
Human Data Understanding - Sensors, Models, Knowledge, Bd. 6
Thus, medicine could benefit from an automated, continuous and objective measure of pain. One solution is to use automated pain recognition in the form of machine learning. The aim is to train learning algorithms on sensory data so that they can later provide a pain rating. This thesis summarises several approaches to improve the current state of pain recognition systems based on physiological sensor data. First, a novel pain database is introduced that evaluates the use of subjective and objective pain labels in addition to wearable sensor data for the given task.
Furthermore, different feature engineering and feature learning approaches are compared using a fair framework to identify the best methods. Finally, different techniques to increase the interpretability of the models are presented. The results show that classical hand-crafted features can compete with and outperform deep neural networks. Furthermore, the underlying features are easily retrieved from electrodermal activity for automated pain recognition, where pain is often associated with an increase in skin conductance.
Preview (PDF)
Keywords:
| 66.00 € | ||
| in stock | ||
| 60.00 € | ||
| 76.00 € | ||
| 80.00 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de