The main contribution is a novel model predictive control scheme, which uses reduced models for linear time-invariant systems. An intermediate result is a generalized bound for the error between the high-dimensional and the reduced model, while simulating the reduced model. This error bounding system is included in the model predictive control scheme in order to guarantee 1) asymptotic stability, 2) satisfaction of hard input and state constraints, 3) a bound for the cost functional value, and 4) minimization of the infinite horizon cost functional for the high-dimensional model. For discrete-time models, it is shown that the optimization problem of the model predictive control scheme can be reformulated as a second-order cone program. The applicability of the proposed methods is demonstrated by means of a nonisothermal tubular chemical reactor.
A further contribution is a model reduction procedure, which approximates the input-output map of continuous-time nonlinear ordinary differential equations. This method allows to preserve the location and local exponential stability of multiple steady states.
Preview (PDF)
Keywords:
38.50 € | ||
in stock | ||
37.50 € | ||
48.50 € | ||
52.50 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de