, which typically depends on the time the plant has been offline.

51

52 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Table 3.1: Parameters and values for traditional turbine-based power plants

Parameter Bituminous
Coal

Lignite Gas Nuclear

Rated Power (MW, per block) 500–
1000

≤ 1000 ≤ 340 600–
1500

Load Gradient (%PN) 4 2.5 10–25 5
Minimum Load (%PN) 40 50 40 50
Startup Times
(min.,
by time offline)

0–8 h 210 120 5–9 90
8–48 h 225 240 10 210
> 48 h 300 600 10 1050

Values for these parameters, according to type, can be found in Table 3.1.1
In terms of software engineering, a separation of the model and its parameters

from the concrete simulated subject’s state is appropriate. The model is
therefore defined by the parameter quadruple as listed by Table 3.1—the startup
times member of the quadruplet being a triplet itself—, whereas the tuple
(Output,StateChange) denotes its current state. This is depicted in Fig. 3.1 on
Page 53.

Renewable Energy Sources

For the renewable energy sources, the parameter set differs depending on the
actual source of power. A photovoltaic power station is characterized by its
peak load and its relative output, subject to the solar radiation reaching the
panels. Geothermal power plants are characterized by their rated output and
are typically not subject to load control; they can thus be modeled as constant
feeders in the simulated environment. Pump storage power plants are equally
easy to model, given a rated power output, and their load gradient. No type of
storage power plant can provide power indefinitely, for obvious reasons, and thus
their storage capacity in terms of electric power constitutes the third necessary
parameter. Since an electric power storage system can also act as consumer, the
system’s efficiency is of further importance, because it defines the conversion
ratio between consumed power and potentially feedable power.

1The table is based on Brauner et al. (2012) and VDMA Power Systems (2013). Data
about nuclear power plant rated outputs is based on data from the International Atomic
Energy Agency (IAEA) PRIS database (International Atomic Energy Agency, 2015).

3.1. MODELS OF THE POWER GRID 53
P

ow
er

 G
rid

 M
od

el M
od

el

-m
in

im
um

Lo
ad

 :
P

er
ce

nt
ag

e
-r

at
ed

O
ut

pu
t :

 K
ilo

W
at

t
-s

ta
rt

up
T

im
es

:i
nt

er
va

l[3
]

-lo
ad

G
ra

di
en

t :
 P

er
ce

nt
ag

e

+
lo

ad
G

ra
di

en
t(

st
at

e
: S

ta
te

T
yp

e)
 :

P
er

ce
nt

ag
e

+
st

ar
tu

pT
im

e(
st

at
e

: S
ta

te
T

yp
e)

 :
In

te
rv

al
+

po
w

er
(s

ta
te

:S
ta

te
T

yp
e)

:K
ilo

W
at

t
+

to
JS

O
N

()
 :

Js
on

D
oc

um
en

t
+

fr
om

JS
O

N
(s

er
ia

liz
e

d
: J

so
nD

oc
um

en
t)

 :
vo

id

Tu
rb
in
eP
o
w
er
P
la
n
tM
o
d
el

+
ou

tp
ut

:K
ilo

W
at

t
+

st
at

eC
ha

ng
e

 :
D

at
eT

im
e

Tu
rb
in
eP
o
w
er
P
la
n
tS
ta
te

+
po

w
er

(s
ta

te
 :

S
ta

te
Ty

pe
)

: K
ilo

W
at

t

<
<

In
te

rf
ac

e>
>

P
o
w
er
M
o
d
el
ab
le

+
lo

ad
G

ra
di

en
t(

st
at

e
: S

ta
te

Ty
pe

)
: P

er
ce

nt
ag

e
+

st
ar

tu
pT

im
e(

st
at

e
: S

ta
te

Ty
pe

)
: I

nt
er

va
l

<
<

In
te

rf
ac

e>
>

L
o
ad
M
o
d
if
ie
rM
o
d
el
ab
le

+
to

JS
O

N
()

 :
Js

on
D

oc
um

en
t

+
fr

om
JS

O
N

(s
er

ia
liz

e
d

:J
so

nD
oc

u
m

en
t)

:v
oi

d

<
<

In
te

rf
ac

e>
>

Js
o
n
S
er
ia
liz
ab
le

+
lo

ad
G

ra
di

en
t(

st
at

e
: S

ta
te

T
yp

e)
 :

P
er

ce
nt

ag
e

+
st

ar
tu

pT
im

e(
st

at
e

: S
ta

te
T

yp
e)

 :
In

te
rv

al
+

po
w

er
(s

ta
te

:S
ta

te
T

yp
e)

:K
ilo

W
at

t

W
in
d
fa
rm
M
o
d
el

+
ca

lc
ul

at
e(

in
pu

t:
V

ec
to

r)
:V

ec
to

r

N
eu
ra
lN
et
w
o
rk

+
ha

rd
w

ar
eL

o
g

: p
ai

r<
D

ire
ct

io
n,

 S
pe

ed
>

[0
..*

]

W
in
d
fa
rm
M
o
d
el
S
ta
te

C
o
n
su
m
er
M
o
d
el

-m
ax

im
um

W
in

ds
pe

ed
 :

V
el

oc
ity

-m
in

im
um

W
in

d
sp

ee
d

: V
el

oc
ity

+
ou

tp
ut

(w
in

ds
pe

ed
:V

el
oc

ity
)

:K
ilo

W
at

t

W
in
d
Tu
rb
in
e

+
lo

ad
G

ra
di

en
t(

st
at

e
: S

ta
te

T
yp

e)
 :

P
er

ce
nt

ag
e

+
st

ar
tu

pT
im

e(
st

at
e

: S
ta

te
T

yp
e)

 :
In

te
rv

al
+

po
w

er
(s

ta
te

 :
S

ta
te

T
yp

e)
 :

K
ilo

W
at

t

S
lp
C
o
n
s
u
m
er
M
o
d
el

+
cu

rr
e

nt
C

lo
ck

:D
at

eT
im

e

S
lp
C
o
n
s
u
m
er
S
ta
te

S
ta

te
T

yp
e

S
ta

te
T

yp
e

S
ta

te
T

yp
e

1

1

*

1.
.*

<
<

bi
nd

>
>

<
S

ta
te

T
yp

e
->

 T
ur

bi
ne

P
ow

er
P

la
nt

S
ta

te
>

<
<

bi
nd

>
>

<
S

ta
te

T
yp

e
->

W
in

df
ar

m
M

od
e

lS
ta

te
>

<
<

bi
nd

>
>

<
S

ta
te

T
yp

e
->

 S
lp

C
on

su
m

er
S

ta
te

>

Figure 3.1: Excerpt from the simulator architecture for models and associated
states

54 CHAPTER 3. SMART GRID MODELING AND SIMULATION

The models mentioned until now are relatively simple, given the model’s
parameters and the current state of the instance of the model. E.g., a coal power
plant’s power output, given a change request, is easily calculated from its current
power output, its load gradient, and the minimum load boundary as seen in
the previous section. Modeling a wind farm requires more complex calculations.
Wind speed is not homogeneous in the area that a wind turbine’s rotor sweeps;
it obviously contributes the most to the overall output of the installation.2
Additionally, wind speeds are typically measured at ten meters above ground.
Also, the wind direction makes the model more complex considering a wind
farm: If one wind turbine shadows another one, the second turbine’s wind speed
is the result of the fluid dynamics concerning the first one.

The alternative to a fluid dynamics simulation of a wind farm is to use
an aggregated model (Slootweg et al., 2002; Pöller and Achilles, 2003), or to
consider a wind farm a black box function, whose output depends on external
parameters. This simulation environment uses the second approach. Here, an
ANN is trained with data of an existing wind farm. Since ANNs can be trained
to represent any function,3 and the output of a wind farm can be considered as
a function of each turbine’s state, the wind speed and wind direction, an ANN
can learn to represent a particular wind farm. RNN designs that incorporate the
concept of time, such as Elman networks, can additionally learn to incorporate
the wind farm’s internal state, making this parameter unnecessary, leaving only
wind speed and wind direction. Thus, we can describe the output P of the
reference as:

P = f(v,θ) , (3.1)

where the functional part is the ANN, and v and θ are time series vectors4

of wind speed and direction respectively. Note that, due to the time series
effect, the ANN will need to be ‘aware’ of the concept of time, and thus an
Elman RNN will be used. Here, the advantage of this structure as described in
Section 2.4 becomes obvious: Wind turbines can follow the wind for a number
of degrees, often slightly more than 720°. Afterwards, a motor must be used
to rotate the nacelle back to its 0° position.5 A perceptron could learn a
time series pattern such as ((710°, 3400 kW), (720°, 3400 kW), 730°, 0 kW)), but
it will be confused by the following (720°, 0 kW) tuple. Additionally, the series

2Cf. Section 2.1.
3Cf. Section 2.4.
4v = (vt, vt−1, . . . , vt−n),θ = (θt, θt−1, . . . , θt−n)
5Cf. Section 2.1.

3.1. MODELS OF THE POWER GRID 55

θ = (710°, 720°, 710°) will constitute a new pattern for the perceptron, whereas
the Elman RNN possesses a notion of the state context through its context
layer.

In order to use this model to represent any wind farm, the ANN’s output
must be modified. If n is the number of turbines in the reference wind farm, n′
the number of turbines of the modeled one, and the other wind farm consists of
the same turbines, then the wind farm’s output is constituted as

P = n′

n
f(v,θ) . (3.2)

This assumes that any modification of the reference wind farm would place
the wind turbines in an optimal layout.

For each wind turbine that differs from the reference type, their power curve
must be taken into account. If p̂k(v) is a function that maps a certain wind
speed to the k-th turbine’s output, and p(v) represents the reference turbines’
power curve, we can modify the original Eq. (3.2) to:

P = f(v,θ)
n′∑

k=1

1
n

p̂k(v)
p(v) . (3.3)

Fig. 3.1 on Page 53 includes the UML notation for the class that represents
a wind farm and its state. Here, the WindfarmModel class is associated with a
number of objects instanciated from the WindfarmModelState, which, in turn,
contain one RNN. Note that the RNN that represents the wind farm’s model is
part of the state class: This is due to the RNN’s context layer that represents
the wind farm’s current state.

Power Grid Infrastructure
Models of the grid’s infrastructure such as transformers or the lines themselves
depend on their capacity, which may not be exceeded. The details have been
discussed in Section 2.1. Thus, power lines and transformers are initially
modelled by their impedance, voltage level, and maximum load capacity; the
item’s current load defines its state.

The impedances of lines and transformers can simply be given, but stem
from different formulae. The transmission line’s impedance is dependent on its
length6 and a number of parameters, which are:

6As long as the same unit of length is consistently used, the length’s unit is not considered
specifically, but only the length’s value. We assume kilometers in this thesis.

56 CHAPTER 3. SMART GRID MODELING AND SIMULATION

R′ Resistance per unit length per phase:7 Ω/km

X ′ Reactance per unit length per phase: Ω/km

B′ Shunt susceptance per unit length per phase: siemens/km

G′ Shunt conductance per unit length per phase: siemens/km.

As soon as the agent software begins to work and short-term contracts
on consumption and delivery of active or reactive power are struck, the simu-
lated power grid diverges from a known state it initially had. Thus, a power
flow analysis must be conducted whenever power generation and consumption
changes.

The mathematical statement of the problem is extensively outlined and
discussed by Powell (2005, Chapter 2); this thesis will now only summarize the
statement in order to introduce the relevant solver algorithm.

Every node8 i is either a generator or a consumer. A generator supplies
active power and voltage to the system and is therefore called a PV bus.9 At a
consumer or load bus, active and reactive power values are known; it is therefore
called a PQ bus. For the analysis, one bus is specially picked at which the
voltage and the voltage phase angle are known; this bus is the VD bus.10

For every node i, we must consider the flow of current to or from its adjacent
nodes:

Ii =
n∑

k=1
Iik . (3.4)

The flow of current is defined by the voltage difference between i and its
k-th neighbor as well as the admittance of the grid elements between the two
nodes. With Iik = (V i − V k)Y ik we can rewrite Eq. (3.4) to:

Ii =
n∑

k=1
(V i − V k)Y ik . (3.5)

7We can represent a three-phase circuit by an equivalent single-phase circuit, if it is
balanced.

8In the terminology of power system load flow analysis, nodes are called buses or busbars.
We will continue to use the term node to maintain the information technology-centric view
on the topic.

9Here, V actually denotes the voltage magnitude, |V |.
10The VD bus is also known as the slack bus.

3.1. MODELS OF THE POWER GRID 57

Note that all grid elements such as lines and transformers are descried by
their admittance.11 For lines and cables, any Y ik is expressed by their resistance
and reactance values:12

− Y ik = −R+ jXL

R2 +X2
L

. (3.6)

A transformer is simply described by a simple series per-unit impedance.13

By reformulating14 the equations we can write them in matrix form,

I = Y ·V , (3.7)

which forms the fundamental equation for each power system load flow analysis.
The matrix notation introduces simplicity and also efficiency when creating a
solver.

Voltage magnitudes and voltage phase angles of the nodes are interdependent,
as Eq. (3.4) shows, and the power system load flow analysis is therefore non-
linear in nature. Thus, the solver must employ numerical methods to arrive at
a solution step-by-step. The simulation environment of this chapter uses the
Newton-Raphson approach (Powell, 2005, Chapters 7 and 9) with the additional
optimization factor described by Wang et al. (2014) to solving.

Power Consumers
Power consumers are modeled by SLPs, which have been described in Section 2.1.
If large consumers can change the amount of power drawn, a load gradient is
supplied for the model; it is then used as an offset to the original load profile.
Additional modeling logic, such as shift schedules, can be included in derived
model classes in order to create very specific simulations. All parameters for
the models used in the simulation are summarized in Table 3.2.

The implementation separates the model and its parameters from the state
of the model instance. This way, a model instance can be shared by different
entities at different positions, where the corresponding simulation entity objects
maintain the specific state. The states are serialized for evaluation of a simulation
run and its results. Furthermore, replays are possible and model parameters

11Y = Z−1.
12NB. that R′ is the resistance per unit length, whereas R denotes the total resistance

over the whole length of a cable, i.e., R = R′l. C.f. Section 2.1.
13As long as the wiring is fixed during the analysis.
14Cf. Powell (2005, p. 17).

58 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Table 3.2: Parameters for different power grid models

Model Parameters
Steam power plant Startup times, rated power output, load gradient,

minimum load
Photovoltaic power
station

Peak power output, relative power output given
solar radiation intensity and angle of incidence
(as function)

Wind farm Number of turbines, rated power of turbines,
power curves of turbines (as function)

Power storage Rated power output, load gradient, efficiency
Consumer (modeled
after SLP)

Load profile (as function)

can be tweaked in order to find solutions to specific situations. For example,
given a state, one can modify a model’s parameter and answer questions like,
‘how would the situation develop if this power plant was more flexible?’

Fig. 3.1 presents an excerpt of the simulator architecture implementation
regarding models and states. All objects participating in the simulation are
instantiated from classes that implement the PowerModelable interface as a
uniform Application Programing Interface (API) that returns the current power
balance for an object given its corresponding state. All objects the influence
grid’s power balance as a load—both, positive, i.e., as consumers, or negative,
i.e., as generators—and that therefore feature a startup time if offline and a load
gradient implement the LoadModifierModelable. Concrete classes and their
states are then the TurbinePowerPlantModel for all traditional, turbine-based
power plants such as coal, gas, or nuclear power plants, the WindfarmModel,
and the SLP consumer.

3.2 Reference Situation

Assembling the models presented in the previous section, one can construct a
reference situation. It becomes the starting point that illustrates the effects of
volatile power generation while allowing the software agent and its modules to
work in order to improve the overall power grid state. Illustrations of the agent’s
design and the individual modules in the following chapters will reference the

3.2. REFERENCE SITUATION 59

Fb Trafo #1

(250 kVA)

SWT Trafo #1

(400 kVA)

SWT Trafo #2

(400 kVA)

Salt Water Town

Elensefar

Levee’s

Pillow Factory

El Trafo #1

(630 kVA)

El Trafo #17

(250 kVA)

El Trafo #6

(250 kVA)

El Trafo #12

(400 kVA)

El Trafo #4

(400 kVA)

Blackwater Port

Filbel’s Fund

Flarid’s Town

Fl Trafo #7

(400 kVA)

Fl Trafo #5

(400 kVA)

Augustus Works

Fl Trafo #4

(400 kVA)

Fl Trafo #1

(400 kVA)

Funder’s Village

Fd Trafo #1

(250 kVA)

White Hill Springs

Ws Trafo #1

(400 kVA)

White Hill

Wh Trafo #1

(250 kVA)

Block Heat and Power Plant

(1.5 MW)

Bw Trafo #6

(630 kVA)

Bw Trafo #1

(250 kVA)

Fl Trafo #11

(400 kVA)

SWT Trafo #3

(400 kVA)

Fool’s Springs

Wind Farm

White Hill

Wind Farm

Lambert Springs

Wind Farm

Blows Hill

Wind Farm

110 kV20 kV

Overhead Line

Underground Cable

Transmission Line/Route

MOR

DI

DEM

WOE

ELCH

DRI

DIS

LAL

QIT

VLAPRA

KON FPU

GENUF

FLU

SUAKA

TARTIN

White Hill Springs

Substation 110 kV - 20 kV

Bare Hill

Wind Farm

El Trafo #8

(400 kVA)

Figure 3.2: Logic view on the modeled reference power grid

60 CHAPTER 3. SMART GRID MODELING AND SIMULATION

-30

-20

-10

 0

 10

 20

 30

 40

R
ea

l P
ow

er
 [M

W
]

Blows Hill Wind Farm
White Hill Wind Farm

Substation 110kV Trafo

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

00:00 04:00 08:00 12:00 16:00 20:00 00:00

R
ea

l P
ow

er
 [M

W
]

Bare Hill Wind Farm

Figure 3.3: Active power at wind farms and the connecting substation during a
day in February in the reference grid

situation presented here.
The reference power grid is based on an existing one in rural Germany,

anonymized in this thesis.15 The grid in question is operated at 20 kV, fed from
the 110 kV grid layer. The substation’s transformer connecting the two power
levels can be loaded with at most 50 MVA. The smaller power stations in the
grid range between 250 kVA to 630 kVA.

The 20 kV grid connects a number of villages as well as two small factories.
Three wind farms are directly connected to the substation, another two are
part of the grid near one of the villages, and therefore does not connect directly
to the substation, but to another point in the 20 kV system. A small block heat
and power plant completes the rural grid. Fig. 3.2 provides a logic view on it.
Notice that in this figure a string of power substations has been merged into
one if the consumers connected to it can be treated in an uniform manner and
do not exceed the maximum load of the transformer.

15For easy reference, the villages, factories, etc. have been given identifiers in the form of
new names that are easy to remember.

3.2. REFERENCE SITUATION 61

 10

 15

 20

 25

 30

 35

 40

 45

 50

DI DEM ELCH DRI LAL NUF TAR TIN KA SUA FLU FPU PRA

Lo
ad

 [M
W

]

Figure 3.4: Peak load of the 110 kV nodes in the reference grid

The wind farms feed power whenever wind is available; there is no grid
control. Equally, the factories do not participate in any form of control executed
by the grid operator. The immediately obvious result of this policy is a surplus
of active power that is available on windy days. Since no load adjustment of
any form is done, the power is backfed via the substation’s transformer to the
110 kV power grid.

The second diagram in Fig. 3.3 shows the output of the ‘Bare Hill Wind
Farm’ during a day in February. The volatile output is typical for a wind farm
in the area chosen as the reference area. A similar behavior is exhibited by the
other two wind farms that are plotted, ‘Blows Hill Wind Farm’ and ‘White Hill
Wind Farm,’ although neither of these is an immediate neighbor of the other.

Although the ‘Bare Hill Wind Farm,’ as shown in Fig. 3.3, is not directly
connected to the substation but four villages away from it, the general shape
of the power flow curve is recognizable on the active power flow curve of
substation’s transformer, which is also plotted in Fig. 3.3. The effect is more
visible for the active power curve of ‘White Hill Wind Farm’ that is plotted in
the same diagram. Clearly, the 20 kV to 110 kV transformer is feeding back.

The higher grid layer at 110 kV follows a ring structure. Each node in the

62 CHAPTER 3. SMART GRID MODELING AND SIMULATION

grid has other 20 kV grids connected to it; they can serve to model sub-grids
with different characteristics than the one displayed. The nodes ‘MOR,’ ‘DIS,’
and ‘GE’ can also serve as connections to a 220 kV or 380 kV grid to model
large power plants. Most of the nodes in the 110 kV grid are connected using
overhead lines of, on average, a length of 10 km.

Fig. 3.4 displays the typical peak load during a heavy-load period for the
nodes of the 110 kV grid.

3.3 Smart Grid Simulation Environment

Motivation: Requirements to a Smart Grid Simulator
Any software needs to be tested before it is released to the general public.
Testing provides the stakeholders with information regarding the quality of the
software in concern. It helps not only to ensure the usability of the finished
software in terms of human-computer interaction, but also to ascertain its
correct behavior. This is even more important for software that is used in
critical areas, meaning areas in which a malfunction of the employed software
risks important infrastructure, people’s lives, or both.

The electrical grid obviously is such an area. A loss of electrical power
impedes nearly every kind of business; studies have shown that a civilization
begins to show severe signs of degeneration after two days without electricity
(Kutter and Rauner, 2012). Electricity does not only provide lighting, but
is also essential to deliver fresh water and transport waste. Furthermore, it
is needed for refrigeration and therefore required to supply cities with food.
Malfunctions in the electricity grid can also harm people in direct, acute ways,
for example, through excess voltages or effects of failing infrastructure.

The testing of a piece of software begins at the lowest level, where discrete
units can be distinguished from each other. These unit tests isolate the parts of
the program, testing them independently from the rest. A unit test is often a
white-box test, meaning that the writer of the test code is also proficient with
the code that is being tested, or at least has access to the sources.

A collection of unit tests that covers as much of the software as possible has
several advantages. It ensures that a contract proposed by a given interface is
fulfilled. Unit tests also show quickly when a change in one part of the software
has led to a malfunction in another part, and thus facilitates change (e.g., via
the refactoring of existing code).

Due to their isolated nature, unit tests are often executed using mock data.
Mock data constitutes a set of input data that is specifically constructed in

3.3. SMART GRID SIMULATION ENVIRONMENT 63

correspondence with the unit test. It serves to trigger specific behavior in the
module that is subject to the test. Mock data can originate from real world
data, but is often edited and tailored for the specific test case. However, mock
data can also be totally synthetic.

While unit tests are focused on one particular, distinct part of the software,
component and integration tests examine the cooperation of the different parts,
up to considering the piece of software as a whole. All these test types serve to
provide a deterministic, repeatable examination of the quality of the software.
However, they operate on two premises:

1. A number of tests exist that describe the piece of software sufficiently to
serve as a quasi-model of said piece of software with regards to the typical
tasks.

2. The provided, mostly synthetic mock data covers enough variations of
possible real world input data the software possibly encounters in order
to trigger all important behaviors it will later exhibit.

Especially in cases where the first premise is not satisfied, a simulation needs
to be employed additionally to any unit tests that exist. Recall Section 2.2,
where additional motivation for employing a simulation is discussed.

The formal verification of any software is still an open question. The behavior
of agents, especially distributed agent software that interacts with each other, is
even harder to verify, although attempts at a sufficient notation and reasoning
have been made.16 The question of whether a model of the software and its
behavior exists can thus be denied, requiring the additional testing a simulation
can provide.

Testing an algorithm that controls a part of the electrical grid means a
vastly changing amount of data is available, ranging from wind speeds and solar
radiation to customer behavior. All these directly influence the agents, mostly
through their forecasting; the combination of weather data, state of the grid,
and consumer behavior cannot be represented in terms of mock data for one
particular test case. The availability of real-world data and the complexity that
arises from the interaction of the agents with each other, based on this data
and their current state, mandates simulation runs.

Running a simulation instead of exposing the software to a real environment
always alters the behavior of the software since the models that form the
simulated environment are necessarily only as complex as required. Recall from

16Cf. Section 2.4.

64 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Section 2.2 that model complexity, model confidence, and even model accuracy
can stand in an anti-proportional relationship. But this does not only mean
that some hitherto unknown relationship between these entities exists in the
real world that is naturally missing from the simulated environment, but also
that any simulation process alters the model’s behavior through its simulated
environment.

However, the creator of the simulation software should always strive to keep
the influence of his simulation on the software as low as possible. Thus, a
simulation should be conducted as black-box testing, meaning that the software
that is subject to the tests should be treated as unknown, and the absence
of errors should only be asserted by observing the software’s behavior. The
software that is subject to the simulation should need to be modified as little
as possible, or not modified at best. Simply put, the development of the smart
grid software agent must occur independently from the simulation software.
This constitutes the first requirement of the simulation environment.

The second demand on the simulation environment is its ability to provide
input data to the numerous items that are being simulated. This does not simply
translate as fast access to a sufficiently great data store. Weather conditions as
well as customer behavior are strongly dependent not only on the time of day,
but also on their respective location.17 Input data must therefore reach only
those instances of the software for which it is relevant. Changing conditions
there must have their area of effect properly represented in the simulation
environment.

The input data will, in most cases, stem from very different sources: Dif-
ferent sources for, e.g., weather data exist with different sample sizes. Their
measurements can also differ in terms of accuracy, or the area for which a
certain measurement is valid. The same holds true for customer behavior or
historic data of power generation. In general, a simulation of the electrical
grid will have to cope with different data sources that offer data of potentially
differing data quality.18 Data quality is typically assessed by the researcher, and
its influence on the result of a simulation run is quantified later. A simulation
environment can assist in that respect by comparing the data sources registered
for a simulation run, giving an estimate on the validity of the simulation’s

17Cf. Section 2.1 and Section 2.1.
18Data quality is an abstract term for which several definitions exist; a fitting definition

especially regarding simulation runs is “[Data quality is] [t]he state of completeness, validity,
consistency, timeliness and accuracy that makes data appropriate for a specific use.” (Schultze-
Melling, 2010, p. 256)

3.3. SMART GRID SIMULATION ENVIRONMENT 65

results. Semi-automatic assessment of the input data quality, and its influence
on the final results is the third requirement to the simulation software.

Since a simulator itself is a piece of software, it might seem obvious to
model the scenarios that are being simulated in the software, too. However,
this confuses the material with the tool: The description of a scenario, i.e., its
parameters—the layout of the grid that is being simulated, its participants,
start time, possible end times, etc.—depend on the software interface of the
simulator itself. The concrete simulation itself, however, is not the concern of
the simulation software; only its execution is. A description of the simulators
initial state, its subjects, their layout, the general parameters governing the
initial state, is therefore the fourth requirement.

The existence of a separate description of a simulation can also yield another
useful feature: It additionally allows to formulate the expected outcome of a
simulation run.

Architecture of the Simulation Environment

The agent described in Chapter 4, starting on Page 81, is a distributed soft-
ware; therefore, it thus achieves its effect by the communication between the
different instances. Since the usage of computer networks forms an essential
part of the functioning of the agent, using simulation software suggests itself
for communication networks.

In fact, Bush (2014) suggests that there are equivalent concepts in power flow
as well as in packet flow; simulating one can help to understand the other. His
book further emphasizes how increased integration of communication networks
through sensors aid in monitoring the network state, enabling a detailed and
more precise analysis of the electrical grid’s health. While he does not suggest
that traditional safety measures such as reclosers can be replaced by computer-
operated and networked ensembles of sensors and switches, they could redefine
the role of reclosers, fuses, and others as a secondary, backup role.

The simulation of communication networks helps to observe the behavior
of a network protocol before releasing it to the general public and is often a
viable alternative to setting up large testbeds with real hardware. Network
simulators facilitate the set-up of a virtual testbed, the deployment of nodes
implementing a certain protocol, pushing changes to the nodes and monitoring
the flow of packets. A simulator for smart grid agent software needs to fulfill
the requirements outlined in Section 3.3:

66 CHAPTER 3. SMART GRID MODELING AND SIMULATION

1. It should provide an interface to the simulated agent software in order to
entangle the simulated object and the simulation as little as possible.

2. The simulator should provide an interface to read data from an external
data store in order to provide the simulation environment with real-world
weather data, customer behavior, etc. Using a database to write simulation
logs and results to is additionally desirable.

3. It needs to support the geographical placement of a simulated object in
order to define an area of effect for events that occur in the simulation
environment.

4. All data injected into the simulation environment should not be trusted
per se. The simulator should help the researcher to assert the quality
of input data utilized during a simulation run in order to quantify the
impact the different data have on the result of a simulation run.

The simulation kernel follows the design of OMNeT++’s kernel module.19

Every simulation run is represented by a Run object that encapsulates the run’s
current state (i.e., pristine, set up, running, or finished) and aggregates all kernel
components: The simulation run’s description, the event loop and its associated
event dispatchers, the list of subjects to the simulation, and the spatial index.
These pieces are outlined in the following paragraphs and depicted in Fig. 3.5.

The event system, at its heart, consists of a queue of events, and a number
of event dispatchers. The event queue is ordered not on a First In, First Out
(FIFO)-basis, but sorted by the event’s destined time of execution.

The simulation acts on an artificial, non-proportional time unit known as a
tick. The current time/date in the simulation environment is determined by
the event’s scheduled time. In between events, nothing happens; the simulation
can, theoretically, jump days without something happening in the simulated
environment.20 At the beginning of a tick, the event loop picks the first event
from the queue, determines all objects it is to be delivered to, and dispatches it
to these objects. The objects, in acting on the event, can generate events of
their own; they are inserted into the event queue at the appropriate position
designated by their time. If this time is the same as the current simulated time,
those events are delivered too. The tick ends when all events at the given time
are dispatched. The core event loop is described in pseudocode as Algorithm 1
on Page 68.

19Cf. Section 2.2.
20The simulation clock—cf. Section 2.2—is therefore monotonic, but not geometric.

3.3. SMART GRID SIMULATION ENVIRONMENT 67
S

im
ul

at
io

n
 K

er
ne

l

S
im

ul
at

io
n

+
st

ar
tS

im
ul

at
io

n(
)

: v
oi

d
<

<
S

ig
na

l>
>

 +
si

m
ul

at
io

n
F

in
is

he
d(

re
as

on
 :

S
im

ul
at

io
nS

to
pR

ea
so

n)

R
u
n

+
no

tif
y(

ev
en

t :
 E

ve
n

t)
 :

vo
id

M
ap
It
e
m

E
N

D
_D

A
T

E
T

IM
E

_R
E

A
C

H
E

D
O

U
T

_O
F

_E
V

E
N

T
S

O
U

T
_O

F
_D

A
TA

<
<

en
um

er
at

io
n>

>
S
im
u
la
ti
o
n
S
to
p
R
e
as
o
n

+
E

ve
nt

Lo
op

(r
un

:R
un

)
<

<
S

lo
t>

>
 +

st
ar

t(
)

: v
oi

d
+

ru
n(

)
: v

oi
d

+
tic

k(
)

: v
o

id
+

di
sp

at
ch

A
llE

ve
nt

sF
or

(d
at

eT
im

e
: D

at
eT

im
e)

 :
vo

id

E
v
en
tL
o
o
p

+
en

qu
eu

eE
ve

nt
(a

ffe
ct

ed
 :

M
ap

Ite
m

, e
ve

nt
 :

E
ve

nt
)

: v
oi

d
-d

is
pa

tc
hA

llE
ve

n
ts

()
 :

vo
id

#d
is

pa
tc

hE
ve

nt
(e

ve
nt

:M
ap

Ite
m

E
ve

nt
)

:v
oi

d

E
v
en
tD
is
p
at
ch
er

+
id

()
:l

on
g

+
ty

pe
()

 :
E

ve
nt

T
yp

e
+

cr
ea

te
dA

t(
)

: D
at

eT
im

e
+

af
fe

ct
ed

A
re

a(
)

: O
G

R
P

ol
yg

on
+

af
fe

ct
ed

A
re

a(
ar

ea
 :

O
G

R
P

ol
yg

on
)

E
v
en
t

E
V

E
N

T
T

Y
P

E
_T

IM
E

_C
H

A
N

G
E

D
E

V
E

N
T

T
Y

P
E

_V
A

LU
E

_C
H

A
N

G
E

D

<
<

en
um

er
at

io
n>

>
E
v
en
tT
yp
e

+
til

eS
er

ve
rs

 :
T

ile
S

er
ve

r[
0.

.*
]

+
st

ar
tT

im
e

: D
at

eT
im

e
+

st
op

T
im

e
:D

at
eT

im
e[

0.
.1

]
+

ar
ea

 :
O

G
R

P
ol

yg
on

+
fr

om
JS

O
N

(js
o

n
: J

so
nD

oc
um

en
t)

+
to

JS
O

N
()

 :
Js

on
D

oc
um

en
t

+
m

ap
Ite

m
F

ac
to

rie
s(

)
:M

ap
Ite

m
F

ac
to

ry
[0

..*
]

D
es
cr
ip
ti
o
n

N
O

N
E

P
R

IS
T

IN
E

S
E

T
U

P
S

TA
R

T
E

D
R

U
N

N
IN

G
F

IN
IS

H
E

D

<
<

en
um

er
at

io
n>

>
S
im
u
la
ti
o
n
S
ta
te

R
Tr
ee

+
ev

en
tD

is
pa

tc
he

rF
or

(e
ve

n
t :

 E
ve

nt
)

: h
as

h<
M

ap
Ite

m
, E

ve
nt

D
is

pa
tc

he
r>

<
<

In
te

rf
ac

e>
>

E
v
en
tD
is
p
at
ch
er
Q
u
er
ya
b
le

p
ai
r

M
ap
It
e
m
E
v
en
t A B

ru
n

ev
e

nt
D

is
pa

tc
he

r

1

*

1

1

<
<

bi
nd

>
>

<
A

 -
>

 M
ap

Ite
m

, B
 -

>
 E

ve
nt

>

m
ap

th
re

ad
lo

ca
lM

a
pI

te
m

s

st
at

e

Figure 3.5: The simulation kernel

68 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Algorithm 1 Event loop of the simulation software
procedure EventLoop

while eventQueue 6= ∅ ∧ eventQueue1,time ≤ stopTime do
e← Pop(eventQueue)
currentSimTime ← etime
mapItems ← getAllIn(earea)
for all item ∈ mapItems do

dispatcher ← eventDispatcherFor(item)
dispatch(dispatcher , event, item)

end for
end while

end procedure

The event dispatchers’ raison d’être is to abstract the immediate delivery
of events to objects; they can exist in terms of separate threads for a local,
multi-threaded simulation, or serialize events and deliver them via a network
connection to compute nodes. They handle thread boundaries or serialization
transparently.

An event is delivered by calling the appropriate function on a MapItem
object. Instances of this class serve two purposes: They act as wrapper classes
to agent code and modelled grid infrastructure and therefore provide a unified
interface to every simulated object. They also hold the position of the object in
a geospatial sense, hence the name ‘map item’: It is about an item on a map.

The concept of the map item therefore fulfills two requirements: First, it
provides a wrapper class with a uniform interface, allowing all simulated objects
to be treated in the same manner, independently from the hardware they model,
and, especially, independently from the code of the software agent, which is
considered as a black box. Second, it allows events to carry their own geometry
information in order to have an area of effect; the event’s area is mapped to the
map items’ positions. Effective querying of the map for all items in a certain
area is done via an R*-tree (Beckmann et al., 1990) geospatial index.21

Events can be created by any item on the map; not all MapItem objects also
have tangible, real-world equivalents, such as power plants, or represent software
agents. The map item concept is also used to inject data into the simulation.
Thus, map items exist also to represent general customer behavior through

21Additional checking must be performed: An R*-tree organizes itself using rectangles,
whereas any polygon can constitute the event’s area of effect.

3.3. SMART GRID SIMULATION ENVIRONMENT 69

standard load profiles or weather conditions. These, too, can be geographically
mapped, represent a modeled entity, and therefore fit the concept of the map
item.

Since MapItem objects also serve as a way to inject data into the simulated
environment, e.g., through wind speed measurements or solar radiation readings,
they are also the common interface for any data source. There can be many types
of data sources; but most will read their data from an external database and
trigger events according to the measurements stored, or any kind of interpolated
data stemming from interpolation points.

These data sources, although configured by the user, need additional scrutiny
and may not be trusted necessarily. Data can come in different qualities, often
because the initial collection of raw data yields sparse sets instead of continous
series of high-quality readings. Even though these ‘holes’ in a particular data
set exist, it is desirable to continue with the simulation instead of halting it:
The behavior of the software agent observed during long-running simulations
can lead to important findings; bugs sometimes lurk in code that is triggered
only on edge conditions.

Additionally, different measurements describing the same subject can come
from different sources. Such is the case with weather data that can be bought at
high prices from national weather institutes, providing a high level of detail, in
comparison to freely available weather data that provides only low-resolution22

readings. If one was to plan a simulation running on real-world weather data
spanning one year, one would either have to buy the whole year in terms of
high-quality data, or resort to a full set of free, but potentially low-quality
data. Instead, the simulator allows to mix both data sources in one map item.
Due to an error assessment, the impact on the simulation result regarding the
lower-quality data source can be quantified. Section 3.4, starting in Page 77,
shows how this is done.

