The first example, a two-parameter family of MC H surfaces in ∑(κ) × R with H ∈ [0,1/2] and κ + 4H² ≤ 0, has genus 0,2k ends and k-fold dihedral symmetry, k ≥ 2. The existence of the minimal sister follows from the construction of a mean convex domain. The projection of the domain is non-convex.
The second example is an MC 1/2 surface in H² ∈ R with k ends, genus 1 and k-fold dihedral symmetry, k ≥ 3. One has to solve two period problems in the construction. The first period guarantees that the surface has exactly one horizontal symmetry. For the second period the control of a horizontal mirror curve proves the dihedral symmetry.
For H=1/2 all surfaces are Alexandrov-embedded.
Wollen auch Sie Ihre Dissertation veröffentlichen?
KAUFOPTIONEN
35.00 € | ||
auf Lager | ||
Versandkostenfrei innerhalb Deutschlands | ||
34.00 € | ||
45.00 € | ||
49.00 € | ||
Sie können das eBook (PDF) entweder einzeln herunterladen oder in Kombination mit dem gedruckten Buch (Bundle) erwerben. Der Erwerb beider Optionen wird über PayPal abgerechnet - zur Nutzung muss aber kein PayPal-Account angelegt werden. Mit dem Erwerb des eBooks bzw. Bundles akzeptieren Sie unsere Lizenzbedingungen für eBooks.
Bei Interesse an Multiuser- oder Campus-Lizenzen (MyLibrary) füllen Sie bitte das Formular aus oder schreiben Sie eine email an order@logos-verlag.de