MENÜ MENÜ  

cover

Interacting Catalytic Feller Diffusions: Finite System Scheme and Renormalisation

Christian Penßel

ISBN 978-3-8325-0528-8
295 pages, year of publication: 2004
price: 40.50 €
In dieser Dissertation werden katalytisch interagierende Fellersche Diffusionen untersucht. Der betrachtete Prozess ist ein katalytisches Zweitypenmodell; er wird definiert als Lösung eines abzählbaren Systems stochastischer Differentialgleichungen.

Die Betrachtungen umfassen folgende Punkte:

1. Zunächst wird das Langzeitverhaltens auf den unendlichen Gittern Zd analysiert. Hier ist insbesondere der sogenannte Reaktantprozess von Interesse, da nicht a priori klar ist, in welcher Form sich hier die dimensionsabhängige Dichotomie des Langzeitverhaltens des Katalysten niederschlägt.

2. Es wird ein dem 1990 von Cox und Greven eingeführten "Finite System Scheme" entsprechendes Theorem bewiesen. Im Mittelpunkt steht das Verhalten des Prozesses auf Tori im hochdimensionalen Fall. Es stellt sich heraus, dass im Limes großer Systeme ein enger Zusammenhang besteht zwischen zeitreskaliertem Torussystem und den Gleichgewichten der Gittersysteme.

3. Schließlich wird die hierarchische Gruppe als zugrundeliegende räumliche Struktur gewählt. Der 1993 von Dawson und Greven eingeführten "Multiple Space Time Scale Analysis" entsprechend wird auch hier unter Verwendung verschiedener Skalierungen der Zeit der Limes großer Systeme betrachtet. Eine entscheidende Rolle kommt der sogenannten Wechselwirkungskette zu; sie beschreibt, wie die betrachteten hierarchischen Ebenen einander beeinflussen.

Keywords:
  • Stochastik
  • Vielteilchensystem
  • Superprozesse
  • Stochastische Analysis

Buying Options

40.50 €