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Introduction

Who has never waited at a traffic light because all but one lanes of the road were closed
for construction works? In this situation, the red light seems to stay for ages until a bunch
of few cars from the other side arrive and the lane is finally free for the own passage. The
reason is that after the last car from the other side entered the lane we have to wait the
complete time the car needs to transit the stretch. The longer the distance the longer is
the waiting time. This is a classical example of bidirectional traffic. It is characterized by
the property that after one vehicle enters a tight lane, further vehicles moving in the same
direction can do so with relatively little headway, while traffic in the opposite direction
usually has to wait until the whole lane is empty again (cf. Figure 1 for a schematic
illustration).
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Figure 1: Traffic in two directions through a bottleneck. The three vehicles from
the right can follow each other passing the tight lane relatively fast, while the two
vehicles from the left have to wait a long time until the last vehicle from the right
finished the transit of the complete stretch.

For examples like road works, tight mountain passes, or bridges traffic lights are a good
solution to prevent collisions of vehicles entering a tight segment at its different ends. But
when single-track infrastructures are controlled by some operators the planning process
has to deal with the special character of bidirectional traffic, e.g., when coordinating trains
on single-track railway lines.

In this thesis we investigate a further prominent example of that kind: the ship traffic
at the Kiel Canal. Situated in the north of Germany the Kiel Canal links the North and
Baltic Seas. Hence, the canal is operated bidirectionally. Since offshore vessels are not
primarily designed for inland navigation, the passing of two ships with large dimensions
is not possible at arbitrary positions. To deal with these problems, there are wider areas
called sidings within the canal that allow for passing and waiting, cf. Figure 2. Hence, we
actually deal with a sequence of bottleneck segments and decisions must be made about
who is waiting for whom, where, and for how long. Responsible for these decisions is the
Waterways and Shipping Board with a team of nautically experienced expert navigators.
They try to distribute necessary waiting times in sidings fairly among all ships.

Since the Kiel Canal has seen a tremendous growth of traffic demand, which is expected
to continue, an enlargement of the canal is planned. There are a bunch of possible
construction options such as extending or creating sidings or to allow more flexible passing
of ships by deepening and/or widening crucial parts of the canal. In order to assess the cost
and benefit of these options their combined effects under predicted ship traffic needed to be
reliably estimated. In this thesis we present the mathematical and algorithmic foundation