A simulation run needs to be configured before it can start. Configuring
the simulation environment includes creating and setting up all map items,
designating the start time of the simulation as well as a possible termination
time, mapping the desired data sources, and, finally, potentially injecting
custom nodes with pre-configured, artificial behavior that serve as decoys to
trigger a specific reaction from other objects. This configuration23 is done on

22E.g., wind speed and direction measurements are stored in terms of ten-minute mean
values; this is the highest resolution (time-wise) one may obtain. Free weather data, however,
often offers values averaged over one hour instead of every ten minutes.

23The actual run-time creation of objects is the task of Factory Pattern (Gamma et al.,
1995b) classes that take their information from parts of the simulation description.

70 CHAPTER 3. SMART GRID MODELING AND SIMULATION

the basis of a simulation description, a JSON-serializable object that offers a
separate description language that is not tied to the C++ code of the simulation
environment. The Description object can also serve as the basis of a state
comparison, wherein the final state of the simulation, or the final state of
selected objects in the simulation, is compared to the desired state given in
the description. This way, the results of a simulation run can be checked
automatically against a given acceptance boundary.

The simulation description answers the requirement of separating of concerns.
How the simulator uses it in order to conduct explicit testing is described in
further detail in the following Section 3.3.

Abstract Simulation State Description

The simulation environment as it has been described until now is non-opinionated.
The user sets the starting parameters—such as date and time or the objects
participating in the simulation—, and, after starting the run, is able to observe
the behavior of all nodes. Values are recorded for later review.

It is then up to the user to decide whether the simulation run yielded a
success or not. He does so by comparing records of the time and taking error
margins into account. The simulation environment itself is however completely
unaware of the goals that are linked to a run and has no notion of a final state
in terms of overall success or failure.

In order for the simulation environment to be able to assess this, it needs to
be provided with a set of comparable properties with attached values. Therefore,
a complete description of the simulation, its setup, and its final state, must be
provided. This allows a uniform configuration of each simulation that enables
the simulation environment to launch repeated runs from the same starting
point. The behavior of the agent code can then be reliably tested and the
impact of changes be determined.

Each description file uses the JSON as notation format, with one description
being one object. Although the JSON is considered a dynamic format for
which developers, in contrast to the XML, in practice do not provide a formal
schema to verify JSON documents against, such a schema definition exists for
the simulation description, created in JSON Schema.24

A description can be divided into three logical parts:

1. A general configuration section
24Draft version 4, cf. Zyp et al. (2013a) and Zyp et al. (2013b).

3.3. SMART GRID SIMULATION ENVIRONMENT 71

2. the initial state

3. the final state.

The configuration section serves as an information base in order to set up
and configure the simulation run. It consists of several properties that are
immediate children of the description object.

The user defines the data sources that are available during the simulation
run via the dataSources property. Currently, two types of external sources
can be configured: First, the project database that contains weather data,
information about wind farms, and geospatial records containing the position
of cities, power grid infrastructure and other items that can be contained in a
simulation run. Second, an external tile server can be specified. A tile server
makes pre-rendered tiles of a map available as images. This way, additional
visual information like country borders or landscape features can be displayed.

What will actually be drawn from those defined sources is also configurable
using the fetchFromSources property. This string list can contain any com-
bination of the keywords maptiles, consumers, producers, and grid, whose
presence enable the corresponding map feature from the defined data sources.

However, both the database and the tile server are optional data sources,
because the description file itself can act as such. Using the simulation de-
scription file, a user can inject agents and connections between agents into the
simulated environment. When no other data source is specified, this, together
with the initial and final state definitions, can be used to set up synthetic
black-box tests of the agent code. Whenever the user specifies the agents and
agentConnections properties in the supplied description file, it is considered
as a separate data source in addition to the external ones. Since the presence
of these two properties obviously indicates the addition of injected items into
the simulation environment, there is no formal need to explicitly specify the
description file as a data source.

The artificially injected agents are identified by user-supplied strings that
must be unique in the scope of the simulation run, but can otherwise be freely
chosen. These ID strings are used wherever an agent as to be distinctively
referenced, such as for the definition of inter-agent data connections using
agentConnections property. Since ID strings are unique, but otherwise opaque
as per the protocol definition, the agent’s behavior is not influenced by this
modification of their ID.

72 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Whenever an agent is injected using the simulation description, the user can
also supply its placement in the form of coordinates in WGS8425 (Decker, 2000)
notation. Otherwise, its placement is determined from the connections that
are defined for this particular agent. When it becomes an item on the map, it
needs a real position as outlined in Section 3.3. However, an artificially injected
agent does not necessarily feature any meaningful position per se, and as such,
it is generated using the spring-force algorithm outlined by Fruchterman and
Reingold (1991) with the vertices being the data connections to other agents.

A simulation run starts at the earliest point in time for which data is
available and continues until it has exhausted them. This seemingly simple
notion is especially important in the case of injected agents with attached states,
because it allows configured runs that test the functionality of a set of agents.
However, in the face of a rich database, the user might want to select only a
small time frame in order to, for example, test the agents’ behavior under the
influence of certain weather phenomena. For this, the simulation description
can contain the optional startTime and stopTime parameters.26 If no start
time is given, the simulation starts at 1970-01-01T00:00:00Z, i.e., the epoch.

In order to use the simulation environment for black-box testing, the user
injects a partial initial state into the environment. A complete state of a
simulation run is defined by the states of each agent participating in the
simulation run:

St = {Ai,t | i ∈ I} . (3.8)

Here, i is the identifier of each agent, t denotes the simulation clock.
The agents’ states, in turn, are defined by the following quintuplet27 denoted

in Eq. (3.9) that includes the states of each agent’s modules:

Ai,t = (Fi,t, Pi,t,Mi,t, Ci,t) . (3.9)

Each module requires its own state definition. The forecaster module’s state
is defined by a set of tuples:

Fi,t = {(t, P), . . .} . (3.10)

25World Geodetic System (WGS)
26These parameters must follow the ISO 8601:2004 format (International Standards Orga-

nization (ISO), 2004).
27The initial definition can be found in Veith et al. (2014).

3.3. SMART GRID SIMULATION ENVIRONMENT 73

This denotes that the forecaster module assumes a power balance28 of P
at a time denoted by simulation clock t. The power balance module’s state is
defined analogously:

Pi,t = {(t, P), . . .} . (3.11)
Furthermore, the messaging module’s state requires the notation of the

relevant messages that reside in the agent’s message journal.29 The agent’s
message cache as well as the message format are described in Section 6.2; each
message is noted literally:30

Mi,t = {mj | j ∈ J} , (3.12)
where J denotes the set of all message identifiers used throughout the simulation
run.

Message IDs are generated by the sending agent; they are unique as well
as opaque.31 The latter property is used by the simulation state matcher to
solve a conundrum: The scientist who writes the simulation run description
wants to verify the correct behavior of the agents, and that will in most cases
involve a check whether the desired messages were sent. However, each agent
generates the message IDs independently from its environment, and in particular
without knowledge about the simulation environment. Thus, it cannot by itself
set the desired message ID that is used to verify the message’s path. The
simulation environment therefore records each message that travels through
a data connection, matching it to all message definitions in the final states
section of the simulation run description. Whenever a message matches, its ID is
replaced by the one defined by the author of the simulation run description. This
matching is done once for each unassociated message in the description’s final
states section; each match thus removes one unknown or unmatched message.

An actual message sent by an agent and a message description contained
in the simulation run description are considered equal if and only if (iff) all
fields defined in the description–with the exception of the ID iff the message
description is part of the set of unmatched messages—match.

28NB. that the power value as hitherto defined means active power; the notation can easily
extended to introduce reactive power by including the notion of a Q. Only for the sake of
simplicity are reactive power values excluded from this description.

29The message journal of an agent contains all messages relevant to the agent’s messaging
functions at a given time. Cf. Section 6.2 and Section 6.2 for details with regards to the
message journal.

30With regards to the semantics of the state matcher, see below.
31Cf. Section 6.2.

74 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Finally, the notation of the constraints module is dependent on the actual
constraint that the user needs to express; it must be a propositional logic term.

Since the purpose of all agents, and, in fact, the very definition of the term
agent, relates to their ability to yield their own behavior, a simulation run does
not necessarily need a complete state definition to execute.

Everything between the initial and the defined final state of the simulation is
assumed to be calculable during a simulation run. The purpose of a so defined
simulation is to ascertain success or failure, but not to provide a ‘script’ that is
closely followed. As such, nodes that inject data such as weather conditions and
are based on stochastic principles do not form an antithesis to this definition.
It is necessary that all agents behave correctly in the face of a wide range of
conditions. Since all generating nodes must be based on realistic principles, it
can be assumed that all states generated by the combined data emission of all
these nodes is also a realistic situation, even if it constitutes an aberration of
weather, consumer, or other conditions.

Iff at least one final state is given, the simulation environment’s state matcher
is used to determine the success of the simulation run in terms of defined states.
The state matcher ignores surplus information such as agents that are not
defined in the description. If, however, a state definition exists, that of the
simulation description is compared to that of the actual simulation run. Only an
exact match constitutes a success of a particular check, and only if all matches
executed are successful is the simulation run itself considered as being successful
as far as the simulation state definition is concerned.

The notion of ignoring surplus information instead of forcing an exact match
over all properties serves two purposes: First, the user can omit information
that is not necessary for determining the success of the simulation. For example,
during a test of a demand/supply calculation algorithm, the user might want
to check whether certain offer notification messages have been received and
answered, but not what the distance they have travelled in terms of a hop
count is. The user can therefore design test cases as to its intent instead of its
technical necessities. Second, it allows mixing agents defined in the simulation
description file with those originating from another data source, such as a
database, without having to define all agents from all data sources.

The state matcher can work on a set basis for all elements, in all modules,
following the general pattern of

success =
{

true iff SD ⊆ ST ,

false otherwise.
(3.13)

3.3. SMART GRID SIMULATION ENVIRONMENT 75

This means that every agent’s state, as defined in the simulation run de-
scription, needs to be sub-matched in a similar manner, i.e.,

success =
{

true if ∀Ai | i ∈ I ′ : ∀Xi,D ⊆ Xi,T |X ∈ {F, P,M,C} ,
false otherwise.

(3.14)

This continues recursively until the atoms of the corresponding terms are
compared for equality.

Using the simulation description, repeated runs of test cases in the simulation
environment are possible without additional user setup. The user creates the
simulation description once, but can use it to verify the process of his agent
software code in simulation runs. Additionally, completely synthetic simulation
set ups are also possible.

External Data Sources
The previous Section 3.3 showed how a simulation description does not only
implement a separation of concerns, but also allows the configuration of different
data sources.

Data sources allow the injection of any data, be it a sensor reading, wind
speeds, solar radiation, or SLPs for customer behavior into the simulation
environment. Section 3.3 described the MapItem class as the abstraction of all
participants of a simulation run. Data sources are—from the organizational
perspective—map items, too. A certain area for which the data of the source is
valid, i.e., where it is effective, is the attribute all sources share. Thus, there is
a piece of geometry information attached to each external source of data, which
in turn marks it for representation as a map item in the simulation.

Fig. 3.6 shows different areas of effect for a number of data sources. The
shaded parts of the image depict a data source and the polygon that represents
the area for which the data it provides is valid. Notice that aside from the
highlighted area, the data source objects are not represented by any icon, nor
is there any other indication that these map items are in any way special.

Data sources act on events just like any other item in the simulation envi-
ronment, too. Their primary trigger is the new simulation time, propagated
through any Event that carries date/time information. Looking back at Fig. 3.5,
the EventType enumeration lists the EVENTTYPE_TIME_CHANGED that carries ex-
actly this information. The data source will, upon reception of such an event,
look up the data associated with the given time and create an event of its own.
Such events are of the EVENTTYPE_VALUE_CHANGED type.

76 CHAPTER 3. SMART GRID MODELING AND SIMULATION

Figure 3.6: Data sources and their area of effect

The value-changed event carries the area of the data source as its own area
of effect. It reaches, through the Geospatial Information System (GIS) index
lookup, all other map items that are within this area. How the receivers react
depends on what they model: A change in the wind speed is interesting only
to models of a wind farm, whereas changes in customer behavior through a
standard load profile reach only models of villages, factories or other models of
consumers. Filtering is done through simple tagging.

Whenever a data source receives its own value changed event, it looks up
the next simulation clock at which a new event of the same type—but with a
new value—must be scheduled. The actual lookup depends on the data source;
a new value for wind speed and direction from a list of mean values will be
interpolated linearly given a desired ∆v of 1 m/s.

This circle is broken whenever a data source runs out of data. In this case,
an exception of the type DataSourceDepletedException is thrown. A depleted
data source does not immediately force the simulation to halt. Instead, the
map item that represents the data source checks if an auxiliary repository is
available.

In fact, data sources of different quality are stacked on each other. The
source with the highest quality also has the highest priority assigned; the

3.4. DATA QUALITY ASSESSMENT AND ITS INFLUENCE ON
SIMULATION RUNS 77

ordering of these repositories is done by the user. Once a data source is depleted
and the exception is thrown, the simulator, through the map item, uses the
next repository that is available in the stack.

This allows for the simulation run to continue even if the high-quality data
source is no longer available, but auxiliary ones are. Continuing in spite of a
depleted source allows to expose the agent code to a higher variety of situations
while still maintaining the overall grid state that is the result of the current
simulation run. While worthwhile, switching data sources has implications for
the overall outcome of a simulation run. The next section will therefore describe
how an assessment of data quality is made and how this assessment is reflected
in the results.

3.4 Data Quality Assessment and its Influence on
Simulation Runs

The Winzent simulation environment allows stacking of data sources of different
quality, as detailed in the previous section. The immediately obvious advantage
this provides is a continuation of a simulation run even if the high-quality data
source is depleted. This is especially interesting in cases where data of higher
quality is available, but must be bought—and may be expensive—, whereas
data of lower quality is available for free. Typically, a scientist has to set up
two different simulation runs in this case; with the data source stack, this is
not necessary.

However, this transition may not happen without notice: It is highly probable
that the lower-quality data source will distort the overall result of the simulation
run compared with the result obtained if the high-quality data source was
available for the whole run. Usually, the scientist must assert the impact.

Ultimately, it is therefore a question of confidence in the result. If the status
of a data source as the one with the highest data quality has been asserted
manually, i.e., by the scientist before the simulation run was started, a run
using only this source has a confidence of 100 %.32 Results obtained with other
data sources will have a lower confidence, naturally.

This abstract notion of confidence stems from two ways two data sources can
derivate from each other. Considering that both sources try to describe the same
subject—for example, readings of wind speed and direction—, they influence an
event-discrete simulation in the number of events that are introduced through

32Relative to whatever confidence the scientist, through his knowledge or experience, has
of this data source

78 CHAPTER 3. SMART GRID MODELING AND SIMULATION

 1

 2

 3

 4

 5

 6

 7

 8

2011-03-01
00:00+01:00

2011-03-01
06:00+01:00

2011-03-01
12:00+01:00

2011-03-01
18:00+01:00

W
in

d
S

pe
ed

 [m
/s

]

Time of Day

10-Minute Means
Hourly Means

Figure 3.7: Events created by two different data sources for the same day

the data source and the derivation of values exhibited by the sources at the
same simulation clock. Compare the two lines in Fig. 3.7: The number of events
created by the first data source is significantly larger than the number of events
created by the second one (111 > 36). Since obviously no action is performed
in an event-discrete simulation environment when no events are scheduled, this
observation directly impacts on the simulation run’s result.

Assuming that both data sources have witnessed the same events and made
the same measurements, but represent them in a different level of detail, we
can understand them as two different encoders of the same source. Hence, the
rate distortion theorem can be applied (Shannon, 1948, 1959).

The values observed by the two data sources are encoded as symbols of an
alphabet. We assume that the high-quality data source encodes losslessly.33

Therefore, the original symbol q of the alphabet Σ is compressed to the symbol
q̂:

33This is, of course, relative: If wind speeds are presented as ten-minute mean values by
the high-quality data source, this encoding is, through the calculation of the mean value, not
lossless. However, since this high-quality data source forms the reference, and we have no
better source available, we assume this source to be lossless.

3.4. DATA QUALITY ASSESSMENT FOR SIMULATION RUNS 79

q ∈ Σ , (3.15)
q̂ ∈ Σ̂ . (3.16)

The channel itself is assumed to be lossless. For each pair (q, q̂), we define
the distortion to be:

d(q, q̂) = (q − q̂)2 . (3.17)

We can then compute the overall distortion of the data source ς̂ given the
probability that q is emitted by the high-quality, reference data source ς, as
P(q) and the probability that the distorted symbol q̂ is emitted by the other
data source instead as P(q̂|q):

dς̂ =
∑

q

∑
q̂

P(q) · P(q̂|q) · d(q, q̂) . (3.18)

This distortion can be computed for all data sources. The distortion values
for all data sources ς̂1, ς̂2, . . . , ς̂n can then be treated as error in terms of
a mathematical error analysis. Thus, the result of each computation will
additionally be augmented by its error. Since each power balance that matters
to the user will be checked by the state matcher described in the previous
Section 3.3, we can derive a total error from these balances:

∆P =
∑
i∈I′

|∆Pi| . (3.19)

4 The Universal Grid Agent

4.1 Modular Design Principle

The premise of this thesis is a mediation between volatile power generation and
power consumption: Given enough information to forecast future demand and
supply and consumers—and producers alike—that can accommodate a certain
flexibility, we can create a stable equilibrium of the active and reactive power
balance through a grid-wide planning process. However, in order to match
information from forecasts and potential load gradients, massive capacities for
information processing and computation are required.

Table 4.11 gives an estimation of all relevant actors in the German power
grid. If one aggregates the low-voltage level on the transformers connected to
the medium voltage grid,2 assuming that the patterns that emerge from power
generation or consumption can be aggregated at those transformers—making
them, in effect, the most important node in a power grid from an information
point of view—, an astonishing number of 561 069, i.e., more than half a million
nodes exist in the German power grid alone. These nodes will log data: tuples of
timestamps3 and double-precision floating-point numbers4 that will take up at
least 128 bits each, if a simple tuple is enough to capture the condition of a node
at a certain point in time. Usually, more than a tuple is required; for example,
a wind farm will need not just a timestamp and a floating-point number, but
several: Wind speed, wind direction, and real power output are necessary at
least in order to produce a meaningful forecast, as Chapter 5 will show. While
this might not seem much, an item’s position must be saved, thus a GIS is

1Cf. Bundesnetzagentur (2015); dena — Deutsche Energie-Agentur (2013).
2Cf. Table 2.1.
3A 64 bit integer
4Also 64 bit wide

81

82 CHAPTER 4. THE UNIVERSAL GRID AGENT

Table 4.1: German power grid infrastructure

Amount Description
685 Wind Farms (onshore & offshore, ≥ 10 MW)
185 PV installations
272 Other renewable energy sources (e.g., bio-, geothermal energy)
372 Turbine Power Plants (coal, gas, nuclear)

559 555 Transformers (≥ 10 kV grid voltage)
561 069 Total

needed, taking up additional data space. Databases require additional data
storage through the use of indexes to allow for efficient query execution. Also,
the forecasting algorithms will need to store and serialize state information, like
situation-specific trained ANNs.5

While storing and retrieving data might certainly be possible, potentially
requiring a cluster of servers, the coordination of a large number of nodes
with the goal to create said equilibrium of active power—or, reactive power,
respectively—will need parallel processing power as well. This hypothetical
compute cluster must also be well connected: Sensor data from nodes must
constantly fill the data base in order to allow the forecasting algorithms to
adapt to the current situation. In addition, redundancy must be built into the
system architecture in order to avoid creating a single point of failure.

Instead of tackling the problem presented by a centralized approach that
requires means of data storage and computing power appropriate to the task,
another approach can be taken. Subdividing the problem into a number
of smaller ones presents a valid alternative. This divide-et-impera solution
distributes the information and processing load among all nodes in the power
grid. In the example given above, the divide-et-impera approach will create
half a million compute units of a small size. This will allow an operator to
extend the system easily: Adding a node to the power grid implies adding the
associated compute unit as well.

The approach solves the problem presented on an architectural level, but
requires careful design of a communications architecture that allows the inter-
change of relevant information and computation results. In addition, a model

5Cf. Section 2.4 on ANNs in general and RNNs in particular and as to why each site will
need to serialize an individual ANN.

4.1. MODULAR DESIGN PRINCIPLE 83

of the environment of each node must be devised, since no shared knowledge
exists automatically.

We can thus identify a number of tasks whose fulfillment is necessary for
the proper functioning of the divide-et-impera approach. The architecture
presented in this thesis models each distinct task as a module. Their entirety is
shown in Fig. 4.1.

Modules are stacked in layers. These layers do not only represent the level of
abstraction, they also express the priority of the modules. Modules situated on a
lower level have precedence over those on higher levels. Thus, the software that
immediately interfaces with the underlying hardware may override decisions
of a high-level module if it endangers the machine, acting as a fail-safe design.
The following modules make up the agent design:

Automatic Hardware Control This module is not part of the agent itself,
but designates automation technology that is already present in the node.
It is included to signify that the agent does not replace any existing part of
the node’s control mechanisms, but acts on top of it. This module has the
highest priority, meaning that the agent must adapt to the idiosyncrasies
of machine and place.

Hardware Interface This module interfaces the agent with the hardware.
On a computer system, one would place the ‘driver’ at this point. The
hardware interface is situated on the device layer of the module layout, as
well as the logging module: These two will need to be modified in order
to adapt the agent software to the node; all other modules use data from
the lower ones.

Logging Retrieves data from the hardware and stores it in a log that is
accessible to the module in the next upper layer.

Data Extraction The data extraction module uses data retrieved by the
logging module to feed learner and forecaster. It thus serves as a filter
and syndication module.

Learner The learner trains and re-trains the forecaster in order to tune it to
changing situations, such as the current weather conditions.

Forecaster This module uses current sensory data, as syndicated by the data
extraction module, to forecast demand and supply in the future. The
temporary distance for which it can forecast is specific for each agent and
dependant on the actual source of sensor data.

84 CHAPTER 4. THE UNIVERSAL GRID AGENT

Constraint Calculation Constraints allow considerations from external sources
that are not the result of the node it represents or its environment. Such
constraints might include contracts where a certain supplier or customer is
preferred, or a weak local line that is not represented by a dedicated agent.
The constraints module is obviously an interface for external influence
and will therefore experience no further consideration in this thesis.6

Reserve The reserve module represents allowable variance in terms of real or
reactive power: It influences the power balance found in the Demand-
Supply module, which normally tries to create an equilibrium of ∆P = 0
and ∆Q = 0.

Demand-Supply This is the keystone of the agent: It represents the power
balance—real and reactive power—of the node the agent represents. Here,
the agent stores forecasted deviations from the power equilibrium as well
as requests and responses from other agents. It triggers the social behavior
of the agent and solves the power balance when requests and offers from
other nodes arrive.

Messaging The social aspect of the agent adheres to the protocol rules specified
in Chapter 6 and takes care of the proper encoding. The messaging module
feeds the Demand-Supply module with initial requests and responses that
arrive to solve an imbalance.

Although some modules allow external exercise of influence, all agents can be
treated uniformly: The messaging module represents each to the outside world.
Every agent is uniquely identifiable through an opaque identifier. Chapter 6
will give more detail on options regarding the format of the identifier.

4.2 Interfaces

The layers, in addition to the level of abstraction and priority, also document
the communication interfaces of each module. The agent design allows data flow
only between modules in the same layer or between adjacent layers. Staying
true to the layer concept, interfaces at lower layers deal with low-level data that
is near to the actual hardware, whereas the information flow at higher layers
clearly show abstraction.

6Cf. also Section 3.3, in which the constraints module is not further specified in its
representation.

4.2. INTERFACES 85

Local Unit
(Power plant)

Local Env.

Hardware InterfaceLogging

Automatic Hardware Control
(e.g., fail-safe, emergency shutdown)

Power Grid

Micro Grid

Device Layer

Constraint
Calculation

Data Extraction

Learner Forecaster

Demand—Supply

Reserve

Grid

Training

Input Agent Priority

Messaging

Figure 4.1: Modules of the Universal Smart Grid Agent

Consider Fig. 4.2. The hardware adapter uses the HardwareBackend inter-
face that represents the driver and is unique for a certain type of node. Through
LogEntries it communicates the current state of the node to the logger that
provides facilities to store this data in a structured format—the Journal. This
journal does not yet resemble a database; the data extractor offers the Query
interface to upper layers.

The uniform Query interface allows the learner to train the forecaster—it
uses a specific TrainingAlgorithm for this—as well as the latter to retrieve
sensory information that forms the basis for the next forecast, which is amended
by an ErrorBoundary from the constraints calculator.

A Requirement that encapsulates messages from remote agents, as well
as forecasts from the local instance, is a piece of information the demand-
supply solver requires to maintain the equilibrium of active power7 stored in
the PowerBalance. How much deviation from a mathematical equilibrium of
∆P = 0 kW8 is allowed, is expressed by a Variance.

The Governor interprets the PowerBalance, turning it into Message in-
stances to express a demand for power or offers of surplus power. These
messages are sent via the communication Hub, which implements the protocol
rules.

7Or, reactive power, respectively
8Or ∆Q = 0 kVAr, respectively

86 CHAPTER 4. THE UNIVERSAL GRID AGENT

Agent Components

<<component>>
Messenger

<<component>>
Demand-Supply Solver

<<component>>
Learner

<<component>>
Forecaster

<<component>>
Constraints
Calculator

<<component>>
Reserve

<<component>>
Data Extractor

<<component>>
Logger

<<component>>
Hardware Adapter

<<component>>
Governor

<<component>>
Requirement

Connection

TrainingAlgorithm

Query

Journal

Variance

Constraint

Clock

ErrorBoundary

Hub

LogEntry

HardwareBackend

PowerBalance

Figure 4.2: Components of the Universal Smart Grid Agent

The classes that form the implementation of the module concepts and their
interfaces are detailed in the following chapters: Chapter 5 is concerned with
the Learner and Forecaster. Chapter 6 details the communication architecture,
i.e., the social part of the agent. Finally, Chapter 7 details the demand-supply
solver.

4.3. AGENT BEHAVIOR 87

4.3 Agent Behavior

An agent acts upon two incentives:

1. from the creation of a new forecast that indicates a disequilibrium of the
local power balance

2. from the reception of a request originating from another agent.

Although it acts upon other message types, as detailed in Chapter 6, these
two events are responsible for updating the agent’s internal state—i.e., its model
of the world—and form the agent’s incentive to act. These two events signify
a deviation from the equilibrium, the first one on the local node, the second
on another node in the grid. The agent’s primary goal is the conservation of
the power balance, i.e., the equilibrium; thus, it must act if an event shows the
arrival of the situation of a disequilibrium.

A forecast is generated at certain, even-spaced intervals. If the forecast
indicates a deviation from a power balance, it triggers a request to other agents.
Such a request can either indicate a demand for power—active or reactive—,
or the availability of surplus power. In the latter case, the agent requests that
the power is being used elsewhere: This will commonly happen when renewable
energy sources cause oversupply.

Other agents receive the request and act upon it, ultimately sending offers
to the requester. From these offers, the requesting agent tries to generate a
solution that ensures the continuance of the power equilibrium. Only if no
solution can be found may the agent exert local control, e.g., by throttling wind
turbines or similar. Since this is a result that should be avoided—the agent
may neither waste power nor produce a black- or brownout—, it is summarized
under the term ‘emergency measures’ in the context of the Universal Agent.

Upon the second case, i.e., when a request is received, the agent must work
to preserve the equilibrium at the remote node,9 generating a forecast when
possible within acceptable error bounds. If it can then send a response, it must
do so.

A special case exists whenever a forecast—which is generated automatically
when acceptable within defined error bounds—generates a request, which is met
by another request, i.e., originating from another agent, which could actually be

9An agent cannot choose to not help a remote agent: Due to the nature of the power grid,
a disequilibrium that goes ignored will eventually affect all agents negatively. This motivates
the imperative: The agent must work to preserve the power equilibrium at any node.

88 CHAPTER 4. THE UNIVERSAL GRID AGENT

a part of a solution. Therefore, two requests exist where neither is a response
to the other one, but both would partially or even completely cancel each other.
Then, one agent must withdraw its request and send a response instead. The
algorithm underlying the resolution of this conflict is part of the protocol.

In order to function, the agent requires two models. One is the model of the
node it represents, i.e., its local environment. This is the local power balance.10

The other is the social model, i.e., that of its ‘fellow’ agents: This is partly
represented in the power balance that gathers requests and offers for the finding
of a solution to a potential disequilibrium, but also in the message journal11

that stores messages received from remote agents in order to save their state
for the amount of time required to arrive at a new equilibrium.

These models, along with the agent’s overall behavior, are depicted in
Fig. 4.3.

Note, that the agent’s behavior cannot be described in terms of a Finite
State Machine (FSM). An FSM’s memory is represented by the set of its states,
S = {s1, s2, . . . , sn}.12 This is most obvious when an acceptor is modeled.
Strictly speaking, the agent, whose goal is to calculate demand and supply and
therefore has many different values for timestamps and power values, requires
the notion of a general data store.

Abstracting this data store away might seem possible by modeling a message
received as input and allowing states such as ‘message saved in cache,’ or ‘forecast
value saved in power balance.’ Solving the power balance to an equilibrium by
selecting the appropriate responses, however, entails that the requesting agent
must contact the responding agents in order to notify them whether it indeed
intends to form a contract with them. Thus, a memory that connects agents,
their messages, and the offered values is required.

Furthermore, consider the following situation: An agent, A1, offers a surplus
of active power to the grid. According to the rules of the protocol,13 this must
be formulated as a request: A1 requires that its surplus is consumed by another
agent. Now, the message A1 sends—denoted in this example by m1—travels
a certain time through the network, since no message can be transmitted via
a real computer network without delay. Within the time frame A1’s message
needs to find an agent that can present a demand to its offer, another agent,
A2, forecasts a demand for active power and sends a request of its own, m2.

10Cf. Section 7.1.
11Cf. Section 6.2.
12Cf. Booth (1967) for an introduction to FSM.
13Cf. Chapter 6.

4.3. AGENT BEHAVIOR 89

A
ge

nt
 B

e
ha

vi
or

G
en

er
at

e
F

o
re

ca
st

F
or

ec
a

st

<
<

da
ta

st
or

e>
>

P
ow

er
B

a
la

nc
e

C
o

n
v

er
t

de
lta

 :
R

eq
ui

re
m

en
t

S
o

lv
e

D
em

an
d

-S
u

p
p

ly
E

m
er

g
en

cy
 M

ea
su

re
s

H
an

d
le

 M
e

ss
ag

e
M

es
sa

ge
N

o
ti

fy
 o

th
er

 A
g

en
t(

s)

<
<

ce
nt

ra
lB

uf
fe

r>
>

M
es

sa
ge

Jo
ur

na
l

C
le

an
 J

o
u

rn
a

l

W
it

h
d

ra
w

 R
eq

u
es

t
S

en
d

 O
ff

er

M
es

sa
ge

F
or

ec
a

st

m
es

sa
ge

s
:

M
es

sa
ge

[1
..*

]

O
ffe

r
M

es
sa

ge
S

en
d

 R
e

q
u

es
t

R
eq

ue
st

de
lta

:R
eq

ui
re

m
en

t

O
rig

in
a

l R
eq

ue
st

D
ec

o
d

e
 M

es
sa

g
e

M
es

sa
ge

m
es

sa
ge

s
:

M
es

sa
ge

[1
..*

]

ba
la

nc
e

:R
eq

ui
re

m
en

t[2
..*

]

M
es

sa
ge

 T
yp

e
E

qu
ili

br
iu

m

S
ol

ut
io

n
D

ea
dl

in
e

fo
r

si
tu

at
io

n
 r

ea
ch

ed

W
ai

t
fo

r
ne

xt
ev

e
nt

R
eq

ue
st

al
re

a
dy

 s
en

t

R
eq

ue
st

su
pp

or
ts

ex
is

tin
g

S
itu

at
io

n

M
es

sa
ge

 T
yp

e

M
es

sa
ge

 a
va

ila
bl

e

T
im

e
de

lta
 fo

r
ne

w
 F

or
ec

a
st

[Y
es

]

[N
o]

[O
th

er
]

[Y
es

]
[N

o]

[R
eq

ue
st

]

[O
ffe

r]

[R
eq

ue
st

 o
r

O
ffe

r]

[N
o]

[Y
es

]

[N
o]

[Y
es

]

Figure 4.3: Activity diagram depicting the Universal Smart Grid Agent’s
behavior

90 CHAPTER 4. THE UNIVERSAL GRID AGENT

Both requests m1 and m2 happen to be subject to the same time frame, i.e.,
m2 would—possibly partly—solve A1’s request and vice versa.

In order to avoid a deadlock, one of the two agents needs to withdraw its
request and answer with an offer to the other agent’s request.14 This requires
two memory devices:

1. The power balance of both A1 and A2 in order to deduce that m1,timespan
contains m2,timespan or vice versa

2. the message journal to map m2 → A2 in order to formulate an answer

3. the message journal to withdraw m1 with m3, i.e., a memory to map
m2 → m3

4. the power balance to formulate an offer to m2 for A2: m4 → m2.

These distinct actions require identification of agents and messages as well
as the modeling of a certain situation that is only triggered by the coincidence
of two requests with opposite ∆P 15 values. A modeled trigger for this situation
is required that identifies its occurrence, which requires a memory that is

1. variable due to the individual timestamps, power values, and agents, but

2. precise in mapping agents and requests.

Thus, an FSM cannot be used to model the behavior of the Universal Agent;
it requires a Turing machine that implements the algorithm depicted in Fig. 4.3,
q.e.d.

14The details to the resolution to this conflict are described in the Match-or-Forward
Directive in Section 6.2.

15Or, naturally, ∆Q

5 Forecasting Power Demand and Supply

5.1 Design of the Forecaster Universal Smart Grid
Agent Module

Data Pipeline

Forecasting is vital to the work of the Universal Agent: Only if a divergence
from the equilibrium is noticed before it occurs can a distributed planning
process help to maintain the power balance in the grid. Fig. 5.1 on Page 94
therefore presents the forecaster module along with the necessary data structures.
Obviously, the effort concentrates on the forecast() method that actually
creates said forecast.

The agent, in its forecaster module, essentially needs to orchestrate a flow
of data in order to extract and combine information as necessary to create
a forecast that can be used in the context of maintaining the node’s power
equilibrium. For this, we can identify several key components:

1. The agent requires a data base that contains the raw data necessary to
create a forecast.

2. Further, it needs an object that extracts the raw data and combines it,
adding time values to it, in order to create a model of the node’s state at
a given time. Remember that creating a model of an agent’s surroundings
is an essential part of an agent’s architecture.1

3. This data must then be fed to the ANN in use, requiring conversion from
the correlated data to input and output vectors suitable for the ANN.

1Cf. Section 2.4.

91

92 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

The agent’s representation of the node’s state must be converted to the
ANN’s representation of it, and back again.

Initially, in order to create a forecast, a log of power balances at a given time
are immediately necessary. If the power consumption or generation follows a
time pattern, this is also the only necessary data required. However, additional
pieces of information can enhance the accuracy of the forecast: E.g., data of
solar radiation, wind speeds, or temperature might not be required to create a
load forecast for domestic households, but since weather conditions influence
people’s power consumption, they are useful. In effect, they can help to detect
abnormalities beforehand.

This forms the data base of the forecast. A usual set of information is
useful and potentially extractable from the system’s logs to form the data base
includes, but is not limited to:2

1. Active power in kilowatts

2. reactive power in kilo-voltamperes

3. wind speed in meters per second

4. wind direction in degrees

5. solar radiation in watts per square meter

6. barometric pressure in millibar

7. temperature in Kelvin

In effect, the data extractor, whose purpose has already been summarized
in the context of Section 4.1, forms a list of possible input data that can also
contain additional information that is site-specific, for example, the orientation
of a wind turbine’s nacelle. The bootstrapping regarding which data is available
and sensible can be performed in numerous ways, for example:

• Utilizing a sensor hardware discovery protocol (Hyyryläinen and Jantunen,
2006)

2NB. that currently, active and reactive power are the readings that should be available
everywhere sensors are installed, whereas the rest, although it might be beneficial and give
additional data to correlate when forecasting, is usually only available if already required for
the operation of the hardware.

5.1. DESIGN OF THE FORECASTER MODULE 93

• querying neighbor sensors using the OSGP3 or IEC 61850 (Brunner, 2008)

• using a fixed list of sensible data

• as a fallback, through manual configuration.4

The DataExtractor creates JournalEntry objects from the system log.
These journal entries are sorted by a timespan, t̃ = [t1; t2),5 for which the
readings contained in the entry are valid. The JournalEntry objects are the
immediate data objects in use in the pipeline and constitute the agent’s model
of its environment. The collection of relevant journal entries is stored in the
agent’s Journal.

The Universal Agent proposed in this thesis uses an unit system in order to
define allowed operations and provide type safety.6

The components mentioned hitherto and an excerpt of the unit system are
depicted in Fig. 5.1. Note that the part of the unit system depicted is that
required for the reference situation presented in Section 3.2.

