Advances in Information Systems and Management Science, Bd. 69
Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge.
In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms.
Leseprobe (PDF)
Keywords:
Kaufoptionen
Versandkostenfrei innerhalb Deutschlands | ||
*Sie können das eBook (PDF) entweder einzeln herunterladen oder in Kombination mit dem gedruckten Buch (eBundle) erwerben. Der Erwerb beider Optionen wird über PayPal abgerechnet - zur Nutzung muss aber kein PayPal-Account angelegt werden. Mit dem Erwerb des eBooks bzw. eBundles akzeptieren Sie unsere Lizenzbedingungen für eBooks.
Bei Interesse an Multiuser- oder Campus-Lizenzen (MyLibrary) füllen Sie bitte das Formular aus oder schreiben Sie eine email an order@logos-verlag.de
Wollen auch Sie Ihre Dissertation veröffentlichen?