A novel method to analyse the time domain signal was developed, that splits the time domain signal up in four characteristic functions. Those characteristic functions correspond to rheological phenomena. In some cases the intensities of the Fourier components can interfere negatively.
FD-virus particles were used as a rod-like model system, which already shows a highly non-linear behaviour at concentrations below 1. % wt. Predictions for the dependence of the higher harmonics from the strain amplitude described the non-linear behaviour well at large, but no so good at small strain amplitudes. Ad- ditionally the trends of the rheological behaviour could be described by a theory for rod-like particles.
An existing rheo-optical set-up was enhanced by reducing the background birefringence by a factor of 20 and by increasing the time resolution by a factor of 24. Additionally a combination of FT-rheology and rheo-optics was achieved.
The influence of a constant shear field on the crystallisation process of zinc oxide in the presence of a polymer was examined. The crystallites showed a reduction in length by a factor of 2. The directed addition of polymers in combi- nation with a defined shear field can be an easy way for a defined change of the form of crystallites.
KAUFOPTIONEN
37.50 € | ||
auf Lager | ||
Versandkostenfrei innerhalb Deutschlands |
Wollen auch Sie Ihre Dissertation veröffentlichen?