The journal entries can now not only be used to reason about the agent’s
current or previous state, but also to create the actual forecast. However, the
RNN can not offer an immediate interface that takes a JournalEntry for input.
This is not simply a question of interface design, but rather stems from the
different modes of representation the agent through its journal and the RNN
have.

The agent’s journal maps a timespan to a number of sensor readings. Every
journal entry is unique, i.e., at a given time there is exactly one reading for
each sensor. Additionally, these sensor readings are absolute values. These
two properties make it at first incompatible with the RNN7 that operates with
linear and tanh functions:

3Cf. Section 2.3.
4Node-local finetuning can be part of a service contract.
5Given t̃1 = [t1; t2) and t̃2 = [t3; t4),

t̃1 ≤ t̃2 ⇔ t1 ≤ t3 .

6Failure to provide an unit system—i.e., relying on the built-in types float, integer,
etc.—has been proven to lead to catastrophic failures, such as the disintegration of the Mars
Climate Orbiter, where a floating-point number was interpreted as representing miles in one
function and kilometers in another (Euler, 2001).

7Applicable to ANNs in general

94 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

Forecaster

Agent

+forecast(timespan : TimeSpan) : Forecast[0..1]

Forecaster

Governor

Unit

+timespan : TimeSpan
+powerType : PowerT...
+value : KiloWatt

Forecast

TimeSpan

KiloWatt

ANN

+calculate(input : Vector) : Vector

NeuralNetwork

JournalEntry

DataExtractor

Velocity

Degrees

DateTime

+toVector(e : JournalEntry) : Vector
+toForecast(v : Vector) : Forecast

UnitConverter

Vector

+distanceEpsilon : double

+compare(p1 : Vector, p2 : Vector) : bool
+contains(pattern : Vector) : bool

PatternSet

+trim(size : unsigned) : void

BoundedPatternSet

pair

PatternOccurrence

+train(ann : NeuralNetwork, ts : TrainingSet) : void

<<Interface>>
TrainingStrategy

+finalError : double
+epochs : unsigned int

TrainingSet TrainingItem

First
Second

1* 1..*

1..*

1*

<<instantiate>>

<<use>>

<<use>>

<<bind>>
<First -> Vector, Second -> unsigned int>

<<use>>

<<use>>

<<instantiate>>

<<instantiate>>

<<use>>

endstart

Figure 5.1: Forecaster module of the Universal Smart Grid Agent

5.1. DESIGN OF THE FORECASTER MODULE 95

f(x) = x, −1 ≤ x ≤ 1 , (5.1)

tanh(x) = 1− 2
e2x + 1 , −1 ≤ x ≤ 1 . (5.2)

Eq. (5.2) with its limited domain is able to represent the input inter-
val (−100 %; +100 %). The agent must therefore convert absolute values from
sensor data to relative values, in both directions: First to create the input of
the RNN and afterwards to retrieve the result. This conversion is handled by
a number of UnitConverter objects that bijectively convert a JournalEntry
object into a vector of floating-point numbers that form the input and output
of said RNN.

For each distinct sensor reading that is part of the entry, a corresponding
input layer neuron exists. If, for example, an agent represents a wind farm
with five turbines, the corresponding RNN will contain 20 neurons in its input
layer: Wind speed, wind direction, nacelle orientation, and momentary power
output for each turbine are fed to the RNN that will, in return, produce a
single floating-point value that represents the farm’s active power output (or
consumption) at a time interval in the future. This time interval, t̃f , is, by
design, two interval lengths in the future from the journal entry that is the
basis for the forecast. I.e., given t̃ = [t1; t2) as the time interval of the current
journal log entry, the time interval of the forecast is:

t̃f = [t1 + 2(t2 − t1); t2 + 2(t2 − t1)) . (5.3)

This two-intervals-length offset is chosen intentionally: It allows for the
typical planning ahead and includes additional time in which the agents’ com-
munication and calculation stages may take place. It has a minimum length of
10 min, which is arbitrarily chosen, but based on the 10-minute interval used to
calculate means in meteorological data.

In addition to the different value domains, the RNN and the JournalEntry
use two different concepts of time: Any journal entry carries the timespan with
it; it has therefore an explicit notion of time. The RNN, through its context
layer, offers an implicit notion of time. More specifically, no information on
time and date are fed to the RNN. This is intentional: Any information about
date, time, or season, do not enhance the pattern, but rather degrade its value,

96 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

because the pattern loses its generality. Consider, for example, the following
input-to-output mapping:8

(0.9699, 0.4589, 0.3316) 7→ (0.9697) .

The RNN will be trained to recognize this pattern and variances thereof. If
we add, for example, the day of the year to the pattern, we obtain:

(0.9699, 0.4589, 0.3316, 0.2158) 7→ (0.9697) ,

which would be valid for a reading on a spring day.9 The pattern introduced
above can naturally repeat itself10 on a day in fall. However, if presented to
the ANN, the following vectors effectively form a different pattern:11

(0.9699, 0.4589, 0.3316, 0.8225) 7→ (0.9697) .

In order to generalize, the RNN can be trained to recognize the first pattern,
given different values for the day-of-the-year position. However, when inspecting
the resulting weights in the ANN, it becomes obvious that the network has
effectively learned to ignore the input corresponding to the date. Thus, any
explicit time information is excluded; the notion of time is sufficiently represented
by the RNN’s context layer that remembers series of input vectors. For this
reason, the forecaster maintains a sliding window of journal entries for feeding
to the RNN.

Each forecast consists of:

1. A series of journal entries, converted to floating-point vectors, that repre-
sents a short-term history leading to the current state

2. the entries that form the basis for the current forecast.

The short-term history is fed to the RNN in order to initialize its context
layer to the current state. This attributes to the network’s different concept of

8The actual contents of the input and result vector are insignificant for the argument,
but their meaning is given here for the sake of completeness. The input vector represents the
state of a wind turbine as a triplet of the nacelle position, the current wind speed, and the
momentary power output; the output vector contains the forecasted power output. NB. that
the input vector is also intentionally kept incomplete.

9366 · 0.2158 ≈ 79; the 79th day of the year is March 19th in a regular, i.e., non-leap, year.
10Not exactly, obviously, but the second pattern can occur with a negligible variance that

we can treat the two as being the same.
110.8225 · 366 ≈ 300 corresponds to October 26th.

5.1. DESIGN OF THE FORECASTER MODULE 97

Time

Forecast
Input

RNN Context Layer
Initialization

Forecast
Result

Sliding Window

JournalEntry

U
n
it

C
o
n

v
e
rt

e
r

c
c
c
c U

n
it

C
o
n

v
e
rt

e
r

Forecast

RNN

s
°
m/s
kW

[0;1] [s;s)
kW

(0;1)[0;1]

Figure 5.2: The sliding window structure maintained in the forecaster module

time: Whereas a journal entry carries the date/time information explicitly, the
RNN must first ‘initialize its memory.’ Fig. 5.2 illustrates the sliding window
and the data pipeline each piece of information travels through during the
creation of a forecast.

A number of JournalEntry objects must therefore form the input of the
ANN. The UnitConverter decouples the agent’s classes from the ANN. Thus,
it addresses the issue of technical debt that can arise when an ANN is an
integral part of a piece of software that is tightly coupled with the ANN, as
mentioned in Section 2.4 and especially by Sculley et al. (2014). Finally, these
unit converters are used to convert the output of the ANN back to another type
of object, the Forecast. This is used to calculate the node’s power equilibrium
or disequilibrium and serves as data structure during the agents’ communication.

Training of the Forecaster’s Artificial Neural Network
Not only at the beginning, but also during the agent’s lifetime must the forecaster
maintain its accuracy. The RNN is, therefore, continuously subject to training
in order to retain its accuracy with regards to changing input patterns. However,
simply using all available journal entries for training is not only ineffective, but
also dilutes the RNN’s ability to generalize due to overfitting of a particular
class of patterns.

This problem is easily solved by comparing vectors and selecting only those
that are significantly different from each other. Oftentimes, this training set is
hand-selected in order to ensure that the training set has sufficient coverage.12

12Cf., e.g., Maqsood et al. (2004).

98 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

For the Universal Agent proposed in this thesis, this is not an option: It would
contradict its deploy-and-forget maxim. The agent must therefore select the
relevant patterns on its own.

The forecaster module must, therefore, calculate the similarity of two pat-
terns as well as requiring a notion of when a pattern is relevant for training or
not. This is obviously a two-stage process.

First, in order to compute the similarity of two vectors, their norm is
calculated. Specifically, the Universal Agent uses the `2-norm:

d(p, q) =

√√√√ |p|∑
k=1

(pk − qk)2, |p| = |q| . (5.4)

This allows us to define the equality of two patterns in terms of representing
a class of patterns:

Definition 5.1. Two vectors representing patterns, p and q, are considered
to belong to the same class of patterns and therefore equal, with regards to the
training of the forecaster’s RNN, if their Euclidean distance is smaller than the
defined cutoff value, ε:

p = q ⇔ d(p, q) < ε . (5.5)

In Fig. 5.3, the cutoff value is ε = 0.4, shrinking the training set considerably.
Using this equality operator, we can introduce a PatternSet class repre-

senting a set of pattern classes. With regards to the set’s size, we have two
options:

1. On nodes with sufficiently sized hardware with regards to storage and
computing performance, the set’s size does not necessarily need to be
bounded.

2. Smaller nodes using, for example, embedded systems, will need to place a
limit on the pattern set’s size in order to economize their resources.

Usually, the second option represents the more sensible choice, especially
since no system features unlimited resources, and devices running unattended
will exhaust their memory at some point if no limit is enforced.

Additionally, the size of this BoundedPatternSet is given naturally through
the size of the RNN that is used for forecasting. Recall that Section 2.4 offered an
estimation of the number of distinct patterns required for training in Eq. (2.10):

5.1. DESIGN OF THE FORECASTER MODULE 99

 0
 100

 200
 300

 400
 500

 600
 700 606

 608
 610

 612
 614

 616
 618

 620

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

D
is

ta
nc

e

Euclidean Distance

Pattern No.
Pattern No.

D
is

ta
nc

e

Figure 5.3: Euclidean distances of patterns derived from the reference situation

n = |w| log |w| . (5.6)

When the BoundedPatternSet is trimmed to its optimal size—i.e., super-
fluous patterns are removed—, the class selects those patterns for removal that
have a low number of occurrences. Therefore, the bounded pattern set is a
sorted set, where its members—the patterns—are ordered by their number of
occurrences. Every time a pattern is added to the set, the BoundedPatternSet
checks whether it is already contained in the set or not, using Eq. (5.5) in
Definition 5.1. If it is, the pattern’s occurrence value is increased instead of
storing the pattern again.

When the agent instance is initially set up, neither a set of patterns nor a
trained RNN is available. In order to follow the deploy-and-forget philosophy,
the agent must remain in a disconnected or simulation mode in which it
does not control the node, but tunes the forecaster module.13 The RNN’s

13Of course, a vendor can offer to provide pre-trained and pre-tuned RNNs or, in general,
ANN configurations. This would, for a third party, constitute a way to generate additional
revenue.

100 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

size is then continuously adjusted to meet the error threshold supplied by
the agent’s constraints module.14 When calculating the ANN’s prediction
error during training using Mean-Squared Error (MSE),15 a target MSE value
can be meaningfully derived from the allowable error the Agent’s constraints
calculator16 provides: The RNN has one output neuron that denotes the
forecasted power value, the number of training patterns is also known from
the size of the pattern set, |P |. Since the MSE of the individual training
sets is added to arrive at the total MSE and the maximum power generation
or consumption of a node is known from the corresponding UnitConverter
instance, deriving the maximum allowable MSE is a simple calculation.

The training of RNNs is, through their recurrent nature, more complex
than the training of a simple, feed-forward ANN. Since the result of a previous
run influences the result of the current calculation done by the RNN, the error
landscape of an RNN training pass provides more local minima. A possible
technique that forms a solution is therefore the stochastic approach, for example,
through a genetic or evolutionary algorithm.17

This thesis employs a training algorithm that combines its evolutionary
nature with a deterministic, gradient-based approach. This algorithm, the
multipart evolutionary training algorithm codenamed ‘REvol’ and conceived by
Martin Ruppert, has until now been published only once (Ruppert et al., 2014).
Section 5.2, which follows, will therefore analyze the algorithm’s internals and
present its inner workings more extensively as the original publication.

5.2 The Multipart Evolutionary Training Algorithm for
Artificial Neural Networks

Object and Population

The training algorithm employs an approach similar to the classic evolutionary
algorithms in that it defines a number of individuals that live in a population.

14Cf. Section 4.1.
15If a vector q is predicted with a vector q̂, the MSE is:

mse(q, q̂) = 1
|q|

|q|∑
k=1

(q̂k − qk)2 .

16Cf. Fig. 4.2.
17The background and other possible approaches have been outlined in Section 2.4.

5.2. THE MULTIPART EVOLUTIONARY TRAINING ALGORITHM 101

In contrast to the typical approach, an object18 consists of two vectors: A
parameter vector and a scatter vector, each with the same size.

The object’s parameter vector corresponds to an individual’s genetic string
and represents a possible solution to the problem that is being solved, for
example, the weights of an ANN. Each component of the scatter vector limits
the variability of the corresponding parameter vector’s component. Finally, an
object also encapsulates the individual’s remaining Time To Live (TTL):

o = (op,os, ttl) , ttl ∈ Z , (5.7)
op = (op1 , op2 , . . . , opk

, . . . , opn
) , ∀opk

∈ op : opk
∈ R , (5.8)

os = (os1 , os2 , . . . , osk
, . . . , osn

) , ∀osk
∈ os : osk

∈ R . (5.9)

Several parts of the algorithm require random numbers, as would be expected
from an evolutionary algorithm. However, different distributions are used,
based on drawing a random number from a bounded, uniform distribution,
X ∼ U [0; 1). In the following paragraphs, this will be shortened to XU [0;1)

k with
k = 1, 2, 3, . . . , n, where each index identifies a separate drawing.

The generation of the initial population depends on a user-supplied base
object, the origin object, o0. More specifically, all objects living in the initially
population are derived from this base object. First is a derived object’s scatter
vector is generated from the origin object’s scatter vector. Then, the algorithm
calculates the derived object’s parameters vector using the origin object’s
parameters vector and the previously generated, derived scatter vector:

o′sk
= o0,sk

· exp
(

0.4 ·
(

0.5−XU [0;1)
1

))
, (5.10)

o′pk
= o0,pk

+ oi,sk
·
(
X
U [0;1)
2 −XU [0;1)

3

)
. (5.11)

From Eq. (5.10), we know that any derived object’s scatter vector will initially
contain values in the interval

(
o0,sj

· e−0.2; o0,sj
· e0.2] ≈ (o0,sj

· 0.82; o0,sj
· 1.22

]
.

Eq. (5.11) defines an object’s parameters initially to be based on the base ob-
ject’s parameters and lie within its own scatter. The drawings of a random
number from the uniform distribution create a distribution that resembles a
triangle distribution with the interval (−1; 1) and the center c = 0. Hence, the
generation of the initial population favors a placement near the origin object,
with the population thinning out the greater the distance from the origin (o0).

18Throughout the next sections, the terms individual and object are used interchangeably.

102 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

Consider, as an example, Ackley’s function (Ackley, 1987; Bäck, 1996),
plotted in Fig. 5.4:

ackley(x) = −a·exp

−b ·
√√√√1
d

d∑
k=1

x2
k

−exp
(

1
d

d∑
k=1

cos(cxk)
)

+a+exp(1.0) .

(5.12)
Ackley’s function is commonly chosen because it offers a hypercube with

many local minima and maxima an optimization algorithm needs to escape.
Especially the classic Hill Climbing algorithm is easily trapped in one of the
local minima. It has its optimum at ackley(x = (0, . . . , 0)) = 0. The parameter
d specifies the number of dimensions; in order to allow plots of this function be
made, we set d = 2. Recommended values for the other parameters are a = 2,
b = 0.2, and c = 2π.19

If we choose the origin object’s vectors as o0,p = (5.0, 5.0) and o0,s =
(10.0, 10.0), we can observe in Fig. 5.4 how the algorithm places the initial
population around the base object. If we lower the values of the scatter vector’s
components, the population will be generated closer to the origin object; larger
scatter values increase the spread.

Algorithm Main Body

After the generation of the initial population, the algorithm follows the general
design of other evolutionary algorithms: Until one object satisfies the target
condition or the number of iterations reaches a predfined maximum, the algo-
rithm generates a new individual, uses a fitness function to evaluate it, and
possibly enhances the population with it.

However, there are several points where it diverges from the plain approach.
The algorithm has an explicit notion of success that is not simply bound to an
object being the new best one: The population’s overall success is represented
as a real number. This success value is to be understood as the current mean
success rate, representing the population’s success in a given time frame. The
algorithm tries not only to optimize the fitness function, but also how the
population obtains a success.

A success is achieved when an object becomes the new best one. Thus,
the algorithm can influence (with the goal to optimize) the success rate of

19These parameters are specific to Ackley’s function, cf. Ackley (1987); Bäck (1996).

5.2. THE MULTIPART EVOLUTIONARY TRAINING ALGORITHM 103

-10
-5

 0
 5

 10 -10

-5

 0

 5

 10

 0
 5

 10
 15
 20
 25

Ackley's Function
REvol Population

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Figure 5.4: Plot of the initial population in Ackley’s Function

the population of a number of iterations through the placement of individuals,
i.e., by dynamically adjusting the shape of the Probability Density Function
(PDF) during runtime. The parameter-wise static PDF we have encountered in
Section 5.2 becomes a dynamic reproduction probability density function. We
will encounter its actual specification in Section 5.2, which follows; here, in the
main loop that is shown in Algorithm 2, it is the influencing variable set.

In order to avoid fluctuations in this variable—success—, it is dynamically
averaged over a fixed number of iterations, represented by the user-supplied
variable T . The averaging is done by a time-discrete PT1 element:

pt1(y, u, t) =
{

u if t = 0,
y + u− y

t
otherwise, (5.13)

with t = T being always true in the context of the multipart evolutionary
algorithm.

104 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

Algorithm 2 Main loop of the multipart evolutionary algorithm

procedure REvol(o0, targetError , kmax ,Fitness)
global populationSize, eliteSize, targetSuccessRate,maxNoSuccess, T
local i, error , lastSuccess, O, success
k ← 0
lastSuccess ← 0
O ← GenerateInitialPopulation(o0, populationSize)
for all o ∈ O do

ofitness ← Fitness(o)
end for
success ← targetSuccess
while error > targetError ∧ k < kmax ∧ k− lastSuccess ≤ maxNoSuccess

do
o′ ← GenerateObject(O, success)
worst ← O|O|
if o′ < worst then . New object is better than the current worst one.

if worstAge ≥ 0 then
success ← pt1(sucess, 1.0, T)

else
success ← pt1(success,−1.0, T)

end if
O ← O \ {worst}
O ← O ∪ {o′}

end if
O ← Sort(O) . Sort so that the best object is the first one.
if O1 = o′ then

o′age ← k
end if
for all o ∈ O do

oage ← oage − 1
end for
success ← pt1(success, 0.0, T)
k ← k + 1
error ← O1,fitness

end while
return O1

end procedure

5.2. THE MULTIPART EVOLUTIONARY TRAINING ALGORITHM 105

Generating Individuals
For the generation of a new object, the algorithm chooses an object from the
elite o+ and another one from the general population o−. The elite is contained
in the general population: Elite ⊂ Population. Therefore, the object denoted
by o− might as well be a member of the elite. The algorithm then determines
the value of the two influencing factors that apply during the creation of a new
object and that form the distinct features of this algorithm:

1. The current rate of success

2. the implicit gradient information.

Remember that the current rate of success influences the spread, i.e., the
area within which a new object can potentially be placed. However, this area
does not feature a uniform PDF. Instead, the placement of the two objects
chosen relative to each other is used to calculate the implicit gradient, i.e., the
direction within which a newly generated individual must be placed with a high
probability in order to reach the minimum. These two factors carefully balance
each other: Putting a strong emphasis on the implicit gradient information
would turn the multi-part evolutionary strategy into a ‘poor man’s gradient
decent,’ whereas a high influence of the dynamic reproduction probability
density spread will make the algorithm lose its orientation.

The multipart evolutionary training algorithm defines the current rate as
success as follows:

successRate = success
targetSuccess − 1.0 . (5.14)

The success rate already influences the use of the implicit gradient thus:

xlp =
(14∑

k=4
X
U [0;1)
k −

20∑
k=15

X
U [0;1)
k

)
· wG · exp (wG · successRate) . (5.15)

The concatenation of random number drawings can be approximated by a
drawing from a normal distribution, X ∼ N

(
−2.0, 16

12
)
.20

An additional factor of 0.5 is applied when xlp > 0, which favors a decent
more strongly than an ascent in addition to the mean of the approximating

20The mean of the PDF is located at −2.0, and the variance of each drawing X ∼ U [0; 1)
is 1

12 . We can describe the actual PDF as the convolution of each drawing’s PDF, i.e., if

106 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

-10
-5

 0
 5

 10 -10

-5

 0

 5

 10

 0
 5

 10
 15
 20
 25

Ackley's Function
REvol Population

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Implicit GradientImplicit Gradient

Figure 5.5: Implicit gradient in a REvol population

normal distribution (µ = −2). The parameter wG is the gradient weight. Higher
values allow a faster decent, setting wG = 0 disables the influence of the implicit
gradient entirely. Sensible values range from 1.0 to 3.0; wG > 3.0 will diminish
the influence of the dynamic reproduction probability density function as to
make it useless and is therefore not recommended. A piece of implicit gradient
information between two objects is delineated in Fig. 5.5.

The multipart evolutionary strategy continues to create the new object’s
scatter and parameters vector. It does so by first updating the elite object’s
scatter vector, since this naturally influences the new object’s scatter:

o+
s = o+

s · exp(wS · successRate) . (5.16)

X = X1 +X2,

fX(x) =
∫ ∞
−∞

fX1 (x− x1)fX2 (x) dx .

Several concatenations can be constructed as X′ = X1 +X2, then X = X′ +X3. Calculating
the coefficients of the polynomials that are the result of the necessary convolutions is out of
the scope of this thesis.

5.2. THE MULTIPART EVOLUTIONARY TRAINING ALGORITHM 107

Note that Eq. (5.16) uses the success rate calculated in Eq. (5.14): The
dynamic reproduction probability density is introduced to the elite object’s
scatter, modifying the vector of the implicit gradient information later. With
the elite object’s scatter vector updated according to the current success, the
new individual’s scatter is generated:21

o′sk
= 1

2
(
o+

sk
+ o−sk

)
· exp

(
X
U [0;1)
21 −XU [0;1)

22

)
. (5.17)

With a new scatter value available, the algorithm can finally generate a
new parameter set. The corresponding scatter value serves to limit the new
parameter relative to the other object’s parameter values:

o′pk
= o′sk

(27∑
n=23

XU [0;1)
n −

32∑
n=28

XU [0;1)
n

)
+ xlp

(
o+

pk
− o−pk

)
+ o+

pk
. (5.18)

Here, the repeated drawingsX ∼ U [0; 1) create a PDF similar toN
(
−2.5, 10

12
)
.

Observe how the implicit gradient information is used in Eq. (5.18) in the
term o+

pk
−o−pk

. The last term of the sum constitutes the direction of the gradient
vector, i.e., in direction of the elite object. Note how, via the variable xlp from
Eq. (5.15), the dynamic spread is involved in generating the parameters of the
new individual.

From Eqs. (5.14), (5.15), and (5.18), we can follow the influence of the
dynamic reproduction probability density that can be understood as a function
of the current population’s state: If the current representation of success is
greater than the target success, i.e., success > targetSuccess, the population’s
spread increases, with the intensity represented by the user-supplied success
weight, wS . For success < targetSuccess, the population is drawn together.

This feature is important when escaping local minima purposefully. Remem-
ber the main portion of the algorithm outlined in Algorithm 2: The pt1 function
dynamically averages the current success rate. If we tune the fitness function in
our example that the algorithm continues to run even when the global minimum
is reached, we can observe that the population, which previously had converged
in the global minimum, begins to escape from the minimum in search of a better
minimum. This is shown in Figs. 5.6a and 5.6b.

Eqs. (5.14) and (5.15) and Algorithm 2 reveal that the population size, the
individuals’ initial TTL, and the success rate are connected. The pt1(y, u, t)

21The index k indicates separate drawings of random numbers for each member of the
respective vector.

108 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

-10
-5

 0
 5

 10 -10

-5

 0

 5

 10

 0
 5

 10
 15
 20
 25

Ackley's Function
REvol Population

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

(a) Epoch 93, success = 0.212

-10
-5

 0
 5

 10 -10

-5

 0

 5

 10

 0
 5

 10
 15
 20
 25

Ackley's Function
REvol Population

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

(b) Epoch 148, success = 0.343

Figure 5.6: REvol tuned to let the population escape a minimum

function is only then called, with u = 1.0, when a new object is generated that
satisfies the following features:

1. It is better than the current worst one

2. it replaces a still living individual (i.e., ttl > 0).

If the population is big and the initial TTL values small in comparison,
the new objects will only replace dead individuals after a certain number
of iterations, letting the success rate drop (success � targetSuccess). The
population will then get indefinitely stuck in the current minimum. This is
the algorithm’s Achilles heel. It is therefore advisable to set the start TTL in
correspondence with the population size: ttl ≥ 5|O|.

Ruppert’s algorithm does not rely solely on the implicit gradient information;
it still is an evolutionary strategy in which standard crossover happens. Ruppert
et al. (2014) present this specific portion of the algorithm in pseudocode.

5.3 Forecasting Accuracy and Efficiency

Experiment Configuration
We will now, following the analysis in the previous sections, set up the multipart
evolutionary algorithm to prove its worth in a real-life situation against a
well-understood competitor. This experiment utilizes data from the reference
situation that was outlined in Section 3.2 and forecasts the output of the ‘Bare
Hill Wind Farm’.

5.3. FORECASTING ACCURACY AND EFFICIENCY 109

The experiment will utilize an Elman RNN, as proposed in Section 5.1.
The original introduction of the multipart evolutionary algorithm compared
the algorithm to SA,22 which showed a better performance of the presented
algorithm in comparison with standard SA. While SA is, basically, a stochastic
informed search algorithm in the same way as the multipart evolutionary
algorithm is, too, it does not use the concept of a population whose individuals
represent candidate solutions. Instead, SA only keeps one candidate solution it
modifies over a number of cycles.23

The evolutionary nature of the presented algorithm is better matched by
other algorithms that employ similar mechanics. A central concept of the
multipart evolutionary algorithm is the influence individuals have on each other,
not only in terms of the classical crossover, but also the distance relative to
its parents an offspring is created in.24 The population’s overall success as
well as the implicit gradient information the position of the parents delivers is
incorporated in the offspring’s parameters as well.25

PSO employs mechanics that stem from a similar idea. Here, the population
is a swarm of particles. Each particle has a certain position, which is a vector
of parameters to the fitness function. Additionally, a particle also features a
velocity. On any iteration, a particle’s new position is computed by combining
its velocity with its current position and taking the particle’s neighborhood
in account. Of PSO, a number of variations exist. In this comparison, we use
Standard Particle Swarm Optimization (SPSO) in its 2011 revision. The details
of the swarm’s initialization, the definition of a particle’s neighborhood, and
the combination method to compute a particle’s new position, are described by
Clerc (2012).

In order to aid the comparison, parameters are chosen in similar ranges
wherever possible. E.g., the swarm size of SPSO is usually set to 40 particles,
thus the population size of the multipart evolutionary algorithm is also set
to 40 individuals. Each algorithm is allowed to run for the same number of
iterations. Table 5.1 summarizes the relevant parameters of the two training
algorithms as they were used in this comparison.

The overall result that is expected from this experiment is to verify an
agent’s ability to forecast the power balance at the local node it represents.
An hour-ahead forecast is sufficient to allow all agents to enter the distributed
planning phase and form short-term contracts to counter a prognosticated

22Cf. Ruppert et al. (2014).
23Cf. Kirkpatrick et al. (1983).
24Cf. Eqs. (5.17) and (5.18).
25Cf. Eqs. (5.14) and (5.15).

110 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

Table 5.1: Parameters of REvol and Standard Particle Swarm Optimization
2011

Parameter REvol
Setting

Parameter SPSO
Setting

Population Size 40 Swarm Size 40Elite Size 4
Max. Epochs 50 000

Max. Epochs 50 000Max. Epochs
without success

10 000

T 5000
Gradient Weight 0.8 C 1

2 + ln 2
Success Weight 1.1 W 1

2 ln 2

disequilibirum. Revisiting Fig. 5.2, we can see that the agents have at least
10 min for this.

While SPSO is able to use a concept similar to the evolutionary algorithm’s
implicit gradient information through the PSO’s concept of a particle neighbor-
hood, it cannot purposefully escape a local minimum through a measurement
equivalent to the evolutionary algorithm’s success rate. It relies on the particle
neighborhood, their recorded best and previous best positions to draw a partic-
ular particle to a minimum. SPSO relies on these neighborhoods to find the
best minimum, i.e., each particle neighborhood occupies a minimum and the
best neighborhood wins the search. Therefore, the expected outcome is that
the multipart evolutionary algorithm escapes these minima and yields a better
overall training result than its contender.

Results
Supervised training of an ANN is made up of two stages, which also create a
partition of data: First, the training of the network, second, the verification
of the training’s success with the second part of the data set. The forecaster’s
sliding window concept of the data pipeline along with the pattern store creates
this partition naturally.

When comparing the training performance, one can suspect from the algo-
rithm’s designs alone that the multipart evolutionary training algorithm will
arrive faster at a result than the SPSO. Indeed, the SPSO required several
orders of magnitude more time than the evolutionary algorithm. However, even

5.3. FORECASTING ACCURACY AND EFFICIENCY 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

00:00 04:00 08:00 12:00 16:00 20:00 00:00
 0

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

R
el

at
iv

e
E

rr
or

T
ra

in
in

g
T

im
e

[m
s]

REvol Training Time
SPSO 2011 Training Time

REvol Training Error
SPSO 2011 Training Error

Figure 5.7: Training algorithm performance

though the SPSO modifies and re-evaluates all particles for a given epoch—as
outlined in the previous section—, it was not able to achieve a better training
result. With few exceptions, the final weight configuration created by the SPSO
was inferior to that created by the multipart evolutionary algorithm, as far as
the final training error was concerned. Fig. 5.7 displays a typical number of
results for both algorithms over the course of 24 hours.26 Although the timing
results, being absolute numbers, are dependent on the hardware and build
configuration,27 the graph serves to illustrate the relative difference in training
duration.

The activation function chosen and its configuration particularly influences
the duration of the training. Recall Section 2.4 that cited the discussion of
Jordan (1995) on why the logistic function is often the most beneficial. Fig. 5.8
compares the power curve of a wind turbine with the tanh(x) function and

26Fig. 5.7 displays the training of the same timespan that is depicted in Fig. 3.3, plotted
as one-hour means to improve readability.

27The tests were run on a machine powered with two Intel® Xeon® 5140 Central Processing
Units (CPU) running at 2.33 GHz; the C++ test code compiled with GCC version 4.8.5 using
the compile flags -O3 -march=native.

112 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

R
el

at
iv

e
P

ow
er

 O
ut

pu
t

Relative Wind Speed

tanh(x)
0.5 * tanh(8.5*x - 2.8) + 0.5

Wind Turbine

Figure 5.8: The Artificial Neural Network’s activation function and the power
curve of a wind turbine

offers a modified activation function alongside:

af(x) = 0.5 + 1
2tanh(8.5x− 2.8) . (5.19)

The domain-specific knowledge that lies in the shape of the wind turbine’s
power curve aids in the training of the ANN and reduces training time by
17.2 %.

Weather is a complex phenomenon; thus, there is no ‘one network size to
rule them all.’ If the RNN contains too many connections, it will overfit, i.e.,
lose its ability to generalize and derive meaningful results from yet unknown,
but similar to already learned input patterns.28 However, the RNN’s size is
also its memory, and the number of connections might as well be too small,
therefore unable to model the situation underlying the forecasts. The size of the
RNN—i.e., the number of neurons and the number of connections, |w|—must
be dynamically adjusted during runtime. A mechanism to dynamically grow
and shrink the RNN can be as follows:

28Cf. Section 2.4.

5.3. FORECASTING ACCURACY AND EFFICIENCY 113

1. Initially, size the RNN’s to contain 1.5 times as many neurons as the input
layer contains. Fully connect each layer.29

2. Train the RNN:

a) If the resulting final error of the training is equal to or below the
required training error as indicated by the agent’s constraints mod-
ule,30 the Forecaster applies the Optimal Brain Damage algorithm31

to ensure that the RNN does not overfit.
b) If the resulting training error is not satisfying, the RNN is first

checked to be fully connected. If it already is, the size of the hidden
layer is doubled. A new training process is then started.

This algorithm is depicted in Fig. 5.9.
While the dynamic adjustment of the RNN’s size helps to capture more

complex weather patterns, it can eventually also cause the network to grow to a
size that is no longer suitable for calculation with the computing power present
at the local node. However, any ANN can profit from specialized hardware
that is able to compute a large number of floating-point operations in parallel,
such as a Field-Programmable Gate Array (FPGA) can. FPGAs are not as
expensive as high-performance CPUs or General-Purpose Graphics Processing
Units (GPGPU) and also consume less power when operating. FPGAs have
already been used to—and are, in fact, well known to—calculate ANNs and
undertake their training (Lysaght et al., 1994; Zhu and Sutton, 2003; Omondi
and Rajapakse, 2006).

The overall performance of the actual forecast, quantified through its Mean
Absolute Error (MAE)32 and Root Mean Squared Error (RMSE),33 are outlined
in Table 5.2. For better reference, these values are compared with the results
achieved by Liu et al. (2012).

29Except where otherwise dictated by the underlying pattern, e.g., the Elman RNN pattern
30Cf. Section 4.1.
31Cf. Section 2.4.
32

mae(q, q̂) = 1
|q|

|q|∑
k=1

|q̂k − qk|

33

rmse(q, q̂) =

√√√√ 1
|q|

|q|∑
k=1

(q̂k − qk)2

114 CHAPTER 5. FORECASTING POWER DEMAND AND SUPPLY

Forecaster RNN Size Tuning

Training

<<datastore>>

patternSet : PatternSet

RNN : NeuralNetwork

constraintsModule :
Constraints

Prune Weights

Fully connect RNN

Double size of Hidden Layer

|patternSet| changed

Target training
error reached?

RNN fully connected?

[Yes]

[No]

[Yes]

[No]

Figure 5.9: Size tuning procedure of the forecaster’s Recurrent Neural Network

An excerpt of a forecasted day at the ‘Bare Hill Wind Farm’ node is depicted
in Fig. 5.10.

While successful, pure node-local forecasting of power generation or con-
sumption based on historic data alone will not, and, in fact, cannot be the
ultimate solution to this problem. As long as a pattern class has not been

5.3. FORECASTING ACCURACY AND EFFICIENCY 115

Table 5.2: Comparison of the Universal Smart Grid Agent’s forecaster module’s
performance with known values from literature

Metric Liu et al. (2012) Agent Forecaster
MAE 14.149 7.13
RMSE 14.994 8.47

 0

 2

 4

 6

 8

 10

 12

 14

 16

00:00 04:00 08:00 12:00 16:00 20:00 00:00

R
ea

l P
ow

er
 [M

W
]

Bare Hill Wind Farm Power Output
Bare Hill Wind Farm Forecasted Power Output

Figure 5.10: Result of node-local forecasting at ‘Bare Hill Wind Farm’

encountered, the forecast must fail. Complex weather conditions might also
lead to contradicting patterns. To conclude, node-local forecasting is a valuable
addition to a global forecast and helps to account for the idiosyncrasies of an
agent’s environment. It cannot, however, replace forecasts created by national
weather services.

6 Social Component: Inter-Agent
Communication

6.1 Motivation

The fundamentals in Section 2.4 showed us that, for every agent, the ability to
communicate and coordinate with its partner agents is an elementary, intrinsic
property of it. The word ‘protocol’ itself, coming from the ancient Greek word
‘protókollon,’1 initially described something akin to today’s envelope folder and
contained bibliographic data. French diplomacy added a second meaning to the
a posteriori concept of the original ‘protókollon’: A set of rules that should be
followed in order to follow the protocol.

Thus, in the computer age, too, a protocol defines a set of behavioral rules as
well as a set of data and their encoding. In the context of a multi-agent system,
these behavioral rules gain special weight, since only a purposeful cooperation
of all necessary agents, according to a set of rules yielding constructive behavior,
will contribute to the formation of a solution. Therefore, a protocol for a
multi-agent system should first define a set of rules and then deduce the data
transmitted from what information is necessary for the receiver of a message
to follow the intended ruleset. This information must be carefully selected,
because it forms an extract of an agent’s current model of its world that it
communicates, i.e., it must communicate enough of its own state in order to
help other agents to arrive at the necessary conclusions.

The nature of the multi-agent system is largely characterized by proactive
behavior, as we know from Chapter 4. Recall Section 2.3 that presented protocols
in use in the smart grid domain. Many define a query-based interaction,
i.e., a host polls another host’s state. While this is appropriate for sensor

1Ancient Greek προτόκολλον: ‘prótos’ means ‘first,’ and ‘kólla’ translates to ‘glue.’

117

118 CHAPTER 6. INTER-AGENT COMMUNICATION

devices that are not sized resource-wise to actively participate in a networked
communication, this active-passive relationship is not approporiate for the
active-active relationship between agents.

The smart grid does not offer a homogeneous communications technology
landscape, nor can it: Between remote wind farms, solar power plants, and
centrally connected consumer groups in cities, no single technology is available
to connect them all. Any protocol aimed at enabling the information interchange
in a smart grid must therefore either settle for the common denominator,2 or
cope with a range of communication technologies.

The ISO/OSI stack model presented in Section 2.3 has been created in
order to allow the exchange of protocols in one layer with the smallest possible
impact on other layers. It is therefore prudent to utilize existing protocols that
allow access to different physical media and implement necessary algorithms for
transmission error reduction, or transmission security.

This thesis proposes3 a lightweight protocol for a smart grid that has been
designed to provide a set of behavioral rules for the universal smart grid agent,
define the data necessary to adhere to those rules, and re-use existing, proven
technology where possible: The Lightweight Power Exchange Protocol (LPEP).

6.2 Design Principles

Network Layout

This thesis presents a decentralized concept through the proposed multi-agent
system, in which each agent stands for a certain node in the power grid, e.g.,
a power plant or a neighborhood. Stringently, the communication network
of the agents should resemble the power grid. This is achieved by forming
an overlay network: If a node in the power grid is physically connected to
another, a digital connection must exist between the two agents representing
these nodes. The network layer of the ISO/OSI stack introduces the end-
to-end concept in computer networks; protocols like the TCP introduce the
connection concept on the transport layer within the ISO/OSI stack model.4
The agent software utilizes the Internet Protocol (IP) and the TCP to connect

2Section 2.3 also showed that settling for the common denominator means the re-
implementation of many proven technologies, which often causes more problems than it
solves.

3Based on Veith et al. (2013, 2014)
4Cf. Fig. 2.8.

6.2. DESIGN PRINCIPLES 119

Agent AAgent C

Agent B

Power Grid

Computer Network

Figure 6.1: The power grid as an overlay network

two instances of the agent software, represented by network5 addresses, with
which the protocol then formulates a connection between two distinct agents.
The result is a logic network layer residing on the application layer that overlays
the existing communications infrastructure, thus modelling the power grid via
a communications network. Creating overlay networks is a common technique
in computer networking; the concept is depicted in Fig. 6.1.

The connections in this protocol concept are strictly end-to-end connections;
multicasting must be realized on top of this concept by sending a message over
several connections. Multicast classes and groups, such as the IP offers, are not
implemented.

A power grid can be designed as a meshed structure in order to improve
reliability. The resulting overlay network will therefore, too, form a mesh.
Thus, several redundant paths can lead from one agent to another; hence, the
LPEP requires all communication between agents to be idempotent. A request

5E.g., IPv6

120 CHAPTER 6. INTER-AGENT COMMUNICATION

for power generation that, through the meshed topology of the network, was
duplicated, must not yield to two distinct responses, thus doubling the amount
fed into the power grid: The results would be disastrous.

For the same reason, the LPEP incorporates a mechanism that limits the
number of agents a message can pass through. A request that cannot be
answered would otherwise potentially travel the network endlessly, becoming a
‘zombie message’ that would lead to congestion of the data network without
benefit. Hence, the LPEP contains a TTL counter that is inspired by the IP.6

The undirected power grid does not offer any intrinsic information of its
nodes and the overlay network follows suit. Consider the simple network of
three connected agents A1 ↔ A2 ↔ A3. A1 and A3 are independent of each
other; neither of the two possesses any information about each other: Does
A1 constitute a power plant, a wind farm, or a factory? How is it connected?
In fact, this information is not necessary and can even be interfering; nodes
in the smart grid consume and generate power variably. A power plant can
react to a surplus of power by throttling its turbines, therefore influencing the
grid’s power balance in a similar way as a consumer would do. However, the
distributed Demand-Supply calculation proposed in this thesis must strive to
minimize line loss and therefore needs an additional metric.

This metric is incorporated into the distance each message travels. This
distance metric is based on the impedance of the power lines the message travels.
A low distance value means that an agent nearby has sent the corresponding
message. Thus, the structure of the power grid can be taken into account when
calculating the solution set to a given situation of power disequilibrium. How
the distance is calculated is part of the routing of messages and detailed in
Section 6.2, starting on Page 128.

Message Types and Data Fields

The protocol exists in order to allow agents to communicate their local disequi-
librium in terms of active or reactive power and to allow other agents to propose
actions at their site in order to reach an equilibrium. Those messages must be
sent before the actual situation of a disequilibrium becomes reality. Therefore,
the communication takes place after a forecast has been made through the
facilities described in Chapter 5.

In principle, agents send requests because they forecast a surplus of, or
demand for, power at their position. Other agents act on this request by sending

6Cf. Section 2.3.

6.2. DESIGN PRINCIPLES 121

proposals for an increased consumption or increased generation at their site. A
request for power is represented by a demand notification. Other agents can
answer this demand by sending an offer notification.

Recall that the creation of message types and their data fields is motivated
by a set of behavioral rules. This section will therefore introduce them in an
abstract manner not tied to a specific implementation or encoding. We will
use a tuple-like notation for messages, where individual fields are indicated by
subscripts. For example, mid denotes the ID of a message m.

The abstract7 message data type defines the minimum fields that must be
present in each transmission between two agents:

Message := (id, type, sender , receiver , is answer , answer to, . . .) , (6.1)

where id ∈ J , sender ∈ I, receiver ∈ I, is answer ∈ {true, false}, and answer to ∈
J . These relations apply for all message types.

For any given exchange of these messages, it is necessary to unambiguously
identify the agents that take part in this communication: Requests may be sent
by any number of agents at a given time and thus the receiver of the message
must be clear. The agent identifiers that are a part of the message must be
unique at any given time. In addition, in order to formulate an answer to a
specific message, the message itself must be unambiguously identifiable.

Since messages must be idempotent—a demand notification that was dupli-
cated and arrives twice at an agent must not yield two distinct offer notifications—
the message identifier is not only required to formulate answers, it also serves
to ensure the idempotence of messages.

Facilities exist to derive identifiers that are unique8 and can be created
without a central system to issue them.9 For agent addresses, a fixed scheme
in the way of Ethernet MAC addresses (IEEE Standards Association, 2015) is
possible. While this would still involve a central authority, the agent’s address
would be fixed once assigned and no service would need to be online at all times.
Message identifiers, however, need to be generated on the fly during normal
operations of an agent. A scheme like the Universally-Unique Identifier (UUID)

7Abstract in the same sense as abstract class is used in object-oriented programming: All
data fields of the Message type are available in subtypes, but never is a pure instance of a
Message type instantiated.

8At least, with a high probability
9This would introduce a single point of failure and defy the distributed, i.e., non-centralized,

approach of the multi-agent system.

122 CHAPTER 6. INTER-AGENT COMMUNICATION

(Leach et al., 2005) therefore suggests itself. UUIDs could also be used for agent
addresses, since no meaning needs to be contained in the agent identifiers.

In addition to the abstract data type defined in Eq. (6.1), both demand
notification and offer notification, also need, obviously, to include the amount of
power and the type of power10 in units of Kilowatts, or KiloVArs, respectively.
The amount of power transmitted is expressed as a closed interval, P̃ = [P1;P2],
from which the receiver may freely choose a value. If P1 = P2, no choice is
offered, obviously. If an agent can offer multiple choices, but only within distinct
ranges, it must make several offers to the same request. The receiving agent
must then collapse them into a single offer in order to preserve the exclusive-or
semantic of the distinct messages. This allows the expression of both, infinitely
adjustable, as well as partially variable or invariable, power generation or
consumption, and accommodates, e.g. different load gradients in traditional
power plants depending on the power output for to technical reasons.

Since a demand for or surplus of power is temporally bound, a time interval11

must be included as well. Demand notification and offer notification therefore
define a subtype of the abstract Message type defined in Eq. (6.1) thusly:12

DemandNotification <: Message , (6.2)
OfferNotification <: Message . (6.3)

They are furthermore defined as complete data types:

DemandNotification := (id, type, sender , receiver , is answer , answer to,
ttl, distance, timespan, answer until, value, power type) ,

(6.4)

where type = 5, ttl ∈ N, distance ∈ N, timespan = [t1; t2), value = [P1;P2], P1, P2 ∈
N, and power type ∈ {active, reactive}. Except for the distinct value of type
that denotes the message’s type, these relationships apply to all other message
types, too.

10Active or reactive
11If t1 and t2 denote points in time and are the bounds of the interval, a message always

contains the interval t̃ = [t1; t2).
12The notation of a subtype, the subtyping relation, follows Abadi and Cardelli (1996).

6.2. DESIGN PRINCIPLES 123

OfferNotification := (id, type, sender , receiver , is answer , answer to,
ttl, distance, timespan, answer until, value, power type) ,

(6.5)

with type = 6. It becomes obvious that the existence of two distinct message
types comes from a semantic reason, i.e., a question of behavior; their only
difference data-wise is the value of the type field.

A demand notification expresses a shortage of power; an offer notification
expresses a surplus of power. In the previous paragraph, we have discussed
situations in which a forecast indicates a power shortage that is answered by an
offer coming from a surplus of power. However, the reverse is also possible: That
a forecast detects a surplus of power at some point in the future that can be
consumed.13 For example, a wind farm will generate more power when the wind
speed increases if not curtailed, which is obviously due to the nature of the power
generation. Thus, an offer notification can also initiate the communication.

In order to distinguish the two types of situation, the answer indicator14 is
used. An offer notification that is not an answer is, therefore, a request to the
other agents to consume the surplus power. Stringently, the agent sending the
offer notification will receive demand notifications that are answers. Likewise, a
demand notification that is not an answer is a request to generate more power
and is met by offer notifications that are answers.

When formulating its response, an agent is not required to exactly match
the time interval or power value of the request: Smaller values are also possible.
I.e., Responsevalue ≤ Requestvalue and Responsetimespan ⊆ Requesttimespan . The
requesting agent’s task in finding a solution is thus to select those responses
that form the optimal (or good enough) solution to its situation of power
disequilibrium.

After having received responses to its request, the agent begins to calculate
a solution set that solves its current situation. Once a solution set exists, the
agent must notify its partners that it takes them up on their offer (or demand)
and therefore sends an acceptance notification to each agent whose response
is in the solution set. The amount of power accepted from the offer is also

13A coal or gas power plant can also ‘consume’ power, i.e., influence the grid’s power
balance towards a power shortage by simply generating less power. Although it does not
actually consume power, such an action may also constitute a demand notification as an
answer to an offer notification.

14The message field that indicates whether a message is an answer or not

124 CHAPTER 6. INTER-AGENT COMMUNICATION

communicated herein; it must lie in the acceptable range of the offer. It does
not need to deny responses: All unanswered responses are interpreted as denial.

AcceptanceNotification <: Message , (6.6)

AcceptanceNotification := (id, type, sender , receiver ,
is answer , answer to, ttl, accepted value) ,

(6.7)

where type = 7, is answer = true, and accepted value ∈ N.
Once the responding agent receives the acceptance notification, it must

answer with an acceptance acknowledgement notification. This concludes the
four-way handshake and forms a short-term contract valid for the interval
given in the response; Fig. 6.2 depicts a successful four-way handshake. The
acknowledgement message is necessary because an agent may withdraw its
demand or offer, for example, when a forecast is no longer valid and must be
corrected. A withdrawal notification must be sent whenever data in a previous
demand or offer notification becomes invalid.

AcceptanceAcknowledgementNotification <: Message , (6.8)
WithdrawalNotification <: Message . (6.9)

The two Message types carry the following data:

AcceptanceAcknowledgementNotification := (id, type, sender , receiver ,
is answer , answer to, ttl) ,

(6.10)

where type = 8 and is answer = true, and

WithdrawalNotification := (id, type, sender , receiver , is answer , answer to, ttl) ,
(6.11)

with type = 9 and is answer = true.
Power delivery (or consumption) is not instantaneous, especially with re-

gards to traditional, steam-based power plants that must follow a certain load
gradient.15 However, the receiving agent does not have—and, in fact, does not
need—any knowledge about the other nodes. The load gradient is therefore a
part of the message itself in the form of the answer until field that carries a
timestamp16 that indicates at what time, at the latest, an answer may arrive at

15Cf. Sections 2.1 and 3.1 for details.
16Cf. Appendix B.2 for the exact type.

6.2. DESIGN PRINCIPLES 125

sd Demand-Offer-Sequence

opt

[Can Offer]

opt

[Offer in Solution Set]

Agent A Agent B

2.1.1.1.1.1: Check for Conflicts

2.1.1.1: Solve Balance

2.1: Retrieve Forecast
and Solve Balance

2.1.1: Offer Notification(isAnswer = true, answerTo = 1,
value = -)

2:1: Demand Notification(isAnswer = false, value = P)

2.1.1.1.1.1.1: Acceptance Acknowledgement
Notification(isAnswer = true, answerTo = 2.1.1.1.1)

2.1.1.1.1: Acceptance Notification(isAnswer = true,
answerTo = 2.1.1)

Figure 6.2: The four-way handshake of a demand-offer sequence

the sender. If the answer arrives afterwards, the responder must not act, i.e.,
the response becomes void.

Messages can arrive at any given time before the time indicated by the
answer until field; the agent can therefore either wait until the last possible
moment or calculate the solution set several times: The answer until values of
the responses it receives may lie before the requester’s own deadline.

Timing is obviously of importance here, since two factors influence the
time-bound validity of a four-way handshake:

1. The computation time necessary for an agent to calculate a solution set

2. the network delay that forms the travel time of all messages.

An agent can measure the time it takes to finish solving the balance and
use this as an estimate for future calculations. The four-way handshake yields

126 CHAPTER 6. INTER-AGENT COMMUNICATION

several round trips: Four at a minimum, but most likely more, based on what
communication protocols are used to connect the two agents. While a closed
loop can be used to find exactly the right time to send acceptance notifications,
this thesis does not propose one; in fact, measuring and predicting network
delays is, as the TCP shows, a topic of research in itself (Tsang et al., 2003; Ha
et al., 2008). Instead, a fixed time of 10 minutes to search for a solution set
and answer with acceptance notifications is proposed here.17

The agent normally assumes that it can freely distribute power. However,
line capacity, voltage drop, or other constraints may be a limit to this assumption.
Therefore, agents must signal that a potential path in the power grid is not
viable. They do so using a constraint notification:

ConstraintNotification <: Message , (6.12)

ConstraintNotification := (id, type, sender , receiver , is answer , answer to,
ttl, distance, constrained message) ,

(6.13)
where type = 10, is answer = false, and constrained message ∈ J .

The constraint notification always replaces a demand notification or an offer
notification. For routing purposes, the ID of the original message must be
transmitted, for which the constrained message field exists.

In addition to the messages that make up the four-way handshake and,
generally, deal with the flow of power, four other messages exist that primarily
serve maintenance purposes.

An agent must send an online notification to notify its neighbors that it
is becoming online, i.e., synchronized with the power grid, at a certain time.
Likewise, an offline notification must indicate that the node an agent represents
is going to be disconnected from the grid at a certain time. This allows agents to
mark their connections to other agents as active or inactive, which is important
for message routing.

OnlineNotification <: Message , (6.14)
OfflineNotification <: Message , (6.15)

17The 10-minute space is arbitrarily chosen, but based on the 10-minute interval used to
calculate means in meteorological data. It assumes that a direct correlation exists between
this fixed interval size and the message sending and processing behavior the multi-agent
system exhibits.

6.2. DESIGN PRINCIPLES 127

OnlineNotification := (id, type, sender , receiver , is answer , answer to,
timestamp) ,

(6.16)

OfflineNotification := (id, type, sender , receiver , is answer , answer to,
timestamp) .

(6.17)

For OnlineNotification, type = 3, and for OfflineNotification, type = 4. Both
messages must not be answers, i.e., is answer = false.

The protocol also implements the notion of ping, similar to the concept
present in the Internet Control Message Protocol (ICMP), in the form of the
echo request that must be answered by an echo reply if the node that receives
the echo request is online with regards to its synchronization to the grid.

EchoRequest <: Message , (6.18)
EchoReply <: Message , (6.19)

EchoRequest := (id, type, sender , receiver , is answer , answer to, timestamp) ,
(6.20)

EchoReply := (id, type, sender , receiver , is answer , answer to, timestamp) .
(6.21)

EchoRequest has type = 1 and is answer = false, whereas EchoReply con-
tains type = 2 and is answer = false.

We can now see that messages are not only distinguished by their type and
purpose, but also fall into three classes. Echo request, echo reply, and online
and offline notification are link-local maintenance messages. We will later see
that they are not forwarded; that they have no TTL field is an indicator of
that. All other messages are eligible for routing. Additionally, two messages
also carry power values: Demand notification and offer notification. Figure 6.3
illustrates these classes.

The protocol proposed in this thesis does not implement neighbor discovery;
connections in the overlay network must be configured by another mechanism.18

However, it implements service discovery: When an agent becomes connected to
the communications network, it must send online notifications to its neighbors
to indicate its node’s synchronization to the power grid. This notifies the agent’s
neighbors that their connection is now online. In order for the agent coming

18This is primarily due to security reasons: See Section 6.4 for details on an agent’s
credibility.

128 CHAPTER 6. INTER-AGENT COMMUNICATION

Message Types

Winzent

Messaging

Echo Request
Echo Reply
Online Notification
Offline Notification
Demand Notification
Offer Notification
Acknowledgement Notification
Withdrawal Notification
Acknowledge Acceptance Notification
Constraint Notification

<<enumeration>>
MessageType+type : MessageType

+id : ID
+sender : ID
+receiver : ID
+isAnswer : bool
+answerTo : ID

Message

+type : MessageType
+timestamp : DateTime

MaintenanceMessage

+type : MessageType
+ttl : unsigned int

RoutableMessage

<<primitive>>
ID

+value : KiloWatt [1..2]
+powerType : PowerType
+timespan : TimeSpan

PowerMessage

real
reactive

<<enumeration>>
PowerType

+constrainedMessage : ID

ConstraintMessage

+distance : unsigned int

DistanceMessage

{type = Demand Notification OR
Offer Notification}

{ type = ConstraintNotification }

{type = Acknowledgement Notification OR Withdrawal Notification OR
Acknowledge Acceptance Notification}

{type = Echo Request
OR Echo Reply OR

Online Notification OR
Offline Notification}

<<use>>

<<use>>

Figure 6.3: Types of protocol messages along with the class they belong to

online to know of the states of its own connections, it sends echo requests
afterwards: Its neighbors must answer when they are online themselves. Hence,
all agents have acquired the knowledge of their connections’ states.

Message Processing Directives
No-Zombies Directive

The power grid knows circular structures and so does the overlay network
created by this protocol. Thus, an agent may receive the same message several
times. However, agents must also try to minimize the number of messages
that travel the communication network at any given time. Especially ‘dead’

6.2. DESIGN PRINCIPLES 129

messages, i.e., those that are never answered, must be prevented from circulating
endlessly.

Each message that must be routed by an agent contains a ttl field. The
message’s TTL is an integer without unit. Every time a message is to be
forwarded by the agent, it must also decrement the message’s TTL. If the value
reaches 0, the message must not be forwarded. Instead, the agent must discard
the message and also remove all data it has kept with regards to this message
from its message journal.

A message’s initial TTL obviously strongly influences the number of hops
(i.e., routing agents) it can pass. An administrator must set it by policy, as the
initial value is dependent on the size of the power grid.

Match-or-Forward Directive

A meshed network topology will cause a number of agents to receive demand
notifications and offer notifications without a differentiation of whether they can
actually fulfill the demand, either partially or completely. However, each agent
must contribute to preserving the electrical grid’s power equilibrium. Therefore,
the Match-or-Forward Directive defines three behavioral rules an agent must
follow upon the reception of a demand notification or offer notification:

1. If the agent cannot fulfill the request, but has previously sent a request of
its own that would match the request received,19 it must check whether
to withdraw its own request or not:

a) If the other request’s answer until field indicates a time earlier than
the agent’s own request or the agent’s own requested value is smaller
than the other agent’s requested value, it must withdraw its own
request and issue an answer according to rules 3 and 4.

b) Otherwise, the agent must continue with rules 2–4.

2. If the agent receives a constraint notification to a request it has previously
answered and the constraint notification’s distance value is equal to or
lower than the distance value of the request the agent has answered, it
must withdraw its response.

3. If the agent cannot fulfill the request, it must forward the message if no
constraint prohibits this.

19E.g., the agent sent a demand notification and receives now an offer notification that is
not an answer to its request.

130 CHAPTER 6. INTER-AGENT COMMUNICATION

4. If the agent can fulfill the request partially, it must

a) formulate a response and send the response on the connection over
which it had previously received the request, unless
i. a constraint at the agent’s node prohibits it, or
ii. the agent has received a constraint notification with a distance

equal or lower to the request received
b) modify the request by the value it sent in the response, and forward

the modified request.

5. If the agent can fulfill the request completely, it must not forward the
message, but formulate an answer, unless

a) a constraint at the agent’s node prohibits it
b) the agent has received a constraint notification with a distance equal

or lower to the request received.

Through these rules, messages travel farther in the power grid only if they
cannot be answered. This favors a local, distributed power generation, and
most likely smaller power plants and nearby consumption over centralized
generation, in which the power travels several kilometers of wire before reaching
the consumer.

Forwarding Directive

The protocol creates an overlay network that models the power grid via the
communications network and thus consumers and producers are not immediately
connected with each other. Messages, such as demand notifications or offer
notifications, are therefore routed by a number of agents representing, e.g.,
transformers. How agents should route or, in general, process messages they
receive is governed by a set of directives every agent in must follow.

Forwarding denotes, the process of receiving a message and re-sending it.
Not all messages are eligible for routing; some are only inteded to inform an
agent’s immediate neighbor. The messages that may be forwarded are:

1. Demand Notification

2. Offer Notification

3. Acceptance Notification

6.2. DESIGN PRINCIPLES 131

4. Withdrawal Notification

5. Acceptance Acknowledgement Notification

6. Constraint Notification.

In order to route messages efficiently, every agent must keep a data store of
all messages received that are eligible for forwarding. This data store is called
the message journal.20 The message journal stores not only the message itself,
but all of the links it was transmitted on, as well as the distance value for the
message being transmitted on that particular link.

Definition 6.1. Each agent’s messaging module contains a message journal,
denoted by the module-identifying letter Mi.

The message journal contains a set of mappings:

Mi ={m1 7→ {(li,1,m1,distance(li,1)), . . . , (li,n,m′1,distance(li,n))}, . . . ,
mn 7→ {(li,1,mn,distance(li,1)), . . . , (li,n,m′n,distance(li,n))}} .

(6.22)

Each tuple contains the link, li, via which the message m was transmitted,
as well as the transmission distance, of the respective variant of the message
that was received via li, mdistance. The expression m′ denotes such a variant of
a message that has travelled via a different set of links than the first variant
that was received, m.

The addition of a message with its link information to the message journal
is expressed as:

Mi ∪ {(m, li,k)} . (6.23)

In order to retrieve the set of tuples a message m ∈Mi maps to, we write:

Mi,m . (6.24)

Since a message’s ID identifies it unambiguously, it is indeed sufficient to
use this ID value:

Mi,mID . (6.25)
20Prior publications (Veith et al., 2013, 2014) called this message store the “duplicate

request cache,” a name that was largely inspired by the idempotence of all messages, but that
is now misleading since the cache is required for several tasks.

132 CHAPTER 6. INTER-AGENT COMMUNICATION

Hence, Eq. (6.24) and Eq. (6.25) can be used interchangeably.
The set of tuples is ordered through their distance. If a and b denote two

tuples in the set Mi,m:

a ≤ b ⇔ adistance ≤ bdistance . (6.26)

Thus, the message journal stores, for each message, all connections over
which it was received: an ordered set that is updated over time in meshed
networks. The message journal also stores the smallest yet-encountered distance
for this message (from Eq. (6.22): Mi,m,1). With regards to the message journal,
the LPEP defines the equality between two messages according to a subset of
their fields:

Definition 6.2. In the LPEP, two messages m1 and m2 are equal, iff their
IDs, sender, receiver, and type fields are equal. Formally, the equality operator
with regards to messages is defined as:

m1 = m2 ⇔ m1,ID = m2,ID

∧m1,type = m2,type

∧m1,sender = m2,sender

∧m1,receiver = m2,receiver .

(6.27)

Therefore, two variants of a message, m1 and m′1 are equal, even fields not
listed in Eq. (6.27) are not equal. Thus, the equality operator does not express
the identity of two messages.

Upon reception of a routable message, the agent must first store it in its
message journal. Then, it must check whether it is the designated recipient or
not. If the agent is indeed the intended recipient, it must act on it. Otherwise,
the agent acts as a router and may forward the message, according to the rules
laid down in Section 6.2.

In order to select the best connection to forward a message over, agents
require a metric, in a way similar to the hop count of the IP. Hence, each
message contains a distance field. Since the LPEP models the power grid, this
distance metric is based on the actual power flow at each node. The origin
agent initializes the distance field as 0; every forwarding agent then adds the
distance of the connection it chooses: This distance is the impedance of the
power line the link models.

6.2. DESIGN PRINCIPLES 133

Definition 6.3. The set of links, Li, i ∈ I, li,k ∈ Li, k = 1, 2, . . . , |Li|, is an
ordered set of individual links or connections for each agent, Ai. The set is
ordered by the impedance of each line at the time the contents of the message
for which the current ordering is retrieved will take effect21, Zi,k(t). Thus, the
distance of each connection is:

li,k,distance(t) = Zi,k(t) (6.28)

Furthermore, the ordering of links in Li is expressed through the smaller-
than-or-equal operator, ≤:

li,1(t) ≤ li,2(t) ⇔ li,1,distance(t) ≤ li,2,distance(t) (6.29)

For re-sending the message, the agent selects [0; |L| − 1] connections accord-
ing to these rules:22

1. If the message type is one of echo request, online notification, or offline
notification, it must not be forwarded and the agent must process it
locally.

2. If the agent is the designated recipient, it must process the message locally.

3. If the message is an answer, the agent is not the indicated recipient,
and mttl ≥ 1 is true, the agent must decrement the message’s TTL and
afterwards check for the message in its message journal:

a) If the message is contained in the agent’s message journal, it must
forward it over the connection with the lowest distance available, i.e.,
argminli∈Mi,m

distance(li).
b) If the message is not contained in the agent’s message journal, it

must forward the message over all connections but the receiving one.

4. If the message is not an answer and mttl ≥ 1 is true, the agent must
decrement the message’s TTL. It must then apply the Match-or-Forward
Directive. If the processing of the message according to the directive indi-
cates that the message must still be forwarded, it must select [0; |L| − 1]
connections to forward the message over:

21Cf. the definition of messages indicating a change in power flow in Eqs. (6.4) and (6.5).
22These rules also include the No-Zombies Directive and the Match-or-Forward Directive.

134 CHAPTER 6. INTER-AGENT COMMUNICATION

a) If the agent has no record of the message in its message journal, it
must create a record for it and must then select the links on which
it will forward the message:
i. The agent must not forward the message over the receiving

connection.
ii. If a constraint exists for the node the agent represents or the

candidate link the message could be forwarded on that prohibits
forwarding of the message, the agent must replace the message
with a constraint notification and forward the new constraint
notification instead.

iii. If power is allowed to flow through the node the agent represents
and via the respective candidate link, the agent must forward
the message on the link.

b) If the agent has a record of the message, but the message’s distance
value is smaller than the distance recorded in the agent’s message
journal, it must forward it over all connections over which the message
was not previously received, except if prohibited by a constraint (see
above).

c) If the agent has a record of the message and the distance value of
the now received variant of the message is greater than or equal to
the recorded distance value, the agent must not forward it.

Through Definition 6.3, an agent will choose the connection with the least
distance as candidate link for routing23 a certain response. It will choose the
connection that represents that power line over which the requested power will
eventually flow.

Once an agent receives a message that is an answer, it may, after forwarding
it, remove all records of the previous request. It may do so likewise once the
time indicated in the answer until field has passed.

6.3 Data Encoding

JSON Encoding
The LPEP is a message-based application-level protocol24 and therefore ini-
tially free to choose any encoding. With regards to embedded devices, where

23Meaning, it must have received the matching non-answer request on the link.
24Cf. Section 6.1.

6.3. DATA ENCODING 135

computing time is precious and the data rate of the device’s connection is
low, an efficient format is desirable. While this suggests a binary encoding,
it is important not to hinder debugability. The LPEP therefore offers both
formats: the JSON as human-readable, yet efficiently-to-parse, format and a
binary encoding. This section concerns itself with the description of the JSON
encoding, while Section 6.3, which follows, specifies the binary encoding.

Every message of the LPEP is a JSON object; the aforementioned keys in
Eqs. (6.1) and (6.21) are converted to ‘mixedCase’ notation. Abbreviations,
such as TTL, are converted to lower case. Thus, the keys in Eq. (6.1) are id,
type, sender, receiver, isAnswer, and answerTo.

Since all identifiers are opaque, there is no need to superimpose a particular
structure. However, they must be represented by ASCII characters to both
follow the JSON standard25 that allows unicode notation and to allow humans
to distinguish between different identifiers.

For encoding timestamps, the Temps Atomique International (en. Interna-
tional Atomic Time) (TAI) standard is used: More specifically, timestamps are
represented by TAI64 labels (Bernstein, 1997). Textual encoding represents the
label as a string of hexadecimal characters. Thus, the TAI64 external format is
suitable for textual as well as binary encoding. For example, the timestamp
2015-12-08 13:31:54 +0000 would be represented in TAI64 external format
as 400000005666dbed.

Time intervals are an array of two elements, denoting the two boundaries of
the interval. With regards to Eqs. (6.4) and (6.5), the LPEP only offers one
type of time interval.

Power values are represented as integers, the power type (powerType key)
as a string of either active or reactive.

E.g., a demand for (exactly) 5000 kW in the time interval 2015-12-01 00:00:00
+00:00 to 2015-12-01 01:00:00 +00:00 could26 be encoded in the LPEP JSON
format as:

25Cf. (Bray, 2014).
26Because identifiers are opaque, the subjunctive is appropriate here.

136 CHAPTER 6. INTER-AGENT COMMUNICATION

{
"id": "c40c67e2 -477d -45fe -b29c -84 ea134d5d97 ",
"type ": 5,
" sender ": " bareHillWindfarm ",
" receiver ": null ,
" isAnswer ": false ,
" answerTo ": null ,
"ttl ": 42,
" distance ": 0,
" timespan ": ["40000000565 ce323", "40000000565 cf133 "],
" answerUntil ": "40000000565 cdf9f",
"value ": [5000 , 5000] ,
" powerType ": " active "

}

Binary Encoding

The binary encoding format of the LPEP offers fixed-width fields for fast
processing of messages. For the same reason, all fields are multiples of 16 bits
wide. Each 16 bit group byte order is the network byte order , i.e., big endian.27

The order of the fields is given through the message type definitions in Eqs. (6.1)
and (6.21). The message base type is encoded as shown in the schema in
Table 6.1.

Since all fields are uniformly 16 bits wide, Boolean values will also take up
that width. The type field is therefore a 16 bit-wide enumeration; a Boolean
true is encoded as 16 1-bits, a Boolean false as 16 0-bits. A timestamp is,
through the TAI64 label, 8 bits wide; a timespan, i.e., a closed interval consisting
of two TAI64 labels, is a concatenation of the upper and lower boundary and
therefore 16 bits wide.

All values x ∈ N, i.e., the ttl, distance, and the acceptance notification’s value
fields are encoded as 32 bit-wide unsigned integers. The power value interval
a demand or offer notification carries is a concatenation of two power values,
hence 64 bits wide. Finally, the power type field is encoded as an enumeration
similar to the type field, with active 7→ 0 and reactive 7→ 1.

A complete reference of all field types, along with their encodings, is given
in Appendix B.2.

27Meaning that the most significant bit is the first to be transmitted

6.4. ANALYSIS 137

Table 6.1: Binary encoding schema of the Lightweight Power Exchange Protocol
message header

0–15 16–31 32–47 48–63 64–79 80–95 96–111 112–
127

id

type sender. . .

. . . snd. receiver. . .

. . . recv. is
answer

answer to. . .

. . . answer to . . .

6.4 Analysis

Implementability
One can assume that the basic facilities to implement an application-layer
protocol exist in most, even embedded, devices: A network stack and possibly
a JSON parser. The implementability of the protocol therefore depends on an
existing (pseudo-) code description that shows the transcription of the rules
formulated in natural language in Section 6.2 into a concise format.

At first, we can divide the message processing between two main groups
of messages: Those that are eligible for forwarding, which are all of the main
message types necessary for the distributed demand-supply calculation, and the
maintenance methods echo request and echo reply, as well as the connection
status update messages, i.e., online notification and offline notification. The
initial ProcessMessage function therefore distinguishes between these groups.

138 CHAPTER 6. INTER-AGENT COMMUNICATION

Algorithm 3 Lightweight Power Exchange Protocol message processing
procedure ProcessMessage(m, l)

global Li : Links,Mi : MessageJournal
if mtype ∈ {EchoRequest, EchoReply,

OnlineNotification, OfflineNotification} then
ProcessMaintenanceMessage(m, l)

else if mtype ∈ {DemandNotification, OfferNotification,
AcceptanceNotification, AcceptanceAcknowledgementNotification,
WidthdrawalNotification, ConstraintNotification} then

ProcessPowerMessage(m, l)
Mi ←Mi ∪ (m, l) . New Message Journal record (cf. Eq. (6.23)).

else
return . Discard bogus message.

end if
end procedure

The last mentioned maintenance message types are exclusively used to
update status information about the agent’s immediate neighborhood:

Algorithm 4 Handling of maintenance messages
procedure ProcessMaintenanceMessage(m, l)

global Li : Links
if mtype = EchoRequest then

Send(r : EchoReply(m))
end if
if mtype = EchoReply then

UpdateStatus(m)
end if
if mtype = OnlineNotification then

for all l ∈ {Li |msender = ldestination} do lstatus ← online
end if
if mtype = OfflineNotification then

for all l ∈ {Li |msender = ldestination} do lstatus ← offline
end if

end procedure

Program logic regarding power messages, i.e., those that are the agents’
vocabulary regarding the distributed planning process, are handled either locally

6.4. ANALYSIS 139

or remotely: Revisiting the Match-or-Forward and Forwarding Directive outlined
in Section 6.2, we see that each agent does a portion of the planning process,
while the other part happens remotely, i.e., through forwarding a modified
version of the message. The program logic regarding local evaluation is handled
in the ProcessPowerMessage function:

Algorithm 5 Processing of power messages
procedure ProcessPowerMessage(m, l)

globalAi : Governor, Li : Links,Mi : MessageJournal, Pi : PowerBalance
if typem ∈ {DemandNotification,OfferNotification} then

fm : Forecast← m . Convert message contents to Forecast
if ¬misAnswer then . Request (broadcasted)

if HasConstraint(Ai,m)∨ConstraintReceived(Mi,m) then
constraintMessage ← ConstraintMessage(m)
Forward(constraintMessage)

else if {−fm} ∩ Pi 6= ∅ then . Resolve ‘clash of requests.’
request : Message← GetMessageToForecast(−fm)
if answerUntilm < answerUntilrequest

∨valuerequest < valuem then
Mi ←Mi ∩ request
for all l ∈ Li do

Send(l, r : WithdrawalNotification(request))
end for
response : Message
if mtype = DemandNotification then

response ← OfferNotification(Pi ∩ {−fm})
else

response ← DemandNotification(Pi ∩ {−fm})
end if
Mi ←Mi ∪ response
Send(l, response)

end if
else if {fm} ∩ Pi 6= ∅ then . Check for possible fulfilment.

response : Message
if mtype = DemandNotification then

response ← OfferNotification(Pi ∩ {fm})
else

response ← DemandNotification(Pi ∩ {fm})
end if

140 CHAPTER 6. INTER-AGENT COMMUNICATION

Mi ←Mi ∪ response
Send(l, response)

end if
else . Message is a reply. . .

if mdestination = i then to a request of our own.
Pi ← Pi ∪ {fm} . Triggers search for solution.

else to another agent’s request.
Forward(m)

end if
end if

else if mtype = AcceptanceNotification ∧Mi,m = ∅ then
response ← AcceptanceAcknowledgedNotification(m)
Send(l, response)

else if mtype = WithdrawalNotification then
fm : Forecast← m
Pi ← Pi \ {fm}

else if mtype = AcceptanceAcknowledgementNotification then
FinalizeHandshake(m)

else if mtype = ConstraintNotification then
record ←Mi,mconstrainedMessage

if record 6= ∅ then
response : Message← GetResponse(record1,message)
if response 6= ∅ then

withdrawal : Message←WithdrawalMessage(response)
Send(l,withdrawal)

end if
end if
Forward(m)

end if
Mi ←Mi ∪ (m, l) . Create new Message Journal record (cf. Eq. (6.23)).

end procedure

Finally, forwarding of—processed—messages is the duty of the Forward
function, whose main task is the selection of the proper outgoing links. It takes
care of the TTL management and discards zombie messages.

6.4. ANALYSIS 141

Algorithm 6 Forwarding of Lightweight Power Exchange Protocol messages
procedure Forward(m)

global Mi : MessageJournal, Li : Links
if mtype < 5 then

return . Only certain message types may be forwarded.
end if
mttl ← mttl − 1
if mttl ≤ 0 then

return . Discard zombie messages.
end if
record ←Mi,m . Per Eq. (6.24)
if misAnswer then

bestConnection ← record1,connection
mdistance ← mdistance + bestConnectiondistance
Send(bestConnection,m)

else
for all l ∈ Li do

mdistance ← mdistance + ldistance
if l /∈ record then . Forward on not already used links.

if mtype ∈ {DemandNotification,OfferNotification}
∧HasConstraint(l,m) then

constraintMessage ← ConstraintNotification(m)
Send(l, constraintMessage)

else
Send(l,m)

end if
else if distance < record1,distance then

Send(l,m) . Update distance value for others.
end if

end for
end if

end procedure

Scalability
The Match-or-Forward and Forwarding Directives, defined in Section 6.2, divide
the behavior of LPEP agents managing demand and supply into two distinct
parts:

142 CHAPTER 6. INTER-AGENT COMMUNICATION

1. A broadcasting query or advertisement stage

2. a unicast response or direct-addressing stage.

These two stages of a demand-supply communication are easily found in
the messages themselves, namely in the is answer indicator. A message that
is eligible for forwarding and is not an answer is broadcasted; any answer is
ideally relayed on a direct route.28 This direct routing is enabled through the
agents’ message journal, in which each forwarded message must be recorded.29

During broadcasting, messages are essentially duplicated several times. Every
k-th agent via which such a demand or offer notification travels has a set of
links, L, and selects at most |L| − 1 connections. This upper boundary equals
the total number of connections an agent maintains minus the receiving link iff
the message travels a network without loops during its TTL, which requires a
tree-like network structure.

On a network containing loops, the agent must not select links over which the
message has previously travelled for sending, as per the Forwarding Directive.
Therefore, every k-th agent looks up the number of connections already used for
delivering the message in its message journal, Mk,m. Forming the complement
with the set of all links on the k-th agent, Lk, we retrieve all candidate links
with the expression Lk \Mk,m. This also includes the receiving connection,
since the message journal stores both incoming and outgoing versions of the
same message. Thus, the number of connections used in the broadcast stage,
|L′|, is:

|L′| =
mttl∑
k=1

(|Lk| − |Lk \ {l : l ∈Mm,k}|) . (6.30)

While Eq. (6.30) shows the average-case complexity of the LPEP’s broad-
casting stage, the worst-case complexity is attained in purely meshed structures
when distance and delay values of the links are distributed in inverse proportion,
i.e., when links with low distance values have high transmission delays and
vice versa. Such a mesh can be easily constructed with any number of nodes.

28This assumes that a broadcasted request precedes any answer. This is true except when
the network topology changes between a request (i.e., a demand notification or an offer
notification) and the response. If no corresponding record is found, the message must be
broadcasted, too. Cf. the Forwarding Directive in Section 6.2 for details.

29A message may only be removed from the message journal if the answer until timer of
the original request message has been expired.

6.4. ANALYSIS 143

Through the requirement to send distance updates, the total number of links
that will see a variant of the message will be:

|L′| = |L0|+ (|I| − 1) · |L \ L0| . (6.31)

Here, L0 represents the set of links of the initiating agent; over these links
no distance update will ever be transmitted. The rest of the term represents all
other agents. Assuming that the dominating term is the one that represents
the forwarding action of all non-initiating nodes, we can rewrite the term as:

|L′| ≈ 2 · |I| · (|L| − 1) . (6.32)

Since we assume a meshed structure, all |I| nodes then have |Li| = |I| − 1
connections. We therefore arrive at the worst-case complexity of:

|L′| ≈ 2 · |I|2 − 4 · |I|, given |I| ≥ 3 , (6.33)
O
(
|I|2
)
. (6.34)

This is normal for an algorithm based on broadcasting and also accepted
behavior of other protocols, e.g., link-state routing protocols that continuously
update their link state databases through flooding.30 Since no a priori knowledge
of potential partners is available and no global view of the network exists so
that the search can stop early—such as a tree search might—, the worst-case
complexity in Eq. (6.33) remains. However, connections between whole branches
that create loops at the boundaries of the network are atypical for the power
grid. Therefore, the worst case complexity will remain theoretical.

The decentralized approach excludes other, only seemingly more efficient,
alternatives for two reasons:

1. The state of each node is encapsulated by the corresponding Agent in-
stance and there is—by purpose—no global knowledge about each node’s
forecasts. Even if a sink tree was available, without additional information,
a requesting node would still have to address all other known nodes as no
knowledge about the other nodes’ states can be immediately available.

30Cf., e.g., OSPF (Coltun et al., 2008), where updates to the Link State Database (LSD)
are propagated through flooding and the information of reachability for a certain subnet
therefore travels in a similar fashion.

144 CHAPTER 6. INTER-AGENT COMMUNICATION

2. Routing protocols such as OSPF that make use of sink trees also take
advantage of aggregations, such as those offered by IP’s subnets and
the different area definitions in OSPF31 that are not available for the
power grid: Whether a certain power subnet would be a consumer or
producer at a certain point depends on the communication of forecasts
and forecasting patterns, which change over time, necessarily leading to
more communication at another point in the protocol design.

A centralized approach can be excluded for obvious reasons—the same that
have been discussed in Section 4.1. We can thus conclude that the worst-case
complexity of the LPEP is without an alternative.

The second stage of the LPEP communication behavior encompasses the
routing of answers. Here, we can assume that the path of the answer is
contained in the set of subgraphs through which the original request travelled.
The optimal route, from the perspective of the power grid, is contained as
distributed information in the message journals of the agents forming the path
of the answer. Since, according to the Forwarding Directive,32 an agent must
select the best outgoing link when forwarding, the complexity of the answer
is linear and equal to the difference of the requests original TTL (ttl) and the
remaining TTL count for the lowest distance path (ttl ′ = ttlmin(mdistance)):

O (requestttl − requestttl′) . (6.35)
We must now further examine the protocol’s scalability by comparing an

existing network to a possible extension of it. Consider Fig. 6.4. When we
assume that all existing connections are ideal (i.e., have no latency and no data
loss), we immediately see that agents roughly fall into two categories: Router
nodes and end points. Router nodes have more than one connection (|L| > 1),
whereas an endpoint only has one. Although every connection is bidirectional,33

upon forwarding, the receiving connection may never be used to forward the
same34 message. Router nodes select at most |L| − 1 connections. If we further
assume in this simple scenario that all connections share the same metric, no
request message passes the same node twice.

An extension of the network can happen in two ways: Either by creating a
star-like topology, effectively forming a sub-graph beginning with the router node.

31Since less and less subnet summarizing is happening in the IPv4, routing tables are still
growing, leading to issues described by Atkinson (1996); Santos (2014); Sverdlik (2014).

32Cf. Section 6.2.
33Cf. the connection concept in Section 6.2.
34I.e., m1 = m2 as per Definition 6.2

6.4. ANALYSIS 145

Origin

New Connections

Message Propagation Boundary

Existing Connections

Figure 6.4: Sample network with message propagation boundaries

The agent node, which the subgraph is connected to, is then the natural message
propagation boundary, as per the Forwarding Directive. A new connection may
also create a loop, but even then does a router node pose a message propagation
boundary. Hence, the worst-case described in Eq. (6.33) assumes that the
request is not answered and that the message is able to travel through various
non-circular sub graphs, since loops do not lead to message duplication as per
the Forwarding Directive and Definition 6.2.

This simple scenario deliberately considered only ideal circumstances. It left
out a rule of the protocol: An updated forwarding of a request that happens
if a router node receives the same message twice, but the second time with a
lower distance value.35 This happens especially in conjunction with different
delays on the data links that are used for the corresponding agent connections:
The power line the connection represents may have a low distance value, but
uses a high-delay data link, whereas the high-distance connection benefits from
a low-delay data link. In this case, delay and distance of the two connections
are anti-proportional properties.

Let us therefore return to the reference grid described in Section 3.2 and
consider, for actual simulation runs, the sub-grid created by the ‘White Hill
Springs Substation.’ This network offers tree-like structures (e.g., starting from
the ‘White Hill Springs’ transformer #1) as well as circular ones. Consider a
request—more specifically, a demand notification—originating at the ‘Bare Hill
Wind Farm.’ The network can be configured to create the best case, the average
case, and the worst case.

This distinction is based on the proportionality (or anti-proportionality)
of the two properties, delay and distance, of each link between the agents.
These two properties stem from the two worlds the LPEP bridges. The data

35Cf. the Forwarding Directive.

146 CHAPTER 6. INTER-AGENT COMMUNICATION

network aspect introduces the transmission delay of the links within the overlay
network, whereas the power grid aspect introduces the distance as defined in
Definition 6.3.

In the best case, the delay and the distance are proportional to each other:
A link with a low distance will transmit a message faster than a link with a
high distance, favoring the semantics of the protocol because no single node is
required to send distance update packets. In the worst case, these two properties
are anti-proportional to each other, creating distance updates for each set of
parallel links. For the average case, typical values for impedance and delay are
randomly chosen during repeated runs. Here, wind farms are considered to be
connected using UMTS or a similar wireless technology (Chan and Ramjee,
2005), whereas the transformers use typical wire technology, up to as good as
standard consumer connectivity, such as Asymmetric Digital Subscriber Line
(ADSL).

In order to observe the message propagation during the request/broadcasting
phase, we inject a local disequilibrium at the ‘Bare Hill Wind Farm’ site and
define the initial simulation state, S0, to contain the power balance following
the syntax defined in Eq. (3.11):36

PbareHillWindFarm,0 = {
([2014-02-19T12:00:00+01:00; 2014-02-19T12:10:00+01:00), 760 kW) } .

(6.36)

When observing the message propagation, circular and tree-like structures
influence the number of copies of a message that are being transmitted in
different ways.

Purely circular structures such as the cutout of ‘Saltwater Town’ (SWT)
shown in Fig. 6.5 always create at least |I ′|+ 1 messages, where I ′ is the set of
nodes in the (sub-) structure. At most, in the worst case, 2 · |I ′|+ 1 messages
are sent. This happens when all links in the subset except for one entry link
have low delay values and all links except for the second entry link have low
distance values. In Fig. 6.5, these two distinct links are those between ‘SWT
Trafo #1,’ and ‘SWT Trafo #2’ and ‘SWT Trafo #3’ respectively.

Tree-like structures never generate distance updates, only loops do. However,
all structures must forward distance updates until they reach the end points

36The propagated value is the difference between the power balance at 11:50 and 12:00,
which is valid for the corresponding interval [11:50; 12:00) and [12:00; 12:10).

6.4. ANALYSIS 147

SWT Trafo #1 SWT Trafo #2

SWT Trafo #3

El Trafo #4

Elensefar

Saltwater Town

PowerMessage(type = 6,
 sender = bareHillWindFarm,
 isAnswer = false,
 id = ac428c)

swtTrafo1 swtTrafo3swtTrafo2elTrafo4

PowerMessage(type = 6,
 sender = bareHillWindFarm,
 isAnswer = false,
 id = ac428c)

PowerMessage(type = 6,
 sender = bareHillWindFarm,
 isAnswer = false,
 id = ac428c)

PowerMessage(type = 6,
 sender = bareHillWindFarm,
 isAnswer = false,
 id = ac428c)

Figure 6.5: Message propagation in the ‘Saltwater Town’ part of the reference
grid

of the grid, which act as natural message boundaries in the same way as any
sub-structure does, as Fig. 6.4 indicates.

Table 6.2 lists the results of the best, the average, and the worst case
simulation runs for the ‘White Hill Springs Substation’ subgrid. Note that the
numbers for the average case are rounded to integers since ‘half a message’ does
not exist: A message is either sent or not sent.

In order to observe the propagation of a response, we enable the block and
heat power plant of the reference grid to answer the request of the ‘Bare Hill
Wind Farm’ by ramping up power output. Additionally, we fix the TTL of new
messages to known value:

148 CHAPTER 6. INTER-AGENT COMMUNICATION

Table 6.2: Messages forwarded in the reference grid during the broadcasting
stage

Agent Name (i) |Li| min(|Mi|) avg(|Mi|) max(|Mi|)
Fool’s Springs Wind Farm 1 0 0 0
Block and Heat Power Plant 1 0 0 0
Ws Trafo #1 2 1 3 3
Wh Trafo #1 3 2 6 6
White Hill Wind Farm 1 0 0 0
Blows Hill Wind Farm 1 0 0 0
White Hill Springs Substation 5 4 12 12
Lambert Springs Wind Farm 1 0 0 0
Fd Trafo #1 2 1 3 3
Fl Trafo #1 3 2 4 5
Fl Trafo #4 2 1 2 3
Fl Trafo #5 3 2 4 4
Fl Trafo #7 4 3 6 6
Fl Trafo #11 2 1 3 3
Augustus Works 1 0 0 0
Fb Trafo #1 3 1 1 1
Bw Trafo #1 2 1 1 2
Bw Trafo #6 3 2 2 2
Bare Hill Wind Farm 1 1 1 1
El Trafo #1 4 3 5 6
El Trafo #4 2 1 2 4
El Trafo #6 2 1 1 2
El Trafo #8 3 2 2 4
El Trafo #12 3 2 4 7
El Trafo #17 2 1 2 2
Levee’s Pillow Factory 1 0 0 0
SWT Trafo #1 3 2 4 8
SWT Trafo #2 2 1 2 5
SWT Trafo #3 2 1 2 4
Total 32 36 72 93

6.4. ANALYSIS 149

ttl0 = 42 . (6.37)
This way, we can formulate the expected states of the message journals of

those agents who will forward the message on the direct route, both for the
best and the worst case scenario. For example, ‘Funder’s Village Trafo #1’ will
forward the message in both cases directly and the final and desired state will
be:

MfdTrafo1 ,T = {(type = 7, sender = Block Heat and Power Plant, ttl = 38)} .
(6.38)

Knowing the distance values beforehand, we can formulate final state defini-
tions for every agent along the way. Most agents will not route the message
and due to Eq. (3.13) we cannot formulate an exclusive final state set member,
i.e., we cannot formulate that an agent must not have received and forwarded
the response. However, since we know the initial TTL, we can check that, in
every case, the ‘Bare Hill Wind Farm’ agent has received the response on the
shortest route, considering that the message distance metric also indicates the
shortest route in terms of edges being that with the lowest distance:

MfdTrafo1 ,T = {(type = 7, sender = Block Heat and Power Plant, ttl = 32)} .
(6.39)

Adding a new agent to the path of a response message will add one more
link and therefore one more hop to it. The number of links the message travels
is therefore:

|L′′| = |L′|+ 1 < |L′|2 . (6.40)
During the broadcasting phase, the message will travel over every link,

potentially multiple times. We can therefore consider the deliberately introduced
worst case for the request’s propagation and compare it to the best case. On
average, the number of messages sent corresponds to Eq. (6.30). Since, upon
the addition of a new agent to the grid, the average complexity does not rise
polynomially, i.e.,

|L′|+ |Li′ | < |L′|2 , (6.41)
during the broadcasting phase for requests, the LPEP scales reasonably well
under the given constraints.

150 CHAPTER 6. INTER-AGENT COMMUNICATION

Security Issues

After we have examined the scalability properties of the LPEP, we need to turn
to securing the agents’ communication. Due to the distributed nature of the
approach presented in this work, network security may very quickly prove to be
its Achilles’ heel.

Two major points of attack present itself: A compromise within the protocol,
which leads to false behavior or outages, or a compromise of an Agent instance.

The LPEP creates an overlay network, as discussed in Section 6.2, over the
existing communication infrastructure. This makes it potentially vulnerable to
any attacker or agency that is able to intercept data being sent between the
agents. It is therefore prudent to secure the overlay network with an appropriate
technology, such as a Virtual Private Network (VPN).

But even then an attacker could exploit a weakness in the system, since a
VPN can be successfully attacked as well as any other system. Provided the
attacker has gained access to the LPEP overlay network, he can compromise
the agent’s communication in a number of ways.

As a man-in-the-middle, he can intercept messages and alter them. There
are obvious ways to cause damage this way by, e.g., altering the value field in
any demand notification or offer notification. The modification of the message’s
distance field would be a more subtle attack, whereby the attacker could force
an agent to prefer particular nodes over others.

Instead of modifying existing messages, the attacker could also use agent
IDs he has learned by sniffing to forge complete messages, thereby injecting
faux data into the network. Forged offline notifications can disable working
connections and false requests initiate a bogus planning stage. While responses
to an unsent request will be ignored by the agent that allegedly initiated the
exchange, it can bind resources that would be denied to other, serious requests:
The responder will truthfully send an answer with the latest possible value
in the answer until field and must not respond twice to the same request, or
two requests in the same time interval. The response will become invalid
automatically after the deadline has passed, but until then, real requests will
remain unanswered.

A man-in-the-middle will also be able to attack a specific node in a more
profane manner by simply overloading it. Well-known Denial of Service (DoS)
attacks attempt to flood a system with possibly bogus messages so that it is
unable to answer serious communication attempts.

Such a DoS attack can also be performed from the outside: Since the LPEP
forms an overlay network on the application level in the ISO/OSI stack model,

6.4. ANALYSIS 151

Message Tampering

Flooding Message Forgery

Agent CompromizationOut-of-Network Attack

Figure 6.6: Possible attack vectors

its nodes must communicate on the network stack’s network layer like any other
host on the Internet. Obviously, this makes an agent vulnerable to all typically
known forms of attack any server on the Internet faces. However, the LPEP’s
architecture can provide a way to mitigate these attacks: The agent’s partners
are known since all connections in the LPEP are bi-directional, point-to-point
connections. Thus, the public (IP) addresses of the connected agents are also
known and a firewall configuration to limit the set of allowed partners for
incoming transmissions can be produced by an administrator. The operating
system the agent runs on can simply drop unwanted incoming packets, an option
not available to the typical Internet server where each connection attempt can
be initiated in earnest. Furthermore, DoS and especially Distributed Denial
of Service (DDoS) attacks are hard to distinguish from the activity of regular
users.

Of course, physical access to the machines themselves must be protected,
because once an attacker has gained access to the actual hardware, his possibil-
ities for intrusion and manipulation are plentiful. If this can be ruled out, a
node can only be compromised from the outside, by either exploiting a security
hole in publicly available services on the node or by compromising a software
update.

Verifying software updates is a common practice in all current operating
systems and is typically achieved by signing software packages with a trusted
key. Of course, this key must never be lost, since it must then be revoked by a
central authority.

The concept of a trusted third party is known to be problematic and has

152 CHAPTER 6. INTER-AGENT COMMUNICATION

become so specifically in the context of certificates for websites (i.e., HTTPS
connections). First, the trusted third party is usually ultimately trusted, but
opaque to users, even to those who receive certificates issued by the Certificate
Authority (CA).37 Even if the CA has been compromised, or changes its behavior
to a malevolent one during its lifetime, certificates issued by it are still trusted:
A problem that has already had impact in practice (VASCO Data Security
International, Inc., 2011; Nationaal Cyber Security Centrum, 2011; Coates,
2013).

Even if the centralized CA does not per se cause any problem, certificate
revocation is also highly problematic. The Online Certificate Status Protocol
(OCSP) has been proven it be defeatable (Marlinspike, 2009), rendering the
idea of a centralized, trusted third party mostly useless.

A decentralized contrast known in cryptography is the Web of Trust (WoT).
Here, different users sign each other’s public keys after they have verified the
authenticity of the corresponding key-owner relationship (Ferguson and Schneier,
2003, p. 333). The idea of the WoT has been applied to peer-to-peer systems
(Wang and Vassileva, 2003; Xiong and Liu, 2003), and can be applicable to the
distributed architecture of the LPEP.

The idea of the WoT includes the notion that any decrease of trust in
an agent can only happen after some incident, as other parties are revoking
their own statements of trust for the particular node. In order to prevent an
incident beforehand, malicious modifications of the agent software must be
prevented. Kernel-level auditing systems, such as SELinux (Jaeger et al., 2003;
National Security Agency, 2013), can identify misbehaving programs and halt
their execution by disallowing certain system calls before any damage is done.

In the end, this section can only give pointers as to where security issues
are present and what possible approaches may solve them. Since the author
is not proficient with internet security, this section cannot and must not serve
as a complete analysis of attack vectors and their mitigation: Worse than no
security is poor security, as it gives a false sense of security and allows an able
attacker easily to overcome low hurdles, whereas a lulled administrator will not
re-evaluate his security concept on a regular basis.

37The CA is said trusted third party.

7 Modeling and Calculating Demand and
Supply for Agents

7.1 Agent-Local Power Balance

The Universal Agent models its environment in two forms: Its neighborhood
that is constituted of its fellow agents it communicates with, along with their
messages, and the current state and future state of its own locality, the power
balance.

Each agent keeps account of the power generation and consumption of its
local node. It can be very much seen as a ‘power ledger.’ However, the goal of
the agent is to maintain a power equilibrium at all times and insofar as the term
‘power ledger’ is similar to the financial term, ‘balance’ is more appropriately
used here. The agent’s power balance stores mappings of time intervals to
power values, i.e.,1

[t1; t2) 7→ P . (7.1)

With regards to the desired equilibrium, an agent must fundamentally
consider each entry in the power balance as a requirement: Each mapping
individually constitutes a power imbalance, i.e., a disequilibrium, and therefore
requires the agent to act. The power balance is indeed then balanced when
individual requirements are matched in such a way that they equalize each other;
thus demand and supply is counterbalanced. The power balance is, therefore,
the keystone of the agent’s fundamental goal.

1All equations presented in this chapter use the symbol P for denoting power. In a
strict sense, this only means active power. However, the type of power is transparent for the
equations and algorithms presented here. I.e., an analogous variant for reactive power also
exists in parallel, but is not explicitly mentioned.

153

154 CHAPTER 7. MODELING DEMAND AND SUPPLY

Internally, the agent represents the power balance as an interval map,
extending the notion of an interval set with mappings, using the relevant
mathematical operations on sets as well as defining operations on interval
overlap:

{[t1; t2) 7→ P1} ∪ {[t1; t2) 7→ P2} = {[t1; t2) 7→ P1 + P2} , (7.2)

{[t1; t2) 7→ P1} \ {[t1; t2) 7→ P2} = {[t1; t2) 7→ P1 − P2} . (7.3)
Partial overlaps are calculated analogously. Intervals of four times, t1 <

t2 < t3 < t4, result in:

{[t1; t3) 7→ P1} ∪ {[t2; t4) 7→ P2}
= {[t1; t2) 7→ P1, [t2; t3) 7→ P1 + P2, [t3; t4) 7→ P2} , (7.4)

{[t1; t3) 7→ P1} \ {[t2; t4) 7→ P2}
= {[t1; t2) 7→ P1, [t2; t3) 7→ P1 − P2, [t3; t4) 7→ −P2} . (7.5)

Defining the ‘subset’ and ‘subset-or-equal’ relationships of individual map-
pings is equally feasible:

[t1; t2) 7→ P1 ⊂ [t3; t4) 7→ P2 ⇔ t1 > t3 ∧ t2 < t4 ∧ P1 < P2 , (7.6)
[t1; t2) 7→ P1 ⊆ [t3; t4) 7→ P2 ⇔ t1 ≥ t3 ∧ t2 ≤ t4 ∧ P1 ≤ P2 . (7.7)

The Universal Agent software wraps one timespan-to-power mapping in a
Requirement object, as depicted in Fig. 7.1. This class connects power messages
to forecasts and contains factory methods to create an LPEP message object
from a forecast and vice versa. Requirement objects also allow us to keep
track of which requirement originated at the local node and which was sent by
another agent, which is crucial for solving a disequilibrium.

7.2 The Combinatorial Demand-Supply Problem

In order to solve the (unbalanced) power balance, it makes use of a PowerBalance-
SolverStrategy. Classes implementing this interface represent an actual algo-
rithm for solving the power balance’s disequilibrium in a given interval.

7.2. THE COMBINATORIAL DEMAND-SUPPLY PROBLEM 155

Power Balance

Agent

+at(t : TimeInterval) : KiloWatt
+solutionAt(t : TimeInterval) : Requirement[0..*]
+disequilibria() : TimeInterval[0..*]

PowerBalance

+fromSelf() : bool
+buildForecast(m : PowerMessage) : Forecast
+buildMessage(f : Forecast) : PowerMessage

Requirement

+timespan : TimeSpan
+powerType : PowerType
+value : KiloWatt

Forecast

+value : KiloWatt
+powerType : PowerType
+timespan : TimeSpan
+distance : unsigned int
+type : MessageType
+ttl : unsigned int
+type : MessageType
+id : ID
+sender : ID
+receiver : ID
+isAnswer : bool
+answerTo : ID

PowerMessage

Governor

+solve(b : PowerBalance, t : TimeInterval) : Requirement[0..*]

<<Interface>>
PowerBalanceSolverStrategy

1

1

1

1

0..1

0..1

1

*

<<use>>

Figure 7.1: The Universal Smart Grid Agent’s internal power balance

This disequilibrium, denoted by the power value P0 in the time interval t̃0,
has been forecasted by an agent:

r0 : [t0,1; t0,2) 7→ P0 ⇔ r0 : t̃0 7→ P0 . (7.8)

This agent formulates a request as an LPEP message, which, through
selective broadcasting,2 reaches other agents. These agents then check—and, in
fact, must check—whether they can help to solve the disequilibrium, and if so,
answer with individual LPEP messages:

r1 : t̃1 7→ P1, r2 : t̃2 7→ P2, . . . , ri : t̃i 7→ Pi , (7.9)
∀Pi, i 6= 0 : |Pi| ≤ |P0| , (7.10)

∀t̃i, i 6= 0 : ti,1 ≥ t0,1 ∧ ti,2 ≤ t0,2 . (7.11)

2Cf. Section 6.2.

156 CHAPTER 7. MODELING DEMAND AND SUPPLY

The first and foremost task of the solver is now to find any combination
of mappings, t̃1 7→ P1, . . . , t̃i 7→ Pi, such that the initial disequilibrium P0 is
within the whole time interval t̃0. We can therefore define the main goal of the
solver as: ∑

i

biri ⊆ r0 , i 6= 0, bi ∈ {0, 1} . (7.12)

In reality, the nature of the power grid leaves a certain margin for over- or
undersupply, which depends on the size of the grid. Remember from Section 4.1
that each agent features a constraints module, i.e., a software module that—
among other things—supplies this margin. For the definition of the solver, it is
denoted by PC .

Furthermore, each LPEP message contains an accumulated distance value.
This distance value is the sum of all impedances of all lines the message, and
thus, the potential power transmission, travels. Since the LPEP models the
power grid as an overlay network in the communications networks; hence, a
communications-connection between two agents also corresponds to a power
line. The higher the (accumulated) impedance, the higher the line losses of the
power transmission. The second task of the solver is thusly: If more than one
solution to a power disequilibrium exists, it must choose that with the lowest
overall line loss. Let

d(ri) : ri 7→ R (7.13)

be a function the returns the accumulated distance of the requirement ri. Using
the function, we can define the secondary goal of the solver as:

min
∑

i

bid(ri), i 6= 0, bi ∈ {0, 1} . (7.14)

The combinatorial problem the solver must find a solution to is therefore
strongly reminiscent of the 0-1 knapsack problem (Dantzig et al., 2007). Since
this is an optimization problem, numerous approaches present themselves,
including utilizing the multipart evolutionary algorithm described in Section 5.2.
However, neither the power values requested or offered by other agents, nor
the associated time intervals, need to be subdivided to justify requiring the
complete real numbers domain, R, if another agent’s request is subdividable at
all. Therefore, modeling requests in terms of Boolean equations and solving the
power disequilibrium in the Boolean domain provides an efficient approach to
the local part of the demand-supply calculation.

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 157

7.3 A Boolean Model of Demand and Supply

Structure and Operation

The modelling of the local demand-supply calculation expresses the key problem
in the calculation: A solution to the problem can be reduced to choosing
the right combination of requirements—or, if possible, partial requirements—
from other agents. We can therefore express the acceptance or rejection3 of a
requirement by modeling it in the Boolean domain.

However, we initially face a multi-valued problem: A requirement is com-
prised of any power value, Pi, as well as the corresponding time interval,
t̃i = [ti,1; ti,2). Therefore, at this point, we cannot use a single variable to
represent it in the demand-supply calculation.

To break down the multi-valued problem into its discrete parts, we need
to split each offer into its atoms.4 The size of each atom is determined by the
overall set of requirements the specific calculation is made of. This also includes
the original request that is part of the power balance as well and which is
denoted by the index 0, i.e., [t0,1; t0,2) 7→ P0. The size of the atoms is calculated
from the vector of all power values,

P = (|P0|, |P1|, . . . , |Pi|, |PC |) , (7.15)

where PC is the allowable power deviation as given by the constraints module,5
i.e., the solution must match P0 ± PC .

Further, all timespan sizes,

t = (t0,2 − t0,1, t1,2 − t1,1, . . . , ti,2 − ti,1) , (7.16)

naturally also influence the size of the atoms, which is their respective Greatest
Common Divisor (GCD):

∆P = gcd(P) , (7.17)
∆t = gcd(t) . (7.18)

3Cf. the semantics of the LPEP for actions taken by the agent when the power balance is
not solvable.

4The word ‘atom,’ from ancient Greek άτομον (átomon), means ‘indivisible’ and thus
lends itself very well to the definition of the basic Boolean variables the solver uses.

5Cf. Fig. 4.1.

158 CHAPTER 7. MODELING DEMAND AND SUPPLY

The GCD can be calculated requirement-by-requirement due to the associa-
tive law:6

gcd(x, gcd(y, z)) = gcd(gcd(x, y), z) . (7.19)

The application of the GCD creates a raster of n ·∆P ×m ·∆t atoms in
which every requirement can be located. Thus, each agent’s contribution to the
power disequilibrium, i.e., its requirement, is deconstructed into a number of
atoms.

Definition 7.1. All requirements in the agent’s power balance are deconstructed
into a number of atoms. Each atom denotes a part of a requirement and
references a time subinterval and a power subinterval in the power balance. The
size of the time subinterval is ∆t for all requirements; the size of each power
subinterval is ∆P for all requirements. Each atom is described by a Boolean
variable that expresses the origin of the requirement and the time and power
interval in which it is located:

xi,t̃,P̃ =

1 if the agent i influences the power grid in the time

subinterval t̃ with power from the power subinterval
P̃ ,

0 otherwise.

(7.20)

An example of this subdivision is shown in Fig. 7.2.7 It contains five
requirements—one forms the initial power disequilibrium, and four are (over-
lapping) responses from other agents—and illustrates how the xi,t̃,P̃ variables
reference the parts of the respective requirement.

Using these atoms, we can express the semantics of a Requirement object: A
requirement expresses a power delta within a certain time interval. Specifically,
it expresses a number of power deltas that are available for the solver to choose
from in the time interval. Agents responding to a request can do so with a single
power value, an interval of power values, or even offer multiple power intervals.8

6Theoretically, the GCD for a given set of requirements could be calculated continuously,
as new requirements arrive.

7NB. that this particular power balance is unsolvable in its depicted state: Only the time
subinterval 5 has sufficient offers to form a partial solution. It has intentionally been crafted
this way to be clearly arranged while still being a potential state of an agent’s power balance.
After all, the solver algorithm can always fail due to a shortage of responses.

8Cf. Section 6.2.

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 159

 0

 50

 100

 150

 200

 250

-200 0 200 400 600 800 1000 1200

R
ea

l P
ow

er
 [k

W
]

Time [s]

x1,2,1x1,2,1

x1,2,2x1,2,2

x1,2,3x1,2,3 x1,3,3x1,3,3

x2,4,1x2,4,1

x2,4,2x2,4,2

x1,3,1
x2,3,1

x1,3,1
x2,3,1

x1,3,2
x2,3,2

x1,3,2
x2,3,2

x3,5,1
x4,5,1

x3,5,1
x4,5,1

x3,5,2x3,5,2

x3,5,3x3,5,3

x3,5,4x3,5,4

t
~
 = 1 t

~
 = 2 t

~
 = 3 t

~
 = 4 t

~
 = 5

P
~
 = 1

P
~
 = 2

P
~
 = 3

P
~
 = 4

Power DisequilibriumPower Disequilibrium

Figure 7.2: An example of a power balance state after the discretization

This information is obviously important to the solver. The acceptance function
expresses this particular information of a requirement.

Definition 7.2. A requirement can be a response to a request formulated via the
LPEP. The response—i.e., the LPEP message—expresses the flow of power in
a certain time interval. Depending on the intention of the agent the requirement
originated on, the requirement can be accepted completely, in certain power
quantities, or not at all. In the Boolean domain, this semantic is expressed
through the acceptance function of each requirement:

ri(xi,t̃,P̃) =

1 if xi,t̃,P̃ denotes a valid interval for accepting the
requirement from agent i,

0 otherwise.
(7.21)

The atoms defined in Definition 7.1 are now used by the solver to create the
characteristic function of each requirement’s acceptance function. A requirement
is not simply based on its atoms: They possess a certain coherence. An agent

160 CHAPTER 7. MODELING DEMAND AND SUPPLY

typically indicates, through its demand notification or offer notification,9 what
divisions into shares are possible. From this, the Boolean power balance solver
creates conjunctions that specify the acceptance function. Each conjunction
corresponds to a response and describes a possible acceptance of a requirement.

Section 6.2 described how several messages can make up one response:
Through the characteristic function, the solver collapses these distinct messages
back into one unified response by creating a conjunction for every possible valid
interval as defined in Eq. (7.21). This is also required by the semantics of the
protocol. Thus, for all time subintervals t̃ of size ∆t within which the offer is
valid, a conjunction for each allowable quantity of power, expressed as one or
more power subintervals P̃ of size ∆P , is created. Thus, we can now generally
express a requirement’s acceptance function:

ri(xi,t̃,P̃) =
∧

t̃∈ri,P̃∈ri

x̄i,t̃,P̃

∨

 ∧
t̃∈ri,P̃∈ri

xi,1,1 ∧ x̄i,1,2 ∧ x̄i,1,3 ∧ · · · ∧ x̄i,t̃,P̃

∨

 ∧
t̃∈ri,P̃∈ri

xi,t̃,1 ∧ xi,t̃,2 ∧ x̄i,t̃,3 ∧ · · · ∧ x̄i,t̃,P̃

∨ · · · ∨ ∧

t̃∈ri,P̃∈ri

xi,t̃,P̃ . (7.22)

The intermediate part of Eq. (7.22) depends on what choices the responding
agent offers. However, the solver needs to create at least a number of conjunc-
tions equal to 2 · Pi

∆P ·
ti,2−ti,1

∆t
10 since in the simplest case, a requirement is

either completely accepted or not accepted at all:11

ri(xi,t̃,P̃) =
∧

t̃∈ri,P̃∈ri

xi,t̃,P̃ ∨
∧

t̃∈ri,P̃∈ri

x̄i,t̃,P̃ . (7.23)

9Cf. Section 6.2.
10Cf. Fig. 7.2.
11This is simply the first and the last term in Eq. (7.22).

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 161

The BVs in xi,t̃,P̃ can be represented in a compact manner by a TVL.
Remember Fig. 7.2 with its five responses; most12 could actually offer more
than two choices to the solver—accept completely, accept partially, or not accept
at all—and such a possible concrete acceptance function is shown in Fig. 7.3.

Now that each non-initial requirement13 is converted into a number of
conjunctions of its atoms, the solver must model the actual request, i.e., the
power disequilibrium. Since the order in which the requirements are accepted
is not important, but the cover is, the solver models this using a symmetric
function. A symmetric function’s value at any n-tuple is the same at every
permutation of that n-tuple; the function does not depend on the order of
its variables, but only on the number of set or unset variables. A symmetric
function Sn(xi,t̃,P̃) is equal to 1 iff exactly n of its variables are equal to 1, for
every permutation of the assignment of its argument vector.

The solver creates m—where m denotes the amount of time subintervals that
have been created through the application of the GCD14—symmetric functions,
one for each time subinterval t̃ of size ∆t. Thus, each symmetric function
describes 1

m of the disequilibrium. The argument of the respective symmetric
function are those parts of each requirement’s characteristic function for the
time subinterval the symmetric function is constructed for. This is indicated by
the subscript k of the symmetric function; each symmetric function describes the
k-th power subinterval. Stringently, the function’s argument vector is written
as xi,t̃=k,P̃ to express that only the atoms of the k-th power subinterval are a
part of the argument vector.

The number of set bits corresponds to the power disequilibrium: If the power
disequilibrium amounts to n · ∆P kW, with n ≤ |xi,t̃=k,P̃ |, the symmetric
function has n 1-bits and |xi,t̃=k,P̃ | − n 0-bits. This implies that the responses
the requesting agent received can actually solve the power disequilibrium. If
|xi,t̃=k,P̃ | < n is true for any k, no symmetric function can be created and the
disequilibrium cannot be solved. The definition of the symmetric function is:

Sn
k (xi,t̃=k,P̃) =

{
1 if n variables in xi,t̃=k,P̃ are 1,
0 otherwise,

∣∣∣∣∣ k = 1, 2, . . . ,m .

(7.24)
Relating to Fig. 7.2, the symmetric functions represent ‘column-wise’ slices

of the respective requirements.
12With the exception of r5
13I.e., all responses
14Cf. Eq. (7.17).

162 CHAPTER 7. MODELING DEMAND AND SUPPLY

r2(xi,t̃,P̃) = x̄2,3,1 ∧ x̄2,3,2 ∧ x̄2,4,1 ∧ x̄2,4,2

∨ x2,3,1 ∧ x2,3,2 ∧ x̄2,4,1 ∧ x̄2,4,2

∨ x2,3,1 ∧ x2,3,2 ∧ x2,4,1 ∧ x2,4,2

x2,3,1 x2,3,2 x2,4,1 x2,4,2 r4(xi,t̃,P̃)

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1
1 0 1 0 0
1 0 0 1 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Figure 7.3: An example of the acceptance function

The solution set to the disequilibrium in t̃ consists of the exact covers of the
symmetric function and the acceptance functions at t̃:15

Ck(xi,t̃=k,P̃) = Sn
k (xi,t̃=k,P̃) ∧

∧
i∈I′

ri(xi,t̃=k,P̃) . (7.25)

Here, the set I ′ is the set of all agents that have sent a response to the local
agent’s request. The complete solution set therefore consists of the complete
cover, which is:

15NB. the subscript.

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 163

C(xi,t̃,P̃) =
∧
k

Ck(xi,t̃=k,P̃) . (7.26)

XBOOLE16 can represent these equations in software and calculate the
solution set efficiently. I.e., the Universal Agent uses XBOOLE as underlying
software to implement the solver. The solver represents the acceptance functions
as TVLs in Orthogonal Disjunctive/Antivalent (ODA) form, such as the example
in Fig. 7.3. The symmetric functions are represented in the same manner and
are even easier to generate: Their TVL consists of all permutations n× 1 and
(|xi,t̃=k,P̃ | − n)× 0 for the k-th symmetric function.17

XBOOLE’s actual work consists of a number of intersections18 of the TVLs.
First, XBOOLE creates a TVL of all acceptance functions:

R =
⋂

i∈I′,t̃,P̃

ri(xi,t̃,P̃) , (7.27)

as well as one TVL representing all symmetric functions:

S =
m⋂

k=1
Sn

k (xi,t̃=k,P̃) . (7.28)

The intersection of two disjoint TVLs—i.e., two TVLs whose variable sets
are disjoint—yields their Cartesian product,19 i.e.,

ISC(P,Q) ⇔ P ×Q iff SV_ISC(SV_GET(P), SV_GET(Q)) = ∅ . (7.29)

The operator SV_GET(P) returns the set of variables of the TVL P .20

The complete cover then constitutes the final intersection:

C = S ∩R . (7.30)
16Cf. Section 2.5.
17NB. that this assumes a full cover is desired, i.e., that the original request should be

matched completely. For practical purposes, this limits the solution space unnecessarily
and therefore a number of 0 or 1 equal to PC

∆P are replaced by a ‘−’ that allows under- or
overmatching by ±PC . For exactly this reason, Eq. (7.15) includes PC in the vector of power
values.

18ISC(tvl1, tvl2): Cf. Table 2.2.
19Cf. Bochmann and Steinbach (1991).
20Cf. Bochmann and Steinbach (1991, p. 14).

164 CHAPTER 7. MODELING DEMAND AND SUPPLY

The TVL C that denotes the complete cover contains the complete solution
set to the demand-supply calculation. If it contains more than one solution, i.e.,
|C| > 1, the agent must still choose among them. Ideally, if it is not restricted
by contract or other constraints given by the agent’s constraints module, it will
try to minimize the line loss, and, therefore, prefer offers with a lower distance
value.21

Let us assume that the function d(ri) returns the distance value of a require-
ment ri. This allows the ordering of all (accepted) requirements:

ri ≤ ri′ ⇔ d(ri) ≤ d(ri′) . (7.31)

C contains all variants that solve the power disequilibrium; from the TVL
the solver can also extract the respective requirements that form the possible
solutions. Through Eq. (7.31), we can calculate the sum of all distances of all
requirements forming a solution. Thus, the TVs in C can be sorted by distance
and the one with the lowest distance is returned. This is then the optimal
solution to the power disequilibrium.

Complexity Analysis and Comparison
In order to return the result TVL, the XBOOLE solver creates a number of
intermediate TVLs: One for each response, containing the individual accep-
tance function, one TVL that combines all acceptance functions, one for each
symmetric function corresponding to a time subinterval, and finally one that
combines all symmetric functions. However, since the TVLs for the individual
acceptance functions as well as for the individual symmetric functions are only
needed to create the Cartesian product, i.e.,

R1 ×R2 × · · · ×Rn ⇔ ISC(R1, ISC(R2, ISC(. . . , Rn))) , (7.32)

only at most 4 TVLs are used by the solver at a given time.
The size of the individual TVLs that represent the symmetric functions

is a combinatorial classic, specifically, how often one can choose k elements
from a set of the size n, disregarding the order. Here, the size of the set is the
size of the argument vector of the symmetric function; the number of elements
that should be chosen is n, i.e., the number of set bits in the argument vector.
Therefore, we can express the size of the TVL through a binomial coefficient.

21Cf. Definition 6.3.

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 165

Table 7.1: Ternary Vector List representing S4
5 of the example power balance

x3,5,1 x3,5,2 x3,5,3 x3,5,4 x4,5,1

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Thus, each of the m individual symmetric functions that correspond to one
time subinterval contains a number of TVs equal to:

|Sk| = NTV(Sk) =
(
|xi,t̃=k,P̃ |

n

)
=

|xi,t̃=k,P̃ |!
n! · (|xi,t̃=k,P̃ | − n)! . (7.33)

We can verify this formula with the example shown in Table 7.1 that shows
the TVL representing S4

5(xi,5,P̃) the solver would create for the example power
balance depicted in Fig. 7.2. Here, we can calculate |S4

5 | =
(5

4
)

= 5.
The size of each TVL representing the individual offer’s acceptance function

depends on the number of power values offered, but contains at least one row
for ‘accept completely’ and one for ‘accept not at all’:

|Ri| ≥ 2 . (7.34)

In comparison to other structures representing binary functions, such as
BDDs, the TVL approach of XBOOLE proves to be more efficient in terms of
space complexity. Remember from Section 2.5, that the space complexity of a
BDD depends on the ordering of variables. The set of variables naturally also
influences the size of any TVL. We can therefore use the SV_SIZE(P) operation
to initially determine the number of variables:

nv = SV_SIZE(R) . (7.35)

Ideally, with good variable ordering, a BDD with nv = 2k + 2 variables can
be compressed to be minimal.22 Then, the BDD will store

22Cf. Bryant (1986).

166 CHAPTER 7. MODELING DEMAND AND SUPPLY

|v| = 2k + 2 (7.36)

vertices. Under ideal circumstances, a TVL can represent an entire function
with only one TV,23 requiring a number of ternary elements equal to:

nte = nv . (7.37)

This might seem like an academic consideration, however, we will later
see that through optimization, we can indeed arrive at this space requirement
formula for many functions the solver considers.

Symmetric functions force us to evaluate the worst-case space complexity
since they resist a data structure’s approach to a compact representation. In
general, using k variables, we can describe 22k functions. Each vertex of a BDD
is also the root of a subfunction; a BDD therefore describes a set of functions.
In order to construct the worst case, a number of variables equal to nv = k+ 2k

must be given. Otherwise, the BDD can be compressed. Thus, the worst-case
number of vertices of a BDD with nv = k + 2k variables is:

|v| = 2 · 22k
− 1 . (7.38)

The maximum number of ternary values (i.e., elements) in a TVL24 with
nv variables then corresponds to:

nte = nv · 2nv−1 . (7.39)

To compare the space complexity of BDDs and TVLs, we must consider
their actual memory requirements. A BDD is made of data type definitions in
the form of this C struct:25

struct tree_node_t
{

struct tree_node_t * high;
struct tree_node_t * low;
unsigned index;
enum value_t value; /* 0, 1, or X */

23Even more, the empty TVL represents the zero function.
24The TVL is then, in the worst case, a list of BVs.
25This excludes, as with the TVL, the size of the variable name. The translation to the C

programing language is based on the record definition by Bryant (1986). It ignores padding
issues deliberately.

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 167

unsigned id;
unsigned mark :1;

};

Thus, each vertex takes up 2 words to represent the edges of the tree,
additional 2 words to store the index and id attributes, and, finally, 3 bits for
value and mark. If we ignore padding, we can express the storage requirement
of a BDD as:

DBDD = |v| · (4DW + 3) bits. (7.40)

On a recent x86_64 architecture, this would mean 64 bits per word. In con-
trast, a ternary value uses only 2 bits,26 regardless of the processor architecture,
sizing the TVL at:

DTVL = 2nte bits. (7.41)

The smallest BDD that consists of one root and two terminal nodes will
require:

min(DBDD) = 3 · (4DW + 3) = 777 bits , (7.42)

enough space for 388 ternary elements.27 Considering the worst case, the
BDD becomes the better choice only for nv ≥ 521 variables; at this point,
D ≈ 8× 10146 GB will be required—too much by all means.28 Again, we will
later see that we can avoid the worst case altogether, taking full advantage
of the compact storage structure of a TVL and the superior computational
complexity of operations on TVLs, as we will assert below.

The value of the GCD obviously directly influences the number of variables
and thus the size of the individual TVLs, as the occurrences of the variables
n and m indicate. One might therefore assume that a model of the given
problem that works on integers would greatly reduce the memory footprint and
complexity of the solver. Such a structure is an EVMDD that can represent any
p-valued function.29 Let us define an offer as a p-valued function of two variables,
t̃ and P̃ . The function arguments denote the time and power interval for the

26Cf. Bochmann and Steinbach (1991, Chapter 6.1).
27NB. that this difference weights heavy in the best case in favor of the TVL, and even

more if the space compression ability of the ternary values can be used.
28Replacing the GCD with an interval partitioning algorithm can lower the number of

variables even further and avoids this critical margin.
29Cf. Section 2.5.

168 CHAPTER 7. MODELING DEMAND AND SUPPLY

requirement from agent i. The function remodels the acceptance equation of
a requirement, described in Eq. (7.21) as a pure Boolean function, now as a
p-valued function:

ri(t̃, P̃) =
{
P̃ ·∆P if t1,i ≤ t̃∆t ≤ t2,i ,

0 otherwise.
(7.43)

According to Nagayama and Sasao (2007), the memory size of an EVMDD
is:

DEVMDD = DW

u∑
k=1

2pk · wk bits, (7.44)

where u denotes the number of multi-valued variables and wk the number of non-
terminal nodes for a variable. Comparing the worst-case memory size of a TVL
in Eq. (7.41) with that of a EVMDD in Eq. (7.44), one can easily conclude that
the EVMDD is the more efficient data structure once the rasterization30 leads to
a certain number of variables for the acceptance functions and, correspondingly,
the symmetric function.

However, the memory of an embedded appliance running the Universal Agent
software should be well suited to store a number of kilobytes to accommodate
the data structures. More interestingly, the runtime behavior of the XBOOLE-
based solver is more favorable. We can assume that the solution to a demand-
supply calculation is achieved by a combination of two EVMDD subtrees—one
for the acceptance function and another one for the symmetric functions—,
followed by a satisfy-one operation.31 If we consider the runtime complexity of
BDDs and, therefore, EVMDDs, listed by Bryant (1986), we conclude that the
computational complexity of an EVMDD approach would be:

O
(
|R|2 · |S|

)
+O (|R|+ |S|) , (7.45)

whereas the computational complexity of the intersection operation—ISC(P,Q)—
of XBOOLE is:32

O (|R| · |S|) . (7.46)

30Cf. Eq. (7.17).
31Cf. Bryant (1986, Tab. 1).
32Cf. Bochmann and Steinbach (1991, p. 259).

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 169

10*10-6
1*100

100*103
10*109
1*1015

100*1018
10*1024

1*1030

 5 10 15 20 25 30

M
em

or
y

S
iz

e
[k

B
]

Number of Atoms (n*m) [1]

TVL
EVMDD

0*100
5*103

10*103
15*103
20*103
25*103
30*103
35*103

 5 10 15 20 25 30

C
om

pu
ta

tio
na

l C
om

pl
ex

ity
 [t

st
ep

s]

Number of Atoms (n*m) [1]

TVL
EVMDD

Figure 7.4: Memory size and computational complexity of XBOOLE-based and
Edge-Valued Multi-valued Decision Diagram-based demand-supply solvers

Fig. 7.4 depicts the influence of n and m with regards to the TVL and
EVMDD memory size and computational complexity. In comparison, while the
EVMDD approach is the more space efficient data structure, the TVL-based
modelling approach is by far the faster one.

This comparison serves as a transparent side-by-side analysis of a TVL-based
versus an EVMDD-based approach to the solver. However, if an implementing
algorithm followed Eqs. (7.24) to (7.28) and (7.30) by the letter, the solution
would not be the optimal one. Every intersection except for the last one creates
the Cartesian product of the two TVLs, since they are disjoint.33 No two TVLs
representing their respective acceptance functions share a variable, since an
offer is unambiguously identified by the variable set that makes up its atoms
per Eqs. (7.17) and (7.20). The symmetric functions that serve to model the
initiating request add another burden: They are, by their nature, immune to
simplification using the ternary value. I.e., at no time will any TVL representing
a symmetric function contain a ‘−.’

33Cf. Eq. (7.29).

170 CHAPTER 7. MODELING DEMAND AND SUPPLY

However, optimization is possible by exploiting two properties of the model.
First, the intersection is commutative, and so is XBOOLE’s ISC(P,Q) operator.
Instead of creating the complete acceptance function, R, directly for the inter-
section with the set of all symmetric functions, as Eqs. (7.27) and (7.30) suggest,
we can compute the intersection iteratively for each acceptance function:

Ri ∩ (. . . ∩ (R2 ∩ (R1 ∩ S))) . (7.47)

This alleviates the solver from the task of creating the complete set R, but
yields the same result as the naïve operation R ∩ S.

The second property of the solver’s model helps us to reduce the size of the
set for which all symmetric functions, S, are equal to 1. It is also not necessary
to create S completely. Since each row in a TVL representing a particular St̃

is a permutation of the first one, we can deduce the next TV in St̃ from the
current one. Table 7.2 illustrates that one can easily establish an order within
the function BVL for any symmetric function. We can thus define and easily
implement34 the following operations for a symmetric function’s function BVL:

First(sbv) Creates the first BV in the BVL sbv is a part of.

NextPermutation(sbv) Derives the next permutation from sbv, i.e., it cre-
ates the next BV of the BVL for the symmetric function sbv is also a
part of.

Last(sbv) Creates the last BV in the BVL sbv is a part of.

We can now permute a BV and, thus, do not need to store the complete
TVL for a symmetric function. This allows us to compress the function TVLs
for the symmetric functions for each time-subinterval, St̃, to the size of one—the
current—BV.35 I.e., instead of working with the whole TVL for each time-
subinterval’s symmetric function, St̃, we now only require the current BV of
the TVL. The current BV for the symmetric function for all time-subintervals,
S, is then simply a concatenation of the respective BVs.36 The permutation

34These functions are indeed part of a number of standard libraries, such as C++’s Standard
Template Library (STL) (cf., e.g., cppreference.com Contributors (2015)). The implementation
in the STL works by exploiting the lexicographic ordering of the elements of a BV, i.e., by
defining 0 ≺ 1 (false precedes true).

35Remember Eq. (7.37): Now, we can indeed represent all symmetric functions with only
one binary vector, making the TVL-based solver also the most space-efficient solution.

36This concatenation is created by the intersection function, ISC(P,Q).

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 171

Table 7.2: Binary Vector List for an example symmetric function, S3(x)

x1 x2 x3 x4 x5

0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0

must still obey the boundaries that are introduced through the individual time-
subintervals, i.e., it must generate a permutation for each current BV in the
respective St̃ and not over the whole S. Therefore, we must construct a function
that, given the current TVL of each time-subinterval’s symmetric function, i.e.,
a vector of TVLs, creates the next valid permutation and returns the next
valid BV in S. This method is called NextSymmetricFBV(St̃). Notice its
argument type: A vector of TVLs. Algorithm 7 outlines the function’s modus
operandi.

We can thus construct a function that returns the next permutation of the
TVs in S without having to create S completely. Therefore, we can note the
solver’s final form in Algorithm 8.

This final version starts with the calculation of the GCD and the construction
of all relevant TVLs: First, R contains a TVL for each response—i.e., it is
a collection of TVLs—, then St̃ is introduced to hold a TVL for each time
subinterval. However, each respective TVL, St̃, only contains one BV, which is
the first valid permutation of the respective symmetric function’s TV.

Its main part is a loop in which all permutations in S are generated, using
Algorithm 7. The resulting TVL S of each permutation is then subsequently
intersected with each response TVL, Ri,37 and the result appended38 to the final
solution TVL. The loop ends when all valid permutations have been generated.

37Cf. Eq. (7.47).
38Using the concatenation operator, CON(P,Q)

172 CHAPTER 7. MODELING DEMAND AND SUPPLY

Algorithm 7 Calculation of the next valid permutation for the Binary Vector
of the symmetric function

procedure NextSymmetricFBV(St̃)
for k = |St̃|, 1 do . Iterates over the function TVLs.

St̃ = St̃,k

sbv ← St̃,1 . First BV in the respective TVL
if sbv 6= Last(sbv) then
sbv ← NextPermutation(sbv)
break

else if k = 1 then
return ∅ . No more permutations possible

else
sbv ← First(sbv)

end if
end for
S ← St̃,1
for k = 2, |St̃| do

S ← S ∩ St̃,k

end for
return S

end procedure

The best solution in the resulting TVL—if it is not empty, in which case
no solution exists—is determined by sorting its TV. The basis for the sorting
operation is Eq. (7.31), from which we can deduce that each TV in the solution
TVL has an accumulated distance value.39 Thus, the first TV40 indicates the
best solution. The solver now needs to map the TV back to the respective
responses and to return the set of solution responses.

Fig. 7.5 compares the data volume required by the Universal Agent against
the line loss that is avoided by its operation. The plot assumes that the node on
the last hop answers and that the GCDs of the ∆t and ∆P atoms is 1, which
means the worst-case size of the TVLs’ set of variables. Through the optimized
version of the solver in Algorithm 8, it is possible to keep the total amount
of data required to arrive at a solution—including both, the volume of all
messages transmitted and the size of the TVLs at the requesting node—below

39I.e., the LPEP distance metric of the underlying message; cf. Algorithm 6.
40Which is retrieved using STV(solution, 1)

7.3. A BOOLEAN MODEL OF DEMAND AND SUPPLY 173

Algorithm 8 The Universal Smart Grid Agent’s central solver procedure

procedure Solve(request, responses)
(∆P,∆t)← GCD(request, responses)
R← CreateResponseTVLs(responses,∆P,∆t)
St̃ ← CreateRequestTVLs(request, responses)
S ← ∅
C ← ∅
repeat

S = NextSymmetricFBV(St̃)
subSolution ← S
for all Ri ∈ R do

subSolution ← subSolution ∩Ri

end for
if C = ∅ then

C ← subSolution
else

C ← CON(C, subSolution)
end if

until S = ∅
if |C| > 0 then

C ← Sort(C) . Per Eq. (7.31)
return SelectResponses(C) . Returns responses from solution

vector.
else

return ∅
end if

end procedure

174 CHAPTER 7. MODELING DEMAND AND SUPPLY

0*100
1*105

2*105
3*105

4*105
5*105

6*105
7*105

8*105
 5

 10
 15

 20
 25

 30
 35

 40

 0

 2

 4

 6

 8

 10

D
at

a
V

ol
um

e
[M

B
]

Line Loss avoided [kW]

Hops [1]

D
at

a
V

ol
um

e
[M

B
]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Figure 7.5: Data volume used compared to line loss avoided

10 MB while scaling up to quantities of 800 MW, which would include the whole
capacity of a classic power plant such as one that uses bituminous coal, or even
a nuclear power plant.41

Fig. 7.5 is the foundation from which we can arrive at a general metric to
evaluate the performance of the Universal Agent, as well as other approaches.

7.4 Evaluation of Efficiency

Any proposal must show, at least in theory, that it improves the present
situation. The Universal Grid Agent makes no difference in this regard. In
order to quantify the impact of the agent approach, we need to define a metric.
Since one of the pillars of the solution proposed in this thesis is to model the
power grid in communication networks, comparing bytes and power transmitted
suggests itself. Remember the metrics proposed by Bush (2014) that were
introduced in Section 2.1. We define the effect of a distributed demand-supply
calculation in terms of bytes it requires to transport a certain amount of power
as the data effect:42

41Cf. Table 3.1.
42The symbol κ is the first letter of the ancient Greek word κράτος, which means ‘effect,’

‘potency,’ or ‘might.’

7.4. EVALUATION OF EFFICIENCY 175

κ = W

D

[
kWh
kB

]
. (7.48)

This metric is, in fact, applicable for every solution and not specific to the
Universal Agent. In this case, specifically, we can evaluate the minimum value
for κ by assuming the following parameters:

1. The lowest quantity transmittable is 1 kW. This stems immediately from
the design of the LPEP.

2. The smallest time interval usually encountered is 10 min long. This, too,
follows from the proposition made by the LPEP semantics.

The four-way handshake of the LPEP causes at least 1120 B ≈ 1.1 kB
to travel, when assuming JSON notation. The smallest effect of one link is
therefore:

κ1l =
1 · 1

6
1.1 ≈ 0.15 kWh/kB . (7.49)

Fig. 7.6 compares the active power output of the ‘Bare Hill Wind Farm’
with the backfeed of the ‘White Hill Springs Substation.’ For a more realistic
application of the data effect, we assume that the pursued goal is to reduce the
substation’s backfeeding and the wind farm therefore is required to offer its
active power production or be curtailed.

In the first interval, the wind farm offers P1 = 10 739 kW. Consulting
Table 6.2, we know that the offer travels on up to 93 links; from Fig. 3.2 we
can conclude that there will be at most 27 answers traveling via 169 hops in
total, giving:

κ1 = 10739
6 · (93 · 0.268 + 169 · 0.804) ≈ 11.13 kWh/kB , (7.50)

iff all answers also constitute the solution set.43 The data effect metric can,
together with a reference situation as described in Section 3.2, be used to
compare protocols with each other. The more Watts per Bit are transmitted,
the more a effective a protocol is.

However, this does not describe the efficiency of an approach. Managing
volatile power generation and consumption does not only mean to act on or

43Cf. Eq. (7.30).

176 CHAPTER 7. MODELING DEMAND AND SUPPLY

react to this volatility as, e.g., curtailment is always possible, but also entails
an increase in efficiency due to local generation and consumption: Power that
does not need to be transmitted via longer distances suffers lower line losses
than power that travels many kilometers of cable. Of course, this assumes that
local generation as a reaction to increased demand or higher consumption due
to temporally higher power production are possible.

We can therefore define the data efficiency in terms of line loss avoided per
bytes transmitted:

ξ = ∆P
D

[
kW
kB

]
. (7.51)

Consulting the reference grid in Fig. 3.2 and assuming an average line
length of 10 km for all overhead wires, we can calculate the line loss to 8470 kW.
According to Eq. (7.51), this sets the data efficiency to:

ξ1 = 8470
6 · (93 · 0.268 + 169 · 0.804) ≈ 8.78 kW/kB , (7.52)

meaning that the operation of the Universal Agent was able to reduce the
(active) line loss by 8.78 kW per kilobyte transmitted. Plotting this over the
course of a day, we arrive at the second graph depicted in Fig. 7.6 that shows
the data efficiency achieved by the operation of the Universal Agent.

The two metrics introduced in Eqs. (7.48) and (7.51) can serve to compare
protocols, the quality of solvers, and approaches in general. They allow us to
compare approaches that solve the problem from different angles, since all these
approaches in the context of the smart grid naturally require a computer, and
hence a certain volume of data.

Let us compare the approach outlined in this thesis, the Universal Smart
Grid Agent, to that proposed by Inoue et al. (2014), which uses BDDs. These
two are solutions to the same problem, but different in their characteristics:
The Universal Agent is distributed and de-centralized, whereas the BDD-using
solution requires only one node and can eschew network communication.

Both use the same grid, namely, an electric grid developed by Fukui Univer-
sity and Tokyo Electric Power Company (TEPCO). Inoue et al. (2014) briefly
describe the network whose raw data is available through Fujimoto (2006). It
models a typical Japanese distribution network. The grid is fed from 72 feeders
and contains 468 switches. Including electrical and topological constraints, it
allows for 1.5× 1070 feasible configurations. Given pre-defined loads, the goal
consists in finding a configuration with minimal line loss. Additionally, this
thesis offers the data efficiency metric, which we will apply, too.

7.4. EVALUATION OF EFFICIENCY 177

-30

-20

-10

 0

 10

 20

 30

 40

R
ea

l P
ow

er
 [M

W
]

Substation 110kV Trafo
Bare Hill Wind Farm

 0

 5

 10

 15

 20

 25

00:00 04:00 08:00 12:00 16:00 20:00 00:00
 0

 0.005

 0.01

 0.015

 0.02

R
ea

l P
ow

er
 [M

W
]

D
at

a
E

ffi
ce

nc
y

[k
W

/k
B

]Backfeeding
Data Efficiency

Figure 7.6: ‘White Hill Springs Substation’ backfeeding, ‘Bare Hill Wind Farm’
active power production, and data efficiency of grid-local consumption

Inoue et al. (2014) examine the Fukui-TEPCO grid at a low-load situation
at 2 A.M., as well as at a high-load situation at 4 P.M. During high load, the
BDDs that model the grid, as well as the constraints, require 100 MB of data
volume. Modelling the grid in the network simulator, we can observe how the
Universal Agent solves the same load situation. Here, each node and each
section as well is represented by an agent. The sections with active and reactive
power loads broadcast their requests until they reach the feeder nodes, which,
in turn, reply with their offers. Those sections that represent switches choose
the state of the switch according to whether they have relayed an acceptance
acknowledgement notification44 or not: If such a message was forwarded, the
switch must be closed; otherwise, it will be opened. Since the LPEP features
direct routing for all responses, no power will flow via these sections if no
acceptance acknowledgement notification was relayed by these agents.

The results listed in Table 7.345 show that, for the high-load case, the

44Cf. Section 6.2.
45The line loss avoided is calculated against the theoretical line loss in the grid, which is,

in turn, calculated according to the formulae presented by Nara et al. (1992).

178 CHAPTER 7. MODELING DEMAND AND SUPPLY

Table 7.3: Comparison of the Universal Smart Grid Agent and Binary Decision
Diagram approach on the Fukui-TEPCO power grid during high load

BDD Universal Agent
Line loss
avoided (∆P)

17 208 kW 17 208 kW

Compute
Time

> 16 min 1 min 34 s (run time);
< 11 min (simulated time)

Data Volume 100 MB 28.9 MB
Data
Efficiency

0.168 kW/kB 0.581 kW/kB

decentralized agent concept requires less data volume than BDD approach and
also takes less time to compute. The simulation run in which all simulated
agents share a single thread finishes in less than 2 min, while the simulated time
within the environment amounts to a little over 10 min.46 This ten-minute-
interval stems directly from the design of the LPEP.47 In the high-load case, the
Universal Agent therefore features a higher data efficiency than the approach
by Inoue et al. (2014) based on BDDs.

However, the decentralized concept comes with a cost, which is the base
data volume required to initially set up each agent instance. Fig. 7.7 shows
the total data volume48 required by all Universal Agents. The graph shows
not only the base data volume required by the Universal Agent approach, but
also indicates that the LPEP contributes the biggest share to the overall sum.
We can also note that the XBOOLE-based power balance solver requires the
least amount of data, although an instance runs on each requesting agent. This
stems from the space efficiency of Algorithm 8, but is also due to the 72 feeders
being able to offer exactly the amount of power required; thus, the size of the
individual TVLs remains low.

The nature of the Universal Agent makes it unfitting for the low-load
situation. Here, the BDD approach requires only 100 kB of data to run, whereas
the Universal Agent’s base data volume cannot be lowered: Each node and each
section, regardless of their current load situation, is always represented by an

46Including network latency modelled as X ∼ U [20 ms; 250 ms]
47Cf. Section 6.2.
48This excludes the data base required by the Forecaster module of the agents since no

historic data is available for the Fukui-TEPCO network.

7.4. EVALUATION OF EFFICIENCY 179

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600

System base data volume

End of LPEP request-response stage

XBOOLE-based power balance solver

Start of LPEP contract making

D
at

a
V

ol
um

e
[k

B
yt

es
]

Simulation Time [s]

System Data Volume

Figure 7.7: Total data volume by time required by the Universal Smart Grid
Agent in the Fukui-TEPCO power grid during high load

instance of the Universal Agent.
The comparison thus served to show two results. It demonstrated that the

metrics defined in Eqs. (7.48) and (7.51) can be applied to different approaches
that try to improve efficiency in the smart grid. It also emphasized that the
distributed, de-centralized concept that is the nature of the Universal Agent is
suited best for complex situations with many actors, possibly of vastly different
types, but falls short in simpler environments. For the future, we anticipate the
smart grid to become an ever more complex environment due to distributed
generation and volatile load and generation patterns. The operation of such a
grid can be governed by the Universal Smart Grid Agent.

8 Conclusion

‘Somewhere, there’s always wind blowing or sun shining.’ This optimistic
maxim assumes that renewable energy sources, such as wind and photovoltaic,
though volatile in nature, can become the main source of electrical power in our
civilization. This thesis followed this assumption and discussed it from the point
of availability, processing, and distribution of information. It reformulated the
maxim into a question: ‘Assuming enough primary energy is available, would
the electric grid’s power balance be a problem of information processing and
distribution?’

The Universal Smart Grid Agent combines several technologies and builds
upon them, thereby extending them. Its keystone is the notion of a distributed
demand-supply calculation: Since the future power grid will be shaped by
a vast amount of distributed generation along with power consumption that
is distributed by nature, the necessary equilibrium between generation and
consumption should also be the result of a distributed process. Each node in
the power grid therefore actively contributes to this process, not just in terms
of influencing the actual flow of real or reactive power, but also in terms of
calculation.

This concept rests on three equally important pillars. The first is localized
forecasting. Each node creates a forecast of its future power balance based on
historical data drawn from its environment. It trusts the underlying idea that
neither volatile power generation nor power consumption are chaotic processes,
but that patterns inhere the behavior exhibited by photovoltaic arrays, wind
farms, and consumers of every shade.

The forecaster module of the Universal Smart Grid Agent uses Artificial
Neural Networks (ANN) to memorize existing, node-local patterns derived
from historical data. It builds upon ANN patterns whose structure inherently
recognizes time series and uses the network topology introduced by Jeff Elman

181

182 CHAPTER 8. CONCLUSION

to implement the forecaster. This thesis proposes and uses the data pipeline
construct to lower the technical debt the application of machine learning
impends to bring with it and separates data retrieval, logging, processing,
forecaster configuration, and the actual forecasting, in order to make the
Agent’s architecture agnostic of its final deployment. The Agent employs the
Multipart Evolutionary Training Strategy devised by Martin Ruppert, which
has only published briefly before; this thesis adds a discussion and analysis of
its features to the description of this remarkable algorithm.

This thesis finds itself in a contradictory position. A plethora of data is
theoretically available and the advent of the smart grid heralds numerous sensors
to be deployed, being accessible now or in the near future. But the future power
grid mandates the additions of more data sources still: Patterns of date, time,
wind speed, and wind direction can be contradictory, but other indicators of
the general weather situation, such as barometric pressure, are usually missing
since they were previously unneeded for the seamless operation of a wind farm.
Node-local forecasting yields usable results of sometimes surprising accuracy
and more advanced technologies, such as Long Short-Term Memory (LSTM) or
deep learning techniques, will enhance the usefulness of it, given the node is
sufficiently staffed with the necessary hardware. Here, specialized chipsets such
as Field-Programmable Gate Arrays (FPGA) or Application-Specific Integrated
Circuits (ASIC) can help to make this economically feasible. Such forecasting
will be a valuable addition to meteorological weather forecasting, enhancing the
confidence a grid operator—with the Agent being considerable as an automatic
operator—can put into an estimation of the grid’s state.

Data and information present at a node contribute towards the answer of the
question initially posed, but are not the sole solution. Each node needs to act
on its own information base, proactively working towards a power equilibrium
in the grid. The active rather than reactive nature of this thesis’ proposition
gains it the designation of an agent in the stricter sense of artificial intelligence.
Essential to an agent is its social component: A protocol for the nodes in
the power grids—the agents—to converse constitutes the second pillar of the
Universal Smart Grid Agent. Such a protocol must follow the Agent’s active
nature of behavior; its goal cannot be to provide a means to transport as many
different pieces of information as possible or provide a networked query interface
for sensors. Instead, this thesis proposed the Lightweight Power Exchange
Protocol (LPEP) that is a protocol primarily in the sense of a set of behavioral
rules and only secondary in the sense of a way to encode and transport data. The
LPEP defines the social component the agent approach requires—in theory, any
implementation can contribute to the distributed demand-supply calculation,

183

not just the one proposed in this thesis.
The LPEP builds upon the well-known ISO/OSI stack model in order to

accommodate different types of hardware and transmission technology required
by the physical circumstances encountered in the field, be it long-wave, 3G,
or WiFi radio connectivity or any sort of wired technology. Since its actual
specification is motivated by the aforementioned set of behavioral rules, its
intentions can be integrated into other, fully specified protocols, such as the
Open Smart Grid Protocol (OSGP) or used with the Common Information
Model (CIM). The LPEP’s salient feature is that it re-models the power grid
in the communications network as an overlay network. It assumes no a priori
knowledge of the grid’s nodes’ purpose, but specifies mechanisms to ensure
reliable and as efficient as possible communication between all agents.

It is safe to assume that the LPEP by itself will not see real-world deployment,
but the rules that motivated its creation will.

After forecasting and communication, the third and final pillar of the
Universal Smart Grid Agent concept is its heart piece: the actual solver for the
demand-supply calculation that selects other nodes’ offers and ensures the power
equilibrium at each part of the electrical grid. Perhaps surprisingly, this forms
the most dense and efficient part—memory- as well as computation-wise—of
the approach outlined in this thesis. Its foundation is the excellent Ternary
Vector List (TVL) arithmetic by Dieter Bochmann, Christian Posthoff, and
Bernd Steinbach, that not only allows elegant modelling of demand and offers,
but also proves to be the most efficient compared to other structural approaches
in the Boolean domain, such as Binary Decision Diagrams (BDD).

With the Agent’s heart piece in place, this thesis discussed the benefits of
the agent approach. It introduced two metrics inspired by Steve Bush: Data
effect and data efficiency. Data in the sense of bytes transmitted and processed
by the individual agents measured against the change they induced in the power
grid can serve as a metric to compare different approaches. They serve as a
tool to answer the question posed initially, namely, whether the reliable and
efficient integration of renewable energy sources is a problem of information
distribution and processing and whether any software-based approach increases
the efficiency of grid operation and provides energy gains by avoiding more line
losses than the software requires power to operate.

In theory, the power grid’s equilibrium can be viewed as a question of
information distribution and processing and the operation as a software such as
the Universal Smart Grid Agent can help to use power generated by volatile,
renewable energy sources more, more efficiently, and more reliably.

Every approach must be tested, not only in restricted simulation, but also

184 CHAPTER 8. CONCLUSION

in larger-scale tests. This thesis also offered and discussed a simulation software
approach whose principles can contribute to these efforts. Ultimately, only
longer exposure of any technique to real-life circumstances can help to verify
the feasibility of a proposed solution. While this world of the smart grid is still
relatively new and exciting, it sometimes seems to clash with the established
and durable world of traditional electrical engineering. From this point of view,
any proposition from the domain of computer science has to be gauged against
the required longevity and robustness of the power grid. A transformer’s life
time is roughly 30 years to 45 years. It remains a challenge to construct a smart
grid whose software and hardware components can live up to an equal range.

Every conclusion to a thesis can, ultimately, only be the starting point
for the next step of research. We must, therefore, as Alfred, Lord Tennyson
formulated in his poem Ulysses, be

“. . . strong in will
To strive, to seek, to find, and not to yield.”

A Theses

1. Power generated from renewable energy sources forms an ever increasing
share of the global energy mix.

2. For many regions, the go-to primary renewable energy sources are wind
and solar radiation.

3. Wind and solar radiation are uncontrollable, volatile, primary energy
sources since they depend on the weather.

4. The increasing percentage of wind farms and Photovoltaic (PV) power
plants in the power grid increases the volatility of power generation.

5. Wind farms and PV installations feed into various, mostly lower, voltage
levels of the power grid, thereby voiding the traditional, hierarchical
architecture of the power grid.

6. Power generation is becoming increasingly decentralized while it tradi-
tionally was centralized and centrally-controlled.

7. Traditional, steam-based power plants are most efficient as base-load
power plants that continuously feed in at their rated power output.

8. Power storage is, due to high costs, low efficiency, or space requirements,
not available in quantities great enough to support a power generation
based completely on volatile renewable energy sources.

9. The increasing share of volatile power generation necessitates flexible, load-
following power plants and/or flexible power consumption to compensate
this volatility.

185

186 APPENDIX A. THESES

10. Most traditional power plants cannot change their output at a high rate
and cannot feed power below a certain minimum output.

11. The primary goal of a future smart grid is to reliably maintain the balance
of active power and reactive power while respecting the constraints of the
grid, i.e., to provide for a stable supply of electric power in the face of
volatile demand and supply.

12. The secondary goal of a future smart grid is to lower losses through an
intelligent operation of the grid and its assets.

13. The power grid of today features increasingly more sensors that gather
not only data on power flow, but also auxiliary data, such as weather
conditions.

14. The notion of the smart grid does not only mean sensors, but also in-
troduces smart customers, such as factories, cold storage houses, metal
foundries, etc., that become subject to grid operator control.

15. The high volatility of power generation of renewable energy sources neces-
sitates dynamic, node-local forecasting.

16. Given the sensory data, reliable, node-local forecasting, and controllable
entities in the power grid, the problem of power demand and supply
becomes a problem of information processing and distribution.

17. The amount of data from sensors and information coming from forecasts
and analyses warrants a divide-et-impera approach to the smart grid.

18. Each important node in the power grid, from the traditional power plant,
wind farm, PV power plant to the power substation, secondary customers,
and domestic feed-in transformers, become agents that maintain their
local power balance and act proactively to avoid a power disequilibrium.

19. A complex system such as a distributedly-controlled power grid requires
simulation with external data sources providing data such as weather data
and consumer behavior data.

20. External data sources may have varying degrees of resolution and accuracy;
therefore, their quality must be automatically assessed by the simulation
environment wherever possible.

187

21. Each agent features a modularized approach in which the main modules
are the Forecaster Module, the Learner Module, the Messaging Module,
and the Demand-Supply Module.

22. Each agent produces a local forecast of its local power balance using
Artificial Neural Networks (ANN) that are trained from historical data.

23. The agent maintains a pattern database for supervised training of the
agent-local ANN whose size is bounded by the dimensions of the ANN,
maintaining a set of distinct (in contrast to all available) patterns.

24. The size of the ANN is adjusted in addition to the supervised training to
mitigate worsening of the training error.

25. Weather and consumer data follow a time-series pattern; the agent’s ANN
therefore requires an internal representation of the concept of time, which
makes a Recurrent Neural Network (RNN) suited for forecasting.

26. Effective training of an RNN is achieved by an evolutionary algorithm
that includes the population’s implicit gradient and dynamically controls
the offspring’s spread.

27. RNN-based forecasting achieves results reliable enough for grid operations
planning, but cannot forecast extraordinary conditions the likes have never
been encountered; it is therefore a sensible augmentation for meteorological
forecasting.

28. Communication of power disequilibria and potential solutions between
the agents occurs on an overlay network that models the power grid in
communications architecture.

29. Agents are pari passu: Each agent can reply with a solution to the power
disequilibrium and is a router of messages.

30. The impedance of sections of the power grid is the metric used to conduct
routing in the agent communications overlay network.

31. No agent possesses a priori knowledge of other agents: Every node can
potentially influence the electrical grid’s power balance positively or
negatively.

188 APPENDIX A. THESES

32. In the agent communication network, ad-hoc routing must be employed;
selective broadcasting of requests and direct routing of replies minimizes
the number of circulating messages while still reaching all agents.

33. Each agent must employ a message journal, noting messages passing
through, sent, or answered by it, in order to establish ad-hoc routes to
remote agents during the process of solving a power disequilibrium.

34. An agent maintains an internal power balance in which local as well as
remote power disequilibria are noted as requirements when they concern
the respective agent: Every node must first accommodate the power grid’s
global power balance.

35. Selecting replies by agents to form the solution to a power disequilibrium
is a combinatorial problem that can be modelled in the Boolean domain.

36. All requirements are decomposed into atoms of equal size for representa-
tion in the Boolean domain: The responses are expressed through their
acceptance function, the initial requirement through a symmetric function.

37. The representation of all requirements through Ternary Vector Lists
(TVL) allows for an elegant formulation of the combinatorial problem and
its solution.

38. The commutative nature of the intersection and the possibility to generate
all permutations of a symmetric function reduces the space requirements
of the corresponding TVLs to a minimum.

39. The utilization of TVLs and the XBOOLE system is more space-efficient
than a representation with Binary Decision Diagrams (BDD) and more
computation-efficient than any graph-based representation of the problem.

40. The agent-based approach is more time-efficient and space-efficient than a
centralized, BDD-based approach in complex situations, and less efficient
in simple situations due to its distributed nature.

41. Smart grid operation approaches should be measured against each other
by two metrics introduced in this thesis: The effect of data in terms
of power transmitted per byte of data volume required, and the data
efficiency in terms of line loss avoided per byte of data volume required.

42. Distributed planning of demand and supply leads to an increased percent-
age of electrical energy from renewable energy sources.

189

43. Markets and price competition can be viewed as an optimization prob-
lem that arises after at least two possible solutions to a demand-supply
calculation exist.

B Protocol Message Types and Data Fields

B.1 Data and Field Types

ID fields

A 128 bit wide opaque identifier that is used to uniquely identify messages
and nodes. At a given time, every ID string active in the network must be
globally unique. How this unique ID is generated is up to the implementor. For
agent IDs, an allocation scheme similar to that of MAC addresses would be
appropriate. Message IDs can be randomly generated, for example, as UUIDs.

In JavaScript Object Notation (JSON) notation, an ID is represented by a
string of printable characters; in binary notation, there is no constraint with
regards to the identifier’s encoding.

Please note that message IDs must be unique on their own; the uniqueness
is not achieved through combining the information that the agent ID and that
the message ID yields.

Message Type

An enumeration of the messages presented in Appendix B.2. The JSON encoding
notes the message type as an unsigned integer. The binary representation is
the binary encoding of the number given in the message type field as a field of
16 bit width.

Is Answer and Answer To

This field combination designates whether the current message is an answer to
another particular message, or not.

191

192 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

The is answer field is a simple Boolean value. The JSON encoding variant
of the Lightweight Power Exchange Protocol (LPEP) therefore uses the built-in
JSON Boolean type. If the binary encoding scheme is used, the is answer field
is 16 bit wide field, set to 16 0-bits for false and 16 1-bits for true.

The answer to field is an ID-type field that must follow immediately after
the is answer field.

Time To Live (TTL)

Denotes the message’s remaining Time To Live (TTL), an unsigned integer
that is reduced by 1 with every forwarding. If the TTL value of a message
reaches 0, it must not be forwarded.

The JSON encoding variant’s key for this field is ttl and represents it as
a JSON integer. The binary encoding for the TTL is a 32 bit wide field that
encodes the unsigned integer in network byte order .

Timestamps

A point in time represented by the Temps Atomique International (en. Inter-
national Atomic Time) (TAI) standard. More specifically, an external TAI64
label is used that represents a second using eight bytes in big endian notation.

The JSON notation represents a TAI64 external label as a string of hex-
adecimal characters. When using binary encoding, the bytes of the TAI64 label
are transmitted directly as a 16 bit wide field.

Timespan

A timespan is defined as an interval of two TAI64 external labels. The interval
boundaries are closed (left) and open (right). I.e., if t1 and t2 denote two TAI64
labels in TAI64 external format, a timespan is defined as [t1; t2). A timestamp
t is then part of the interval, if t1 ≤ t < t2. Two time intervals, [t1; t2) and
[t3; t4) will not overlap if t2 < t3. However, t3 must follow immediately after t2.

The JSON notation format of the LPEP represents a timespan as an array
of two TAI64 external labels in string format. If a byte encoding scheme is
used, the interval is represented by two concatenated timestamps.

B.1. DATA AND FIELD TYPES 193

Power Values, Power Value Intervals, and Power Types
A power value consists of a number and a unit denominator. The value is
represented by a 32 bit unsigned integer, i.e., no fractions are permitted. In
order to avoid rounding and cancellation errors that are common pitfalls to
IEEE 753r floating-point numbers to propagate through the network, the
protocol transmits only integers.

Power Intervals are closed intervals of two power values, i.e., [P1;P2].
Permitted units are given by the following enumeration:

1. Kilowatt (active)

2. Kilovoltampere reactive (reactive).

The JSON encoding schema uses the value key for the number that uses
the JSON built-in integer type and a string for the power type enumeration.

The binary representation of a power value is a concatenation of the 32 bit
unsigned integer, transmitted in network order and the chosen value of the unit
enumeration, encoded as a 16 bit field.

194 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

B.2 Message Types

Echo Request
Description

Requests an echo reply from another host. May only be used on immediately
connected hosts; an agent must not forward an echo request. An echo request
must be answered by an echo reply upon reception.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 1
Sender ID sender The ID of the sender of the particular

message
Is Answer isAnswer false
Answer To answerTo Not interpreted

B.2. MESSAGE TYPES 195

Echo Reply
Description

The answer to an echo request, i.e., the ‘pong’ to a ‘ping.’ An agent must answer
to an echo request with an echo reply and do so immediately. Echo replies must
not be forwarded.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 2
Sender ID sender The ID of the sender of the particular

message
Is Answer isAnswer true
Answer To answerTo The ID of the echo request message this

reply answers to

196 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

Online Notification
Description

The online notification informs other agents that a particular agent will come
online (i.e., connected to the power grid) at a certain time. Online notifications
serve to introduce a newly connected agent or announce the presence of one
that was previously offline. Directly connected agents can thus learn the ID
of their new neighbor before that neighbor is synchronized to the power grid.
This helps to establish the communication infrastructure before an agent can
exert its influence on the power grid. An agent must send an online notification
message over all its connections after its software has booted and before it
influences the power grid’s power balance.

An online notification message must not be forwarded.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 3
Sender ID sender The ID of the sender of the particular

message
Is Answer isAnswer false
Answer To answerTo Not interpreted
Timestamp timestamp The TAI64 label denoting at which time

the agent sending this message comes
online

B.2. MESSAGE TYPES 197

Offline Notification
Description

The offline notification message is the counterpart to the online notification
message: It notifies the agent’s neighbors that it will disconnect from the power
grid at a certain time. An agent must send an offline notification message over
all connection links before it loses synchronization with the power grid. Note
that a disconnection from the power grid does not necessarily imply that the
agent’s software also shuts down or it loses its connection to the communication
network.

An offline notification message must not be forwarded.
Sending an offline notification message with a timestamp that designates

a point of time during which the agent still fulfills a request is a violation of
correct protocol behavior. The agent must first ensure that the request is met
and the grid’s power balance remains intact.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 4
Sender ID sender The ID of the sender of the particular

message
Is Answer isAnswer false
Answer To answerTo Not interpreted
Timestamp timestamp The TAI64 label denoting at which time

the agent sending this message goes of-
fline

198 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

Demand Notification
Description

An agent sends a demand notification message when it requests additional
power from other agents. Demand notification messages must be forwarded
according to the directives defined in Section 6.2.

In addition to the timespan for which the request expressed by the demand
notification message applies, the message also indicates the latest point at which
an answer to it may arrive in order to be considered. Consequently, it is not
necessary to answer such a request immediately, but within the time frame
given by the answer until field.

The demand notification’s answer to field can be either set to true or to
false. If set to true, the demand notification message must be the answer to a
previously received offer notification message. This accommodates the situation
in which a surplus of power has been forecasted at another agent’s node and is
consequently answered by others. The reverse is true when the is answer field
is set to false: Then, a demand for power has been forecasted in the agent’s
own locality that must be answered by other agents through offer notification
messages.

A demand notification message that is an answer must eventually be followed
by an acceptance notification by the original requester. Otherwise, it expires at
the time indicated by the answer until field. If the agent does not receive an
acceptance notification, it must not exert its influence on the power grid with
regards to the original request received.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 5
Sender ID sender The ID of the sender of the particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer false, if sent as the result of a fore-

cast indicating an imbalance at the local
node; true if intended as an answer to
an offer notification

B.2. MESSAGE TYPES 199

Answer To answerTo Only present if the message is an an-
swer; if it is, this contains the original
request’s ID

TTL ttl The message’s TTL
Distance distance The distance the message has travelled

from sender to receiver
Timespan timespan The timespan interval for which this

message is valid
Answer Until answerUntil A timestamp indicating when an answer

can, at the latest, arrive at the request-
ing agent in order to be considered

Value value A power value interval denoting the
amount requested

Type powerType The type of power requested

200 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

Offer Notification
Description

An agent expresses its ability (or desire) to deliver power to the grid with
a message of this type. The same semantics apply as before to the demand
notification message. The difference between the two message types is the flow
of power: The demand notification message indicates a deficit at the sender’s
side, whereas the offer notification indicates a surplus of power at the sender’s
side.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 6
Sender ID sender The ID of the sender of a particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer false, if sent as the result of a fore-

cast indicating an imbalance at the local
node; true if intended as an answer to
a demand notifiction

Answer To answerTo Only present if the message is an an-
swer; if it is, this contains the original
request’s ID

TTL ttl The message’s TTL
Distance distance The distance the message has travelled

from sender to receiver
Timespan timespan The timespan interval for which this

message is valid
Answer Until answerUntil A timestamp indicating when an answer

can, at the latest, arrive at the request-
ing agent in order to be considered

B.2. MESSAGE TYPES 201

Value value A power value interval denoting the
amount requested

Type powerType The type of power requested

202 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

Acceptance Notification
Description

An agent uses an acceptance notification message to inform another agent that
it will take it up on its offer. Acceptance notification messages must be answers
and an agent may formulate one only if an offer has been received. An offer
whose answer until field contains a timestamp that has been reached or already
lies in the past must not be answered with an acceptance notification message.

The acceptance notification also expresses the amount of power that is
actually taken from the original offer. It must reside within the interval given
in the original offer.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 7
Sender ID sender The ID of the sender of a particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer true
Answer To answerTo The ID of the offer or demand notifica-

tion this acceptance notification answers
to

TTL ttl The message’s TTL
Value value The power value accepted

B.2. MESSAGE TYPES 203

Withdrawal Notification
Description

An agent may wish to withdraw an offer or demand notification it has sent at
some time past. A case for this is described in Section 4.3; in short, an agent
may wish to withdraw a request, demand notification and offer notification
alike, when it receives a matching notification message of the opposite type that
would solve its situation. It may also be possible that a forecast an agent has
based a message on becomes invalid through a new calculation; it must then
notify other agents that its message has become invalid by withdrawing it.

Withdrawal notification messages may be answers: If they are answers, they
refer to a request an offer (or demand) notification message has been previously
addressed. If the withdrawal notification message is not an answer, it must
refer to an demand notification message or an offer notification message that
originated at the current agent and was not formulated as an answer to a
previously received request.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 8
Sender ID sender The ID of the sender of a particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer true if the message’s recipient has previ-

ously send a broadcast demand or offer
notification; false if the agent revokes
one of its own broadcast messages

Answer To answerTo The ID of the offer or demand notifica-
tion this withdrawal addresses; can also
address a non-answer demand or offer
notification sent by the agent itself

204 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

TTL ttl The message’s TTL

B.2. MESSAGE TYPES 205

Acceptance Acknowledgement Notification
Description

The acceptance acknowledgement notification completes the four-way handshake
and concludes the formation of a short-term contract. It must be an answer
and may only be sent as an answer to an acceptance notification message.
Consequently, it must be sent when an acceptance notification is received.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 9
Sender ID sender The ID of the sender of the particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer true
Answer To answerTo The ID of the acceptance notification

that is acknowledged by this message
TTL ttl The message’s TTL

206 APPENDIX B. PROTOCOL MESSAGE TYPES AND DATA FIELDS

Constraint Notification
Description

Every agent is required to match or forward requests it receives. However,
physical constraints can prohibit it from doing so. E.g., an agent can determine
that if power would flow over a line represented by a candidate link for forwarding
a request message, that link would be damaged. In such cases, the agent must
replace the request with a constraint notification. A constraint notification must
be forwarded. It contains the ID of the original request it replaced in a separate
field. If an agent receives a constraint notification that matches a request it
has received (or will receive), it may match or forward that request only if
the distance value of the request is lower than that of the constraint message,
indicating that power would flow over a different line or node than that which
issued the constraint notification. If an agent receives a constraint notification
to a request it has answered and the constraint notification’s distance is equal
or lower to that of the request, it must withdraw its response.

Data Fields

Name JSON key Value(s)
Message ID id The message’s ID
Message Type type 6
Sender ID sender The ID of the sender of a particular

message
Receiver ID recever The ID of the receiver, if the message is

an answer
Is Answer isAnswer false, if sent as the result of a fore-

cast indicating an imbalance at the local
node; true if intended as an answer to
a demand notifiction

Answer To answerTo Only present if the message is an an-
swer; if it is, this contains the original
request’s ID

TTL ttl The message’s TTL
Distance distance The distance the message has travelled

from sender to receiver

B.2. MESSAGE TYPES 207

Constrained
Message

constrainedMessage
ID of the original request the constraint
message replaces

Bibliography

Abadi, M. and Cardelli, L. (1996). A Theory of Objects. Springer, Secaucus,
NJ, USA, 1st edition.

Ackley, D. (1987). A Connectionist Machine for Genetic Hillclimbing,
volume 28 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, MA, USA.

AGEB (2015). Anteil Erneuerbarer Energien am Bruttostromverbrauch in
Deutschland in den Jahren 1990 bis 2014. Online.
http://de.statista.com/statistik/daten/studie/2142/umfrage/
erneuerbare-energien-anteil-am-stromverbrauch/ [Retrieved:
2016-11-02].

Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on
Computers, C-27(6):509–516.

Allelein, H.-J., Bollin, E., Oehler, H., and Schelling, U. (2010). Energietechnik.
Studium: Energie und Umwelt. Vieweg+Teubner, Wiesbaden, Germany, 5th

edition.

Anthony, M. and Bartlett, P. L. (2009). Neural Network Learning: Theoretical
Foundations. Cambridge University Press, Cambridge, United Kingdom.

Aquino-Lugo, A. A., Klump, R., and Overbye, T. J. (2011). A control
framework for the smart grid for voltage support using agent-based
technologies. IEEE Transactions on Smart Grid, 2(1):173–180.

Aquino-Lugo, A. A. and Overbye, T. J. (2010). Agent technologies for control
applications in the power grid. In 43rd Hawaii International Conference on
System Sciences (HICSS), pages 1–10, Hawaii, USA.

209

http://de.statista.com/statistik/daten/studie/2142/umfrage/erneuerbare-energien-anteil-am-stromverbrauch/
http://de.statista.com/statistik/daten/studie/2142/umfrage/erneuerbare-energien-anteil-am-stromverbrauch/

210 BIBLIOGRAPHY

Atkinson, R. (1996). IPv6 routing table size issues. Internet draft, Internet
Engineering Taskforce (IETF). Online. https:
//www.ietf.org/archive/id/draft-ietf-ipngwg-ipv6-routing-00.txt
[Retrieved: 2016-11-07].

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, New York, NY, USA.

Bajaj, S., Breslau, L., Estrin, D., Fall, K., Floyd, S., Haldar, P., Handley, M.,
Helmy, A., Heidemann, J., Huang, P., Kumar, S., McCanne, S., Rejaie, R.,
Sharma, P., Varadhan, K., Xu, Y., Yu, H., and Zappala, D. (1999).
Improving simulation for network research. Technical Report 99-702b,
University of Southern California, Los Angeles, CA, USA.

Banks, J., Carson, J., Nelson, B., and Nicol, D. (2013). Discrete-Event System
Simulation. Pearson Education, Upper Saddle River, NJ, USA, 5th edition.

Barr, R., Haas, Z., and Renesse, R. V. (2004). JiST: Embedding simulation
time into a virtual machine. In 5th EuroSim Congress on Modelling and
Simulation, Paris, France.

Baum, E. B. and Haussler, D. (1989). What size net gives valid generalization?
Neural Computation, 1(1):151–160.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The
R*-tree: An efficient and robust access method for points and rectangles. In
Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’90), pages 322–331, New York, NY, USA.
ACM.

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing
Multi-Agent Systems with JADE, volume 7 of Wiley Series in Agent
Technology. John Wiley & Sons, Chichester, United Kingdom.

Bennett, C. H. (2003). Notes on Landauer’s Principle, reversible computation,
and Maxwell’s Demon. Studies in History and Philosophy of Science, Part
B: Studies in History and Philosophy of Modern Physics, 34(3):501–510.

Berg, H.-P. and Fritze, N. (2011). Reliability of main transformers. Reliability:
Theory and Applications, 2(1):52–69.

https://www.ietf.org/archive/id/draft-ietf-ipngwg-ipv6-routing-00.txt
https://www.ietf.org/archive/id/draft-ietf-ipngwg-ipv6-routing-00.txt

BIBLIOGRAPHY 211

Berndt, H., Hermann, M., Kreye, H. D., Reinisch, R., Scherer, U., and
Vanzetta, J. (2007). TransmissionCode 2007 — Netz- und Systemregeln der
deutschen Übertragungsnetzbetreiber. Online.
https://www.bdew.de/internet.nsf/id/
A2A0475F2FAE8F44C12578300047C92F/$file/TransmissionCode2007.pdf
[Retrieved: 2016-11-01].

Bernstein, D. J. (1997). TAI64, TAI64N, and TAI64NA. Online.
http://cr.yp.to/libtai/tai64.html [Retrieved: 2016-11-02].

Betz, A. (1926). Windenergie und ihre Ausnutzung durch Windmühlen.
Vandenhoeck, Göttingen, Germany.

Bochmann, D. and Steinbach, B. (1991). Logikentwurf mit XBOOLE. Verlag
Technik, Berlin, Germany, 1st edition.

Boole, G. (1847). The Mathematical Analysis of Logic Being an Essay Towards
a Calculus of Deductive Reasoning. Philosophical Library, New York, NY,
USA.

Booth, T. L. (1967). Sequential Machines and Automata Theory. John Wiley
& Sons, New York, NY, USA.

Branke, J. (1995). Evolutionary algorithms for neural network design and
training. In Alander, J. T., editor, Proceedings of the First Nordic Workshop
on Genetic Algorithms and its Applications (1NWGA), pages 145–163,
Vaasa, Finland.

Brauner, G., Glaunsinger, W., Bofinger, S., John, M., Magin, W., Pyc, I.,
Schüler, S., Schulz, S., Schwing, U., Seydel, P., and Steinke, F. (2012).
VDE-Studie: Erneuerbare Energie braucht flexible Kraftwerke — Szenarien
bis 2020. Technical report, Energietechnische Gesellschaft im VDE (ETG),
Frankfurt am Main, Germany.

Bray, T. (2014). The JavaScript Object Notation (JSON) data interchange
format. RFC 7159, Internet Engineering Task Force (IETF).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F.
(1998). Extensible markup language (XML). World Wide Web Consortium
Recommendation REC-xml-19980210 16, World Wide Web Consortium.
Online. http://www.w3.org/TR/1998/REC-xml-19980210 [Retrieved:
2016-11-01].

https://www.bdew.de/internet.nsf/id/A2A0475F2FAE8F44C12578300047C92F/$file/TransmissionCode2007.pdf
https://www.bdew.de/internet.nsf/id/A2A0475F2FAE8F44C12578300047C92F/$file/TransmissionCode2007.pdf
http://cr.yp.to/libtai/tai64.html
http://www.w3.org/TR/1998/REC-xml-19980210

212 BIBLIOGRAPHY

Brooks, R. J. and Tobias, A. M. (1996). Choosing the best model: Level of
detail, complexity, and model performance. Mathematical and Computer
Modelling, 24(4):1–14.

Brunner, C. (2008). IEC 61850 for power system communication. In 2008
IEEE/PES Transmission and Distribution Conference & Exposition, pages
1–6, Chicago, IL, USA. IEEE.

Bryant, R. E. (1986). Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–691.

Bryson, A. E. and Ho, Y.-C. (1969). Applied Optimal Control: Optimization,
Estimation and Control. Hemisphere Publishing Corporation, Washington,
DC, USA.

Buchholz, B. M., Bühner, V., Berninger, U., Fenn, B., and Styczynski, Z. A.
(2012). Intelligentes Lastmanagement — Erfahrungen aus der Praxis. In
VDE-Kongress 2012, Frankfurt am Main, Germany. VDE VERLAG GmbH.

Bundesnetzagentur (2015). Kraftwerksliste der Bundesnetzagentur — Stand
01.06.2015. Online. http://www.bundesnetzagentur.de/cln_1431/DE/
Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/
Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/
kraftwerksliste-node.html [Retrieved: 2015-09-16].

Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und
Eisenbahnen (2014). Leitfaden zum EEG-Einspeisemanagement —
Abschaltrangfolge, Berechnung von Entschädigungszahlungen und
Auswirkungen auf die Netzentgelte. Version 2.1.

Burger, B., Kiefer, K., Kost, C., Nold, S., Philipps, S., Preu, R., Rentsch, J.,
Schlegl, T., Stryi-Hipp, G., Willeke, G., Wirth, H., Brucker, I., Häberle, A.,
and Warmuth, W. (2016). Photovoltaics report. Technical report,
Fraunhofer ISE, Freiburg, Germany. Online.
https://www.ise.fraunhofer.de/de/downloads/pdf-
files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf
[Retrieved: 2016-11-01].

Bush, S. F. (2014). Smart Grid — Communication-enabled Intelligence for the
Electric Power Grid. Wiley IEEE Series. John Wiley & Sons, Chichester,
United Kingdom, 1st edition.

http://www.bundesnetzagentur.de/cln_1431/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1431/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1431/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1431/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf
https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf

BIBLIOGRAPHY 213

Butler, K. L., Sarma, N., and Prasad, V. R. (1999). A new method of network
reconfiguration for service restoration in shipboard power systems. In IEEE
Transmission and Distribution Conference, volume 2, pages 658–662, New
Orleans, LA, USA. IEEE.

Calpe, C. (2015). DISCERN — distributed intelligence for cost-effective and
reliable distribution network operation. IEEE Smart Grid. Online.
http://smartgrid.ieee.org/newsletters/july-2015/discern-
distributed-intelligence-for-cost-effective-and-reliable-
distribution-network-operation [Retrieved: 2016-11-01].

Cannon, R. (2010). Potential impacts on communications from IPv4
exhaustion & IPv6 transition. Staff Working Paper 3, Federal
Communications Commission, Washingtion, DC, USA.

Cao, L. C. L., Gorodetsky, V., and Mitkas, P. (2009). Agent mining: The
synergy of agents and data mining. IEEE Intelligent Systems, 24(3):64–72.

Carlin, P. W., Laxson, A. S., and Muljadi, E. B. (2003). The history and state
of the art of variable-speed wind turbine technology. Wind Energy,
6(2):129–159.

Chan, M. C. and Ramjee, R. (2005). TCP/IP performance over 3G wireless
links with rate and delay variation. Wireless Networks, 11(1-2):81–97.

Chwif, L., Barretto, M. R. P., and Paul, R. J. (2000). On simulation model
complexity. In Proceedings of the 32nd conference on Winter Simulation,
pages 449–455, Orlando, FL, USA. Society for Computer Simulation
International.

Clerc, M. (2012). Standard particle swarm optimisation. Technical report,
HAL.

Cliff, D. (1997). Minimal-intelligence agents for bargaining behaviors in
market-based environments. Technical Report September 1996, School of
Cognitive and Computing Sciences, University of Sussex, Brighton, United
Kingdom.

Coates, M. (2013). Revoking trust in two TurkTrust certificates. Technical
report, Mozilla Cooperation. Online.
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-
two-turktrust-certficates/ [Retrieved: 2016-11-02].

http://smartgrid.ieee.org/newsletters/july-2015/discern-distributed-intelligence-for-cost-effective-and-reliable-distribution-network-operation
http://smartgrid.ieee.org/newsletters/july-2015/discern-distributed-intelligence-for-cost-effective-and-reliable-distribution-network-operation
http://smartgrid.ieee.org/newsletters/july-2015/discern-distributed-intelligence-for-cost-effective-and-reliable-distribution-network-operation
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/

214 BIBLIOGRAPHY

Coltun, R., Ferguson, D., Moy, J., and Lindem, A. (2008). OSPF for IPv6.
RFC 5340, Internet Engineering Task Force (IETF).

Courtois, P.-J. (1985). On time and space decomposition of complex structures.
Communications of the ACM, 28(6):590–603.

Cowie, J. H., Nicol, D. M., and Ogielski, A. T. (1999). Modeling the global
internet. Computing in Science & Engineering, 1(1):30–38.

cppreference.com Contributors (2015). std::next_permutation. Online.
http://en.cppreference.com/w/cpp/algorithm/next_permutation
[Retrieved: 2016-11-02].

Cybenko, G. (1988). Continuous valued neural networks with two hidden
layers are sufficient. Technical report, Department of Computer Science,
Tufts University, Medford/Somerville, MA, USA.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314.

Dantzig, T., Mazur, J., and Mazur, B. (2007). Number: The Language of
Science. A Plume Book—The Masterpiece Science Edition. Plume.

Davidson, E. M., McArthur, S. D. J., McDonald, J. R., Cumming, T., and
Watt, I. (2006). Applying multi-agent system technology in practice:
Automated management and analysis of SCADA and digital fault recorder
data. IEEE Transactions on Power Systems, 21(2):559–567.

Decker, B. L. (2000). Department of defense world geodetic system 1984
(WGS84). NIMA TR 8350.2, National Imagery and Mapping Agency,
Bethesda, MD, USA.

Deering, S. and Hinden, R. (1998). Internet protocol, version 6 (IPv6)
specification. RFC 2460, Internet Engineering Task Force (IETF).

dena — Deutsche Energie-Agentur (2013). Stromumwandlung durch
Transformatoren. Online.
http://www.effiziente-energiesysteme.de/themen/intelligente-
stromnetze/stromumwandlung.html [Retrieved 2015-09-16].

Deutsche Presseagentur (2014). Batteriepark soll Stromschwankungen
ausgleichen. Freie Presse. Date: 2014-09-15.

http://en.cppreference.com/w/cpp/algorithm/next_permutation
http://www.effiziente-energiesysteme.de/themen/intelligente-stromnetze/stromumwandlung.html
http://www.effiziente-energiesysteme.de/themen/intelligente-stromnetze/stromumwandlung.html

BIBLIOGRAPHY 215

Dierks, T. and Rescorla, E. (2008). The transport layer security (TLS)
protocol version 1.2. RFC 5246, Internet Engineering Task Force (IETF).
Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271. doi:10.1007/BF01386390.

Dijkstra, E. W. (1982). On the role of scientific thought. In Dijkstra, E. W.,
editor, Selected Writings on Computing: A Personal Perspective, chapter 10,
pages 60–66. Springer, New York, NY, USA.

Dresig, F. (1992). Gruppierung: Theorie und Anwendung in der Logiksynthese.
Number 145 in Fortschritt-Berichte der VDI-Zeitschriften, Reihe
Elektrotechnik, Elektronik. VDI-Verlag, Düsseldorf, Germany.

Droms, R. (1999). Automated configuration of TCP/IP with DHCP. IEEE
Internet Computing, 3(4):45–53.

Ehrenberg, A. S. C. (1999). What we can get from graphs, and why. Journal
of Targeting, Measurement and Analysis for Marketing, 8(2):113–134.

Elman, J. L. (1990). Finding structure in time. Cognitive Science,
14(2):179–211.

ENERCON GmbH (2011). Enercon Produktübersicht. Online.
http://www.enercon.de/p/downloads/ENERCON_P_D_web.pdf [Retrieved:
2013-02-11].

ETSI (2012). Open smart grid protocol. ETSI Group Specification GS OSG
001, European Telecommunications Standards Institute, Sophia Antipolis,
France.

Euler, E. (2001). The failures of the mars climate orbiter and mars polar
lander—a perspective from the people involved. Advances in Astronautical
Sciences, 107:635–655.

European Parliament, Council (2009). Directive 2009/28/EC of the European
Parliament and of the Council of 23 April 2009 on the promotion of the use
of energy from renewable sources and amending and subsequently repealing
Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). Official
Journal of the European Union. Date of effect: 2009-06-25.

http://www.enercon.de/p/downloads/ENERCON_P_D_web.pdf

216 BIBLIOGRAPHY

Ewald, R. and Uhrmacher, A. M. (2012). Setting up simulation experiments
with SESSL. In Proceedings of the 2012 Winter Simulation Conference
(WSC’ 12), page 379, Berlin, Germany. Curran Associates.

Ewald, R. and Uhrmacher, A. M. (2014). SESSL: A domain-specific language
for simulation experiments. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 24(2):11.

Fall, K. R. and Stevens, W. R. (2012). TCP/IP Illustrated: The Protocols,
volume 1. Addison-Wesley, Upper Saddle River, New Jersey, USA, 2nd

edition.

FAZ.NET (2015). „Wir haben heute alle zusammen Geschichte geschrieben“.
Frankfurter Allgemeine Zeitung. Online. http://www.faz.net/aktuell/
wirtschaft/klimagipfel/weltklimavertrag-angenommen-wir-haben-
heute-alle-zusammen-geschichte-geschrieben-13963330.html
[Retrieved: 2016-11-02].

Ferguson, N. and Schneier, B. (2003). Practical Cryptography. John Wiley &
Sons, New York, NY, USA.

Fishman, G. S. (2013). Discrete-Event Simulation: Modeling, Programming,
and Analysis. Springer Series in Operations Research. Springer Science &
Business Media, New York, NY, USA.

Fleischhauer, J. and Nelles, R. (2007). Brand im Atomkraftwerk Krümmel:
Willkommener Störfall. Spiegel Online. Online.
http://www.spiegel.de/jahreschronik/a-521391.html [Retrieved:
2016-11-01].

Flosdorff, R. and Hilgarth, G. (2005). Elektrische Energieverteilung.
Vieweg+Teubner, Stuttgart, Germany, 9th edition.

Fox-Penner, P. (2010). Smart Power: Climate Change, the Smart Grid, and
the Future of Electric Utilities. Island Press, Washington, DC, USA.

Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph drawing by
force-directed placement. Software-Practice and Experience, 21:1129–1164.

Fujimoto, Y. (2006). Distribution test feeders. Online. http:
//www.hayashilab.sci.waseda.ac.jp/RIANT/riant_test_feeder.html
[Retrieved: 2016-11-02].

http://www.faz.net/aktuell/wirtschaft/klimagipfel/weltklimavertrag-angenommen-wir-haben-heute-alle-zusammen-geschichte-geschrieben-13963330.html
http://www.faz.net/aktuell/wirtschaft/klimagipfel/weltklimavertrag-angenommen-wir-haben-heute-alle-zusammen-geschichte-geschrieben-13963330.html
http://www.faz.net/aktuell/wirtschaft/klimagipfel/weltklimavertrag-angenommen-wir-haben-heute-alle-zusammen-geschichte-geschrieben-13963330.html
http://www.spiegel.de/jahreschronik/a-521391.html
http://www.hayashilab.sci.waseda.ac.jp/RIANT/riant_test_feeder.html
http://www.hayashilab.sci.waseda.ac.jp/RIANT/riant_test_feeder.html

BIBLIOGRAPHY 217

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995a). Design Patterns:
Elements of Reusable Object-Oriented Software, chapter 4.6, pages 205–206.
Addison-Wesley Professional Computing Series. Addison-Wesley, Reading,
MA, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995b). Design Patterns:
Elements of Reusable Object-Oriented Software, chapter 3.3, pages 107–116.
Addison-Wesley, Reading, MA, USA.

Ghosh, T. K. and Prelas, M. A. (2009). Energy Resources and Systems, volume
1, Fundamentals and Non-Renewable Resources. Springer Science+Business
Media, Dordrecht, The Netherlands, 1st edition.

Goldstein, B., Hiriart, G., Bertani, R., Bromley, C., Gutiérrez-Negrín, L.,
Huenges, E., Muraoka, H., Ragnarsson, A., Tester, J., and Zui, V. (2011).
Geothermal energy. In IPCC Special Report on Renewable Energy Sources
and Climate Change Mitigation, chapter 4, pages 401–436. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

Greenwald, A. R. and Kephart, J. O. (1999). Shopbots and pricebots. In 16th

Joint International Conference on Artificial Intelligence (JICAI), pages
506–511, Stockholm, Sweden. Morgan Kauffmann.

Ha, S., Rhee, I., and Xu, L. (2008). CUBIC: a new TCP-friendly high-speed
TCP variant. ACM SIGOPS Operating Systems Review, 42(5):64–74.

Haberman, B. (2002). Allocation guidelines for IPv6 multicast addresses. RFC
3307, Internet Engineering Task Force (IETF).

Handley, M. (2006). Why the internet only just works. BT Technology Journal,
24(3):119–129.

Hebb, D. O. (2012). The organization of behavior: A neuropsychological theory.
Routledge, Taylor & Francis Group, New York, NY, USA.

Henke, C., Siddiqui, A., and Khondoker, R. (2010). Network functional
composition: State of the art. In 2010 Australasian Telecommunication
Networks and Applications Conference (ATNAC 2010), pages 43–48,
Auckland, New Zealand.

Heuck, K., Dettmann, K.-D., and Schulz, D. (2010). Elektrische
Energieversorgung: Erzeugung, Übertragung und Verteilung elektrischer

218 BIBLIOGRAPHY

Energie für Studium und Praxis. Studium: Elektrotechnik. Vieweg+Teubner
Verlag/Springer Fachmedien, Wiesbaden, Germany, 8th edition.

Higgins, N., Vyatkin, V., Nair, N. K. C., and Schwarz, K. (2011). Distributed
power system automation with IEC 61850, IEC 61499, and intelligent
control. IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, 41(1):81–92.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8):1735–1780.

Holma, H. and Toskala, A. (2007). HSDPA/HSUPA for UMTS: high speed
radio access for mobile communications. John Wiley & Sons, Chichester,
United Kingdom.

Huntington, E. V. (1904). Sets of independent postulates for the algebra of
logic. Transactions of the American Mathematical Society, 5(3):288–288.

Huntington, E. V. (1933a). Boolean algebra. a correction to “new sets of
independent postulates for the algebra of logic with special reference to
Whitehead and Russell’s principia mathematica”. Transactions of the
American Mathematical Society, 35(2):557–558.

Huntington, E. V. (1933b). New sets of independent postulates for the algebra
of logic with special reference to Whitehead and Russell’s principia
mathematica. Proceedings of the National Academy of Sciences of the United
States of America, 35(1):274–304.

Hyyryläinen, J. and Jantunen, I. (2006). SSI protocol specification, version 1.2.
Technical report, Nokia. Online. http://www.janding.fi/iiro/papers/
SSI%20protocol%20specification_12.pdf [Retrieved 2016-11-02].

IEEE Standards Association (2015). IEEE standards registration authority.
Online. https://regauth.standards.ieee.org/standards-ra-
web/pub/view.html [Retrieved: 2016-11-02].

Igel, C. and Hüsken, M. (2000). Improving the Rprop learning algorithm. In
Proceedings of the Second ICSC International Symposium on Neural
Computation (NC 2000), pages 115–121, Berlin, Germany. ICSC Academic
Press.

Igel, C. and Hüsken, M. (2003). Empirical evaluation of the improved Rprop
learning algorithms. Neurocomputing, 50:105–123.

http://www.janding.fi/iiro/papers/SSI%20protocol%20specification_12.pdf
http://www.janding.fi/iiro/papers/SSI%20protocol%20specification_12.pdf
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html

BIBLIOGRAPHY 219

Imroz Sohel, M., Sellier, M., Brackney, L. J., and Krumdieck, S. (2009).
Efficiency improvement for geothermal power generation to meet summer
peak demand. Energy Policy, 37(9):3370–3376.

Innis, G. S. and Rexstad, E. (1983). Simulation model simplification
techniques. Simulation, 41(1):7–15.

Inoue, T., Takano, K., Watanabe, T., Kawahara, J., Yoshinaka, R., Kishimoto,
A., Tsuda, K., Minato, S.-I., and Hayashi, Y. (2014). Distribution loss
minimization with guaranteed error bound. IEEE Transactions on Smart
Grid, 5(1):102–111.

Institute of Electrical and Electronics Engineers (IEEE) (2012a). IEEE
802.11™: Wireless lans. Technical report, IEEE Standards Association, New
York, NY, USA.

Institute of Electrical and Electronics Engineers (IEEE) (2012b). IEEE
802.3™-2012 — IEEE standard for ethernet. Technical report, IEEE
Standards Association, New York, NY, USA.

International Atomic Energy Agency (2015). Power reactor information system.
Online. https://www.iaea.org/pris/ [Retrieved 2016-11-02].

International Standards Organization (ISO) (2004). Data elements and
interchange formats — information interchange — representation of dates
and times. ISO 8601:2004, International Organization for Standardization,
Geneva, Switzerland.

International Standards Organization (ISO) (2005). IEC 61970. Technical
report, International Organization for Standardization, Geneva, Switzerland.

International Standards Organization (ISO) (2012). Information technology —
Control network protocol — Part 1: Protocol stack. Technical Report
14908-1:2012, International Organization for Standardization, Geneva,
Switzerland.

Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier,
T. M., and Powalla, M. (2014). Properties of Cu(In,Ga)Se2 solar cells with
new record efficiencies up to 21.7%. physica status solidi rrl — rapid
research letters, 9(1):28–31.

https://www.iaea.org/pris/

220 BIBLIOGRAPHY

Jaeger, T., Sailer, R., and Zhang, X. (2003). Analyzing integrity protection in
the SELinux example policy. In Proceedings of the 12th Conference on
USENIX Security Symposium (SSYM’03), volume 12, Berkeley, CA, USA.
USENIX Association.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach.
Advances in Connectionist Theory Speech, 121(ICS-8604):471–495.

Jordan, M. I. (1995). Why the logistic function? A tutorial discussion on
probabilities and neural networks. Computational Cognitive Science
Technical Report 9503, Massachusetts Institute of Technology, Cambridge,
MA, USA.

Jovanovic, P. and Neves, S. (2015). Dumb crypto in smart grids: Practical
cryptanalysis of the open smart grid protocol. In 22nd International
Workshop on Fast Software Encryption, pages 297–316, Istanbul, Turkey.

Judd, J. S. (1990). Neural network design and the complexity of learning. MIT
Press, Cambridge, MA, USA.

Kam, T., Villa, T., and Brayton, R. (1998). Multi-valued decision diagrams:
theory and applications. Multiple-Valued Logic, 4(1):9–62.

Kelton, W. D. and Law, A. M. (2000). Simulation modeling and analysis.
McGraw-Hill Series in Industrial Engineering and Management Science.
McGraw-Hill Education, New York, NY, USA, 3rd edition.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In
Proceedings of the 1995 IEEE International Conference on Neural Networks,
volume 3, pages 1942–1948, Perth, Australia. The University of Western
Australia, IEEE.

Kent, S. and Seo, K. (2005). Security architecture for the internet protocol.
RFC 4301, Internet Engineering Task Force (IETF). Updated by RFC 6040.

Kephart, J. O. (2002). Software agents and the route to the information
economy. In Proceedings of the National Academy of Sciences of the United
States of America, volume 99, pages 7207–7213, Washington, DC, USA.

Kephart, J. O., Hanson, J. E., and Greenwald, A. R. (2000). Dynamic pricing
by software agents. Computer Networks, 32(6):731–752.

BIBLIOGRAPHY 221

Kim, Y.-J., Kolesnikov, V., Kim, H., and Thottan, M. (2011). SSTP: a scalable
and secure transport protocol for smart grid data collection. In 2011 IEEE
International Conference on Smart Grid Communications
(SmartGridComm), pages 161–166, Bruxelles, Belgium. IEEE.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598):671–680.

Knaak, N. and Page, B. (2006). Applications and extensionds of the unified
modelling language UML 2 for discrete event simulation. Simulation,
7(6):33–43.

Knott, C. G. (1911). Quote from undated letter from Maxwell to Tait, page
215. Cambridge University Press, Cambridge, United Kingdom.

Koritarov, V. S. (2004). Real-world market representation with agents. IEEE
Power and Energy Magazine, 2(4):39–46.

Kreher, R. and Ruedebusch, T. (2007). UMTS Signaling: UMTS Interfaces,
Protocols, Message Flows and Procedures Analyzed and Explained. John
Wiley & Sons, Chichester, United Kingdom.

Kutter, I. and Rauner, M. (2012). „Das wäre ein Riesenproblem“. Die ZEIT,
(50).

Lai, Y.-T. (1993). Logic verification and synthesis using function graphs. PhD
thesis, Computer Engineering, University of Southern California, Los
Angeles, CA, USA.

Lalis, J. T., Gerardo, B. D., and Byun, Y.-C. (2014). An adaptive stopping
criterion for backpropagation learning in feedforward neural network.
International Journal of Multimedia and Ubiquitous Energineering,
9(8):149–156.

Landauer, R. (1961). Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 5(3):183–191.

Law, A. M. (1991). Simulation-models level of detail determines effectiveness.
Industrial Engineering, 23(10):16.

Le Cun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage.
Advances in Neural Information Processing Systems, 2(1):598–605.

222 BIBLIOGRAPHY

Leach, P., Mealling, M., and Salz, R. (2005). Universally unique identifier
(UUID) URN namespace. RFC 4122, Internet Engineering Task Force
(IETF). Online. https://www.ietf.org/rfc/rfc4122.txt [Retrieved:
2016-11-02].

Lee, Y., Durand, A., Woodyatt, J., and Droms, R. (2011). Dual-stack lite
broadband deployments following IPv4 exhaustion. RFC 6333, Internet
Engineering Task Force (IETF).

Liao, G.-C. and Tsao, T.-P. (2006). Application of a fuzzy neural network
combined with a chaos genetic algorithm and simulated annealing to
short-term load forecasting. IEEE Transactions on Evolutionary
Computation, 10(3):330–340.

Liu, Z., Gao, W., Wan, Y.-H., and Muljadi, E. (2012). Wind power plant
prediction by using neural networks. In Proceedings of the 2012 IEEE
Energy Conversion Congress and Exposition (ECCE), pages 3154–3160,
Raleigh, NC, USA. IEEE.

Lobao, E. C. and Porto, A. J. V. (1997). A simulation study systematization.
In Proceedings of the XVII ENEGEP — National Congress of Industrial
Engineering, Gramado, Rio Grande do Sul, Brazil.

LoRa® Alliance (2016). LoRa® Technoloy. Online.
http://www.lora-alliance.org/What-Is-LoRa/Technology [Retrieved:
2016-11-01].

Lysaght, P., Stockwood, J., Law, J., and Girma, D. (1994). Artificial neural
network implementation on a fine-grained FPGA. In Hartenstein, R. W. and
Servít, M. Z., editors, Proceedings of the 4th International Workshop on
Field-Programmable Logic and Applications (FPL’94), pages 421–431,
Prague, Czech Republic. Springer.

MacDowell, J., Dutta, S., Richwine, A., Achilles, S., and Miller, N. (2015).
Serving the future. IEEE power & energy magazine, 13(6):22–30.

Manwell, J. F., McGowan, J. G., and Rogers, A. L. (2010). Wind Energy
Explained: Theory, Design and Application. John Wiley & Sons, Chichester,
United Kingdom, 2nd edition.

Maqsood, I., Khan, M., and Abraham, A. (2004). An ensemble of neural
networks for weather forecasting. Neural Computing and Applications,
13(2):112–122.

https://www.ietf.org/rfc/rfc4122.txt
http://www.lora-alliance.org/What-Is-LoRa/Technology

BIBLIOGRAPHY 223

Marlinspike, M. (2009). Defeating OCSP with the character ‘3’. Blackhat 2009.

Maxwell, J. C. (2011). Theory of Heat. Cambridge University Press,
Cambridge, United Kingdom.

McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L.,
Hatziargyriou, N. D., Ponci, F., and Funabashi, T. (2007a). Multi-agent
systems for power engineering applications—Part I: Concepts, approaches,
and technical challenges. IEEE Transactions on Power Systems,
22(4):1743–1752.

McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L.,
Hatziargyriou, N. D., Ponci, F., and Funabashi, T. (2007b). Multi-agent
systems for power engineering applications—Part II: Technologies, standards,
and tools for building multi-agent systems. IEEE Transactions on Power
Systems, 22(4):1753–1759.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
5(4):115–133.

Merrion, P. (2011). Pilot test of ComEd’s smart grid shows few consumers
power down to save money. Crain’s Chicago Business.

Minato, S.-I. (1993). Zero-suppressed BDDs for set manipulation in
combinatorial problems. In 30th ACM/IEEE Design Automation Conference,
pages 272–277, Dallas, TX, USA. IEEE.

Momoh, J. (2012). Smart Grid — Fundamentals of Design and Analysis. IEEE
Press Series on Power Energineering. IEEE Press, Piscataway, NJ, USA.

Mozer, M. C. (1989). A focused backpropagation algorithm for temporal
pattern recognition. Complex Systems, 3(4):349–381.

Nagata, T. and Sasaki, H. (2002). A multi-agent approach to power system
restoration. IEEE Transactions on Power Systems, 17(2):457–462.

Nagayama, S. and Sasao, T. (2007). Representations of elementary functions
using edge-valued MDDs. In Proceedings of The 37th International
Symposium on Multiple-Valued Logic (ISMVL 2007), Oslo, Norway. IEEE.

224 BIBLIOGRAPHY

Nara, K., Shiose, A., Kitagawa, M., and Ishihara, T. (1992). Implementation of
genetic algorithm for distribution systems loss minimum re-configuration.
IEEE Transactions on Power Systems, 7(3):1044–1051.

Nationaal Cyber Security Centrum (2011). Frauduleus uitgegeven
beveiligingscertificaat ontdekt. Online.
https://www.ncsc.nl/actueel/factsheets/factsheet-frauduleus-
uitgegeven-certificaat-ontdekt.html [Retrieved: 2016-11-02].

National Museum of American History (1919). Powering a generation of change.
Online. http://americanhistory.si.edu/powering/basics/load.htm
[Retrieved: 2016-11-01].

National Security Agency (2013). Security-enhanced linux. Online.
http://www.selinuxproject.org/ [Retrieved: 2016-11-02].

Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C. (2009). Comparison
of JSON and XML data interchange formats: A case study. Caine,
2009:157–162.

Nwana, H. S. (1996). Software agents: An overview. Knowledge Engineering
Review, 11(3):205–244.

Observ’ER, editor (2013). Fifteenth Inventory, chapter 3, pages 3–7.
Observ’ER, 146, rue de l’Université, Paris, France, 2013 edition.

Oeding, D. and Oswald, B. R. (2011). Elektrische Kraftwerke und Netze.
Springer, Berlin, Germany, 7th edition.

O’Malley, S. W. and Peterson, L. L. (1992). A dynamic network architecture.
ACM Transactions on Computer Systems, 10(2):110–143.

Omondi, A. R. and Rajapakse, J. C., editors (2006). FPGA Implementations
of Neural Networks, volume 365. Springer, Dordrecht, The Netherlands.

OPNET Technologies, Inc. (2015). OPNET Modeler. Online.
http://www.opnet.com/ [Retrieved: 2016-11-01].

Oswald, B. R. (2007). Verlust- und Verlustenergieabschätzung für das
380-kV-Leitungsbauvorhaben Wahle–Mecklar in der Ausführung als
Freileitung oder Drehstromkabelsystem. Technical report, Universität
Hannover, Hannover, Germany. Online.
http://www.netzausbau-niedersachsen.de/downloads/
verlustvergleichwahlemecklarfinalv2.pdf [Retrieved: 2016-11-01].

https://www.ncsc.nl/actueel/factsheets/factsheet-frauduleus-uitgegeven-certificaat-ontdekt.html
https://www.ncsc.nl/actueel/factsheets/factsheet-frauduleus-uitgegeven-certificaat-ontdekt.html
http://americanhistory.si.edu/powering/basics/load.htm
http://www.selinuxproject.org/
http://www.opnet.com/
http://www.netzausbau-niedersachsen.de/downloads/verlustvergleichwahlemecklarfinalv2.pdf
http://www.netzausbau-niedersachsen.de/downloads/verlustvergleichwahlemecklarfinalv2.pdf

BIBLIOGRAPHY 225

Padovan, B., Sackmann, S., Eymann, T., and Pippow, I. (2002). A prototype
for an agent-based secure electronic marketplace including reputation
tracking mechanisms. International Journal of Electronic Commerce,
6(4):93–113.

Peano, G. (1888). Calcolo Geometrico. Fratelli Bocca, Turin, Italy.

Pidd, M. (1999). Just modeling through: A rough guide to modeling.
Interfaces, 29(2):118–132.

Pipattanasomporn, M., Feroze, H., and Rahman, S. (2009). Multi-agent
systems in a distributed smart grid: Design and implementation. In Power
Systems Conference and Exposition, 2009. PSCE’09. IEEE/PES, pages 1–8.
IEEE.

Pöller, M. and Achilles, S. (2003). Aggregated wind park models for analyzing
power system dynamics. In Proceedings of the 4th International Workshop on
Large-Scale Integration of Wind Power and Transmission Networks for
Offshore Wind Farms, pages 1–10, Billund, Denmark.

Postel, J. (1980). User datagram protocol. RFC 768, Internet Engineering Task
Force (IETF).

Postel, J. (1981a). Internet protocol. RFC 791, Defense Advanced Research
Projects Agency.

Postel, J. (1981b). Transmission control protocol. RFC 793, University of
Southern California, Marina del Rey, CA, USA. Updated by RFCs 1122,
3168, 6093, 6528.

Posthoff, C. and Steinbach, B. (1979a). Binäre dynamische Systeme —
Algorithmen und Programme, volume 8. Technische Hochschule
Karl-Marx-Stadt, Karl-Marx-Stadt, German Democratic Republic.

Posthoff, C. and Steinbach, B. (1979b). Binäre Gleichungen — Algorithmen
und Programme, volume 1 of Wissenschaftliche Schriftenreihe der
Technischen Hochschule Karl-Marx-Stadt. Technische Hochschule
Karl-Marx-Stadt, Karl-Marx-Stadt, German Democratic Republic.

Posthoff, C. and Steinbach, B. (2004). Logic Functions and Equations: Binary
Models for Computer Science, chapter 9, pages 377–384. Springer, Dordrecht,
the Netherlands.

226 BIBLIOGRAPHY

Posthoff, C. and Steinbach, B. (2014). Solving the game of Sudoku. ICGA
Journal, 37(2):111–116.

Powell, L. (2005). Power System Load Flow Analysis. McGraw-Hill
Professional Engineering. McGraw-Hill, New York, NY, USA.

Reade, C. (1989). Elements of Functional Programming. International
Computer Science Series. Addison-Wesley, Wokingham, United Kingdom.

Redl, S., Weber, M., and Oliphant, M. (1998). GSM and Personal
Communications Handbook. Artech House Mobile Communications Series.
Artech House, Boston, MA, USA.

Rekhter, Y. and Li, T. (1995). A border gateway protocol 4 (BGP-4). RFC
4271, Internet Engineering Task Force (IETF). Updated by RFCs 6286,
6608, 6793, 7606, 7607, 7705.

Reuther, B. and Henrici, D. (2008). A model for service-oriented
communication systems. Journal of Systems Architecture, 54(6):594–606.

Richter, H. and Marz, L. (2000). Toward a standard process: the use of UML
for designing simulation models. In Proceedings of the 32nd Conference on
Winter Simulation, pages 394–398, Orlando, FL, USA. Society for Computer
Simulation International.

Riedmiller, M. (1994a). Advanced supervised learning in multi-layer
perceptrons — from backpropagation to adaptive learning algorithms.
Computer Standards & Interfaces, 16(3):265–278.

Riedmiller, M. (1994b). Rprop — description and implementation details.
Technical report, Institut für Logik, Komplexität und Deduktionssysteme,
University of Karlsruhe, Karlsruhe, Germany.

Riedmiller, M. and Braun, H. (1992). RPROP — a fast adaptive learning
algorithm. In Proceedings of the International Symposium on Computer and
Information Science VII, Dallas, TX, USA.

Robinson, S. (1994). Simulation projects: Building the right conceptual model.
Industrial Engineering-Norcross, 26(9):34–36.

Robinson, S. (2004). Simulation — The Practice of Model Development and
Use. John Wiley & Sons, Chichester, United Kingdom.

BIBLIOGRAPHY 227

Rogers, K. M., Klump, R., Khurana, H., Aquino-Lugo, A. a., and Overbye,
T. J. (2010). An authenticated control framework for distributed voltage
support on the smart grid. IEEE Transactions on Smart Grid, 1(1):40–47.

Rosenblatt, F. (1957). The perceptron: A perceiving and recognizing
automaton. Technical Report 85-460-1, Project PARA, Cornell Aeronautical
Laboratory, Ithaca, NY, USA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature, 323(6088):533–536.

Ruppert, M., Veith, E. M., and Steinbach, B. (2014). An evolutionary training
algorithm for artificial neural networks with dynamic offspring spread and
implicit gradient information. In Proceedings of the Sixth International
Conference on Emerging Network Intelligence (EMERGING 2014), Rome,
Italy. International Academy, Research, and Industry Association.

Russel, S. and Norvig, P. (2010). Artificial Intelligence — A Modern Approach.
Prentice Hall Series in Artificial Intelligence. Pearson Education, Boston,
MA, USA, 3rd edition.

Rybach, L. (2007). Geothermal sustainability assessment framework. Geo-Heat
Centre Quarterly Bulletin, 29(September):7.

Salt, J. D. (1993). Simulation should be easy and fun! In Proceedings of the
25th conference on Winter simulation, pages 1–5, Los Angeles, CA, USA.
ACM.

Santos, O. (2014). Global internet routing table reaches 512k milestone.
Online. http://blogs.cisco.com/sp/global-internet-routing-table-
reaches-512k-milestone [Retrieved: 2016-11-02].

Savola, P. (2011). Overview of the internet multicast addressing architecture.
RFC 6308, Internet Engineering Task Force (IETF).

Scalable Network Technologies (2016). Qualnet homepage. Online.
http://web.scalable-networks.com/content/qualnet [Retrieved:
2016-11-02].

Schultze-Melling, J. (2010). Directive 2006/24/EC (data rentention directive).
In Büllesbach, A., Gijrath, S., Poullet, Y., and Prins, C., editors, Concise
European IT Law. Kluwer Law International, Alphen aan den Rijn, The
Netherlands, 2nd edition.

http://blogs.cisco.com/sp/global-internet-routing-table-reaches-512k-milestone
http://blogs.cisco.com/sp/global-internet-routing-table-reaches-512k-milestone
http://web.scalable-networks.com/content/qualnet

228 BIBLIOGRAPHY

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,
Chaudhary, V., and Young, M. (2014). Machine learning: The high interest
credit card of technical debt. In SE4ML: Software Engineering for Machine
Learning (NIPS 2014 Workshop), pages 1–9, Montréal, Canada.

Sehgal, A., Perelman, V., Kuryla, S., and Schonwalder, J. (2012). Management
of resource constrained devices in the internet of things. IEEE
Communications Magazine, 50(12):144–149.

Seller, H. and Röderer, H. (2015). Stromausfall nach Explosion: Technischer
Defekt war Ursache. Badische Zeitung. Published 2015-07-14. Online.
http://www.badische-zeitung.de/ortenaukreis/stromausfall-nach-
explosion-technischer-defekt-war-ursache--107690745.html
[Retrieved: 2016-11-07].

Sesia, S., Toufik, I., and Baker, M. (2009). LTE: the UMTS Long Term
Evolution: From Theory to Practice. John Wiley & Sons, Chichester, United
Kingdom, 2nd edition.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal, 27:379–423.

Shannon, C. E. (1959). Coding theorems for a discrete source with a fidelity
criterion. In International Convention Record, volume 4, pages 142–163.
Institute of Radio Engineers.

Shannon, R. E. (1998). Introduction to the art and science of simulation. In
Medeiros, D. J., Watson, E. F., Carson, J. S., and Manivannan, M. S.,
editors, Proceedings of the 30th Conference on Winter Simulation, volume 1,
pages 7–14. ACM.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. In
Proceedings of IEEE International Conference on Evolutionary Computation,
pages 69–73. IEEE.

Sietsma, J. and Dow, R. (1988). Neural net pruning—why and how. In IEEE
International Conference on Neural Networks, pages 325–333, San Diego,
CA, USA.

Skinner, B. F. (1953). Science and Human Behavior. Macmillan, New York,
NY, USA, 1st edition.

http://www.badische-zeitung.de/ortenaukreis/stromausfall-nach-explosion-technischer-defekt-war-ursache--107690745.html
http://www.badische-zeitung.de/ortenaukreis/stromausfall-nach-explosion-technischer-defekt-war-ursache--107690745.html

BIBLIOGRAPHY 229

Slootweg, J. G., Haan, S. W. H. D., Polinder, H., and Kling, W. L. (2002).
Aggregated modelling of wind parks with variable speed wind turbines in
power system dynamics simulations. In 14th Power Tech Conference
Proceedings, pages 24–28, Sevilla, Spain. IEEE.

Smith, R. G. (1980). The Contract Net Protocol: High-level communication
and control in a distributed problem solver. IEEE Transactions on
Computer, C-29(12):1104–1113.

Sobeih, A., Hou, J. C., Kung, L. C., Li, N., Zhang, H., Chen, W. P., Tyan,
H. Y., and Lim, H. (2006). J-Sim: A simulation and emulation environment
for wireless sensor networks. IEEE Wireless Communications, 13(4):104–119.

Stallings, W. (2013). Cryptography and Network Security: Principles and
Practice. Prentice Hall, Upper Saddle River, NJ, USA, 6th edition.

Steinbach, B. (1984). Theorie, Algorithmen und Programme für den
rechnergestützten logischen Entwurf digitaler Systeme. Dissertation B,
Technische Hochschule Karl-Marx-Stadt, Karl-Marx-Stadt, German
Democratic Republic.

Steinbach, B. (1992). XBOOLE — A toolbox for modeling, simulation, and
analysis of large digital systems. System Analysis and Modelling Simulation,
9:297–312.

Steinbach, B. and Posthoff, C. (2012). Solutions of exceptionally complex
boolean problems. In Steinbach, B., editor, Proceedings of the 10th

International Workshop on Boolean Problems, pages 185–223, Freiberg,
Germany. Verlag der Technischen Universität Bergakademie Freiberg.

Steinbach, B. and Posthoff, C. (2014). Four-colored rectangle-free grids:
Four-colored rectangle-free grids of the size 12×21. In Steinbach, B., editor,
Recent Progress in the Boolean Domain, pages 121–144. Cambridge Scholars
Publishing, Newcastle upon Tyne, United Kingdom.

Steinbach, B. and Werner, M. (2014). XBOOLE-CUDA fast boolean
operations on the GPU. In Steinbach, B., editor, Proceedings of the 11th
International Workshop on Boolean Problems, pages 75–84, Freiberg,
Germany. Verlag der Technischen Universität Bergakademie Freiberg.

Sterner, M. and Stadler, I. (2014). Energiespeicher. Springer, Berlin, Germany,
1st edition.

230 BIBLIOGRAPHY

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F.,
Dabek, F., and Balakrishnan, H. (2003). Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions on
Networking, 11(1):17–32.

Sverdlik, Y. (2014). BGP routing table size limit blamed for tuesday’s website
outages. Online.
http://www.datacenterknowledge.com/archives/2014/08/13/bgp-
routing-table-size-limit-blamed-for-tuesdays-website-outages/
[Retrieved: 2016-11-02].

Tanenbaum, A. S. (2003). Computer Networks. Prentice Hall, Upper Saddle
River, NJ, USA, 4th edition.

The NS-3 Project (2015). NS-3 Homepage. Online. http://www.nsnam.org/
[Retrieved: 2016-11-01].

Tsang, Y., Coates, M., and Nowak, R. D. (2003). Network delay tomography.
IEEE Transactions on Signal Processing, 51(8):2125–2136.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, pages
433–460.

US-Canada Power System Outage Task Force (2004). Final report on the
August 14, 2003 blackout in the United States and Canada: Causes and
recommendations. Technical report, Office of Electricity Delivery & Energy
Reliability.

U.S. Department of Transportation, Federal Highway Administration, Office of
Operations (2013). Simplified guide to the incident command system for
transportation professionals. Online.
http://ops.fhwa.dot.gov/publications/ics_guide/ics_guide.pdf
[Retrieved: 2016-11-07].

Vale, Z., Pinto, T., Praça, I., and Morais, H. (2011). MASCEM: Electricity
markets simulation with strategic agents. IEEE Intelligent Systems,
26(2):9–17.

Varga, A. (2001). The OMNeT++ discrete event simulation system. In
Proceedings of the 15th European Simulation Multiconference, pages 319–324,
Prague, Czech Republic.

http://www.datacenterknowledge.com/archives/2014/08/13/bgp-routing-table-size-limit-blamed-for-tuesdays-website-outages/
http://www.datacenterknowledge.com/archives/2014/08/13/bgp-routing-table-size-limit-blamed-for-tuesdays-website-outages/
http://www.nsnam.org/
http://ops.fhwa.dot.gov/publications/ics_guide/ics_guide.pdf

BIBLIOGRAPHY 231

Varga, A. and Hornig, R. (2008). An overview of the OMNeT++ simulation
environment. In Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, page 60. Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering (ICST), ACM.

VASCO Data Security International, Inc. (2011). DigiNotar reports security
incident. Online.
https://www.vasco.com/company/about_vasco/press_room/
news_archive/2011/news_diginotar_reports_security_incident.aspx
[Retrieved: 2016-11-01].

VDMA Power Systems (2013). Fähigkeiten von Stromerzeugungsanlagen im
Energiemix. Technical report, Verband Deutscher Maschinen- und
Anlagenbau e.V. (VDMA), Frankfurt am Main, Germany.

Veith, E., Steinbach, B., and Windeln, J. (2014). A lightweight distributed
software agent for automatic demand-supply calculation in smart grids.
International Journal On Advances in Internet Technology, 7:97–113.

Veith, E. M. and Steinbach, B. (2015). Modeling demand and supply in a
smart grid. In Proceedings of the 24th International Workshop on
Post-Binary ULSI Systems, number May, pages 1–2, Waterloo, Canada.
University of Waterloo.

Veith, E. M., Steinbach, B., and Windeln, J. (2013). A lightweight messaging
protocol for smart grids. In Proceedings of the Fifth International
Conference on Emerging Network Intelligence (EMERGING 2013), pages
6–12, Porto, Portugal. IARIA XPS Press.

Vestas Wind Systems A/S (2012). 2 MW Platform. Online.
https://www.vestas.com/en/products/turbines/v110%202_0_mw#!2mw-
platform [Retrieved: 2016-11-02].

Vrudhula, S. B., Pedram, M., and Lai, Y.-T. (1996). Edge valued binary
decision diagrams. In Sasao, T. and Fujita, M., editors, Representations of
Discrete Functions, pages 109–132. Kluwer Academic, Boston, MA, USA.

Vyatkin, V., Zhabelova, G., Higgins, N., Schwarz, K., and Nair, N.-K. C.
(2010a). Towards intelligent smart grid devices with IEC 61850
interoperability and IEC 61499 open control architecture. In Transmission
and Distribution Conference and Exposition 2010 IEEE PES, volume 2,

https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vestas.com/en/products/turbines/v110%202_0_mw#!2mw-platform
https://www.vestas.com/en/products/turbines/v110%202_0_mw#!2mw-platform

232 BIBLIOGRAPHY

pages 1–8, Porto, Portugal. Instituto de Patologia e Imunologia Molecular da
Universidade do Porto (IPATIMUP), Faculdade de Ciências da Universidade
do Porto, Portugal, IEEE.

Vyatkin, V., Zhabelova, G., Higgins, N., Ulieru, M., Schwarz, K., and Nair,
N.-K. C. (2010b). Standards-enabled smart grid for the future energy web.
In Proceedings of the 1st Conference on Innovative Smart Grid Technologies
(ISGT), pages 1–9, Gothenburg, Sweden. IEEE.

Walling, R. and Shattuck, G. B. (2007). Distribution transformer thermal
behavior and aging in local-delivery distribution systems. In Proceedings of
the 19th Conference on Electricity Distribution, Vienna, Austria.

Wang, L., Chen, C., and Shen, T. (2014). Improvement of power flow
calculation with optimization factor based on current injection method.
Discrete Dynamics in Nature and Society, 2014.

Wang, Y. and Vassileva, J. (2003). Trust and reputation model in peer-to-peer
networks. In Proceedings of the Third International Conference on
Peer-to-Peer Computing (P2P 2003), pages 150–157, Linköping, Sweden.
IEEE.

Ward, S. C. (1989). Arguments for constructively simple models. Journal of
the operational research society, 40(2):141–153.

Willemain, T. R. (1994). Insights on modeling from a dozen experts.
Operations Research, 42(2):213–222.

Wooldridge, M. and Ciancarini, P. (2001). Agent-oriented software engineering:
The state of the art. In Agent-Oriented Software Engineering, pages 1–28.
Springer-Verlag, Heidelberg, Germany.

Xiong, L. and Liu, L. (2003). A reputation-based trust model for peer-to-peer
e-commerce communities. In IEEE International Conference on
E-Commerce (CEC 2003), pages 275–284, Newport Beach, CA, USA. IEEE.

Zervos, A., Lins, C., and Muth, J. (2010). RE-thinking 2050 — a 100%
renewable energy vision for the European Union. Online.
http://ec.europa.eu/clima/consultations/docs/0005/registered/
91650013720-46_european_renewable_energy_council_en.pdf
[Retrieved: 2016-11-02].

http://ec.europa.eu/clima/consultations/docs/0005/registered/91650013720-46_european_renewable_energy_council_en.pdf
http://ec.europa.eu/clima/consultations/docs/0005/registered/91650013720-46_european_renewable_energy_council_en.pdf

BIBLIOGRAPHY 233

Zhabelova, G. and Vyatkin, V. (2011). Multi-agent smart grid automation
architecture based on IEC 61850/61499 intelligent logical nodes. IEEE
Transactions on Industrial Electronics, 59(5):2351–2362.

Zhu, J. and Sutton, P. (2003). FPGA implementations of neural networks—a
survey of a decade of progress. In International Conference on Field
Programmable Logic and Applications, pages 1062–1066, Lisbon, Portugal.
Springer.

Zimmermann, H. (1980). OSI reference model—the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communications,
COM-28(4):425–432.

Zitterbart, M., Stiller, B., and Tantawy, A. N. (1993). Model for flexible
high-performance communication subsystems. IEEE Journal on Selected
Areas in Communications, 11(4):507–518.

Zyp, K., SitePen (USA), and Court, G. (2013a). JSON Schema: Core
definitions and terminology. draft-zyp-json-schema 04, Internet Engineering
Task Force (IETF).

Zyp, K., SitePen (USA), and Court, G. (2013b). JSON Schema: Interactive
and non-interactive validation. draft-fge-json-schema-validation 00, Internet
Engineering Task Force (IETF).

Logos Verlag Berlin

ISBN 978-3-8325-4512-3

“Somewhere, there is always wind blowing or the sun shining.” This

maxim could lead the global shift from fossil to renewable energy sources,

suggesting that there is enough energy available to be turned into

electricity. But the already impressive numbers that are available today,

along with the European Union’s 20-20-20 goal—to power 20% of the

EU energy consumption from renewables until 2020—, might mislead us

over the problem that the go-to renewables readily available rely on a

primary energy source mankind cannot control: the weather.

At the same time, the notion of the smart grid introduces a vast array of

new data coming from sensors in the power grid, at wind farms, power

plants, transformers, and consumers. The new wealth of information

might seem overwhelming, but can help to manage the different actors

in the power grid. This book proposes to view the problem of power

generation and distribution in the face of increased volatility as a

problem of information distribution and processing.

It enhances the power grid by turning its nodes into agents that forecast

their local power balance from historical data, using artificial neural

networks and the multi-part evolutionary training algorithm described

in this book. They pro-actively communicate power demand and supply,

adhering to a set of behavioral rules this book defines, and finally solve

the 0-1 knapsack problem of choosing offers in such a way that not

only solves the disequilibrium, but also minimizes line loss, by elegant

modeling in the Boolean domain. The book shows that the Divide-et-

Impera approach of a distributed grid control can lead to an efficient,

reliable integration of volatile renewable energy sources into the power

grid.

	1 Introduction
	1.1 Motivation
	1.2 Contribution and Constraints
	1.3 Overview

	2 Fundamentals and Related Work
	2.1 The Electric Power Grid
	2.2 Simulation and Modeling
	2.3 Computer Networks
	2.4 Artificial Intelligence
	2.5 Boolean Algebra

	3 Approaching the Smart Grid by Modeling and Simulation
	3.1 Models of the Power Grid
	3.2 Reference Situation
	3.3 Smart Grid Simulation Environment
	3.4 Data Quality Assessment and its Influence on Simulation Runs

	4 The Universal Grid Agent
	4.1 Modular Design Principle
	4.2 Interfaces
	4.3 Agent Behavior

	5 Forecasting Power Demand and Supply
	5.1 Design of the Forecaster Universal Smart Grid Agent Module
	5.2 The Multipart Evolutionary Training Algorithm for Artificial Neural Networks
	5.3 Forecasting Accuracy and Efficiency

	6 Social Component: Inter-Agent Communication
	6.1 Motivation
	6.2 Design Principles
	6.3 Data Encoding
	6.4 Analysis

	7 Modeling and Calculating Demand and Supply for Agents
	7.1 Agent-Local Power Balance
	7.2 The Combinatorial Demand-Supply Problem
	7.3 A Boolean Model of Demand and Supply
	7.4 Evaluation of Efficiency

	8 Conclusion